GLC Physics and Detector

presented by H. Yamamoto Tohoku University

JPS, Miyazaki, September 10, 2003

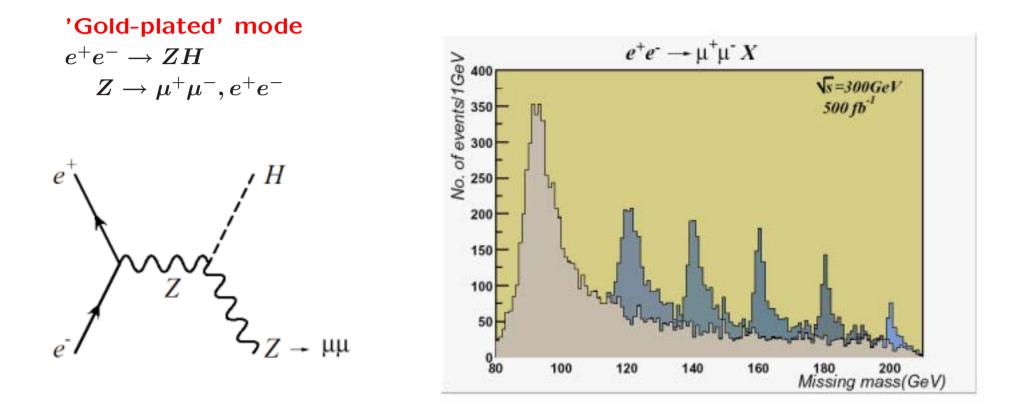
Physics of GLC

GLC program studies : EW symmetry breaking (Higgs) and possible new physics in TeV scale.

GLC is to start $2012 \sim 2015$, i.e. 5-8 years later than LHC.

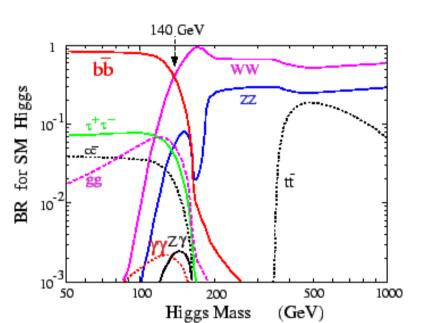
However, GLC can exploit

- cleaner and simpler physics events, with
- well-controlled initial states (incl. beam polarizations).
- larger fraction of physics/event.
 - (\rightarrow less backgrounds)
- lower rates and radiation dose.
 - (\rightarrow push for better detector performances)

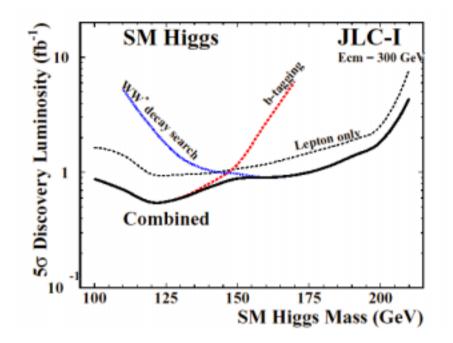

GLC parameters

- Max c.m. energy : 500 GeV, upgradable to ~ 1 TeV.
- Luminosity : $1 \sim 3 \times 10^{34}$ /cm²s \rightarrow 500 fb⁻¹ over 2-4 years.

	warm	cold
CM energy	500 GeV	
#bunch/train	192	2820
#train/s	150 Hz	5 Hz
bunch sp.	1.4 ns	337 ns
train length	269 ns	950 μs
gap/train	6.6 ms	199 ms


Readout/DAQ tougher for cold.

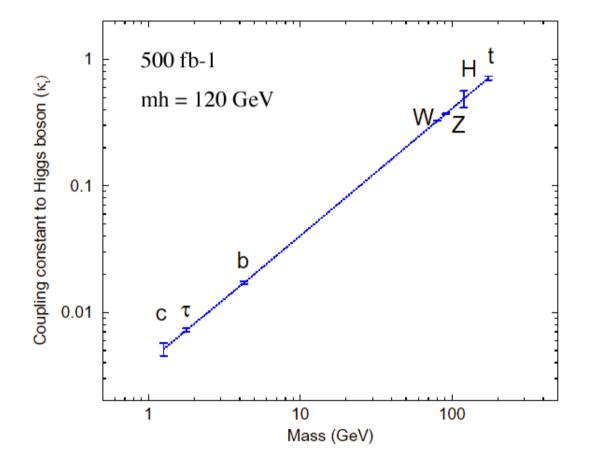
Higgs Studies



Plot $\ell\ell$ recoil mass (Higgs not directly measured). Decay-independent measurements of Higgs mass, production rate. Detecting Higgs decays \rightarrow absolute Brs, background reduction($ee \rightarrow ZZ$).

SM Higgs Sensitivity

SM HIggs branching fractions


- 5σ discovery in ~ 1 day.
- LHC : 5σ in ~ 1 year.
 GLC starts 5-8 years later →
 'discovery machine' after one week.
- 500 fb⁻¹ \rightarrow 10⁵ Higgs detected in clean environments.

Determination of Higgs Parameters

For $m_h = 120$ GeV with 500 fb $^{-1}$:

- $\sigma_{m_h} = 40$ MeV (model-independent).
- Spin, CP by angular distributions of Higgs productions and decays as well as energy scan.
- ZZH, WWH couplings to a few % by $ee \rightarrow ZH$ and $ee \rightarrow \nu \bar{\nu} H$.
- Higgs total width to 5% by $Br(H \to WW)$ and $\Gamma(H \to WW)$.
- Couplings to b, c, τ by $Br(H \to f\bar{f})$. (*b*, *c*-tagging by vertexing essential)
- Coupling to t by $ee \rightarrow t\bar{t}H$.
- Higgs self coupling by $ee \rightarrow ZHH$ and $\nu \bar{\nu} HH$.

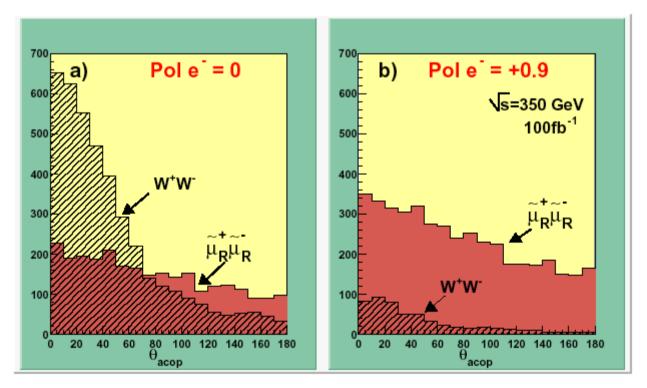
Higgs Coupling Sensitivities

 $\sqrt{s} = 300 \text{ GeV} (b, c, \tau, W, Z)$, 500 GeV (H), 700 GeV (t).

SM Higgs : coupling \propto particle mass.

Supersymmetric Particles

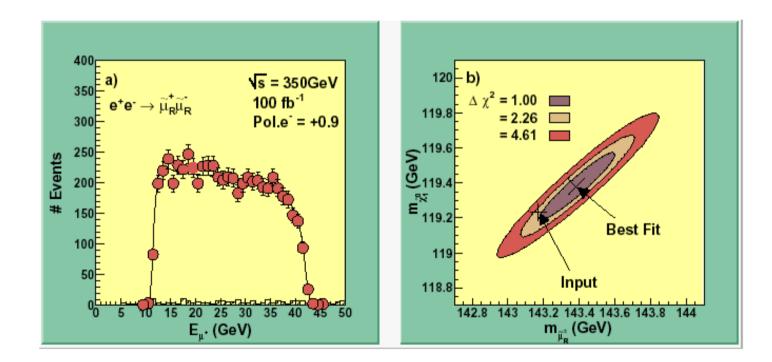
- GLC can pair-create many sparticles in variety of models.
- Precision measurements of masses and mixings.
- Determine qunatum numbers: spin, hypercharge etc.
- Beam polarization can be useful above and often reduce backgrounds.


For example,

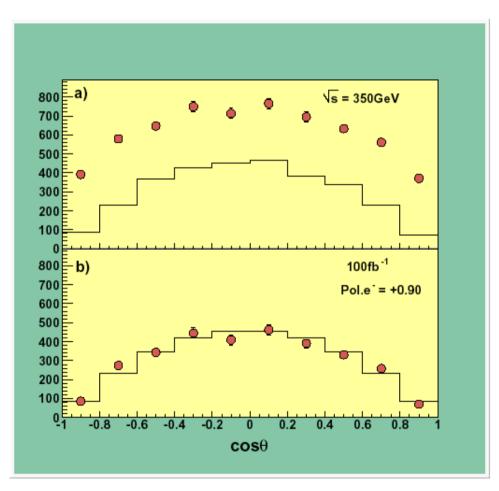
$$e^+e^-
ightarrow ilde{\mu}_R^+ ilde{\mu}_R^-, \quad ilde{\mu}_R^\pm
ightarrow \mu^\pm ilde{\chi}_1^0$$
 or $e^+e^-
ightarrow ilde{\chi}_1^+ ilde{\chi}_1^-, \quad ilde{\chi}_1^\pm
ightarrow W^\pm ilde{\chi}_1^0$

Detection of Smuon

 $e^+e^- o ilde{\mu}^+_R ilde{\mu}^-_R, ~~ ilde{\mu}^\pm_R o \mu^\pm ilde{\chi}^0_1$


Signal: $\mu^+\mu^-$ + nothing ($\tilde{\chi}^0$'s) Plot the acolinearity of $\mu^+\mu^-$.

Right-handed e^- beam reduces the W^+W^- background.


Smuon Pair Production

Determination of masses of $\tilde{\mu}_R$ and χ^0 From the (end point of) μ^{\pm} spectrum.

Smuon Pair Production

Determination of $\tilde{\mu}_R$ spin

Angular distribution of $\tilde{\mu}_R$ w.r.t. beam axis. a) With double solutions. b) Wrong solution removed (found to be flat).

 $\sin^2 \theta \quad o \quad ilde{\mu}_R \text{ spin} = \mathbf{0}.$

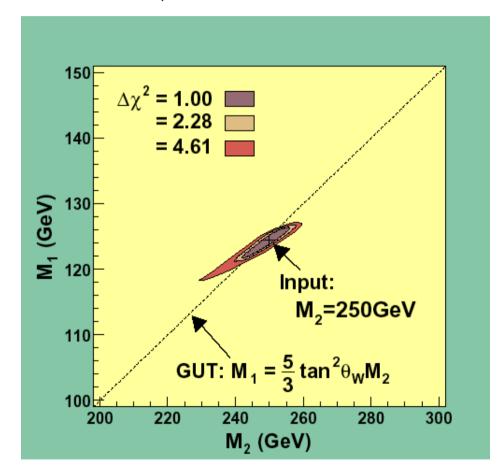
Similar analyses for $e^+e^-
ightarrow {\tilde \mu}^+_R {\tilde \mu}^-_R$ and ${\tilde \chi}^+_1 {\tilde \chi}^-_1$

Determination of SUSY Parameters Example:

Charginos $ilde{\chi}^+_{1,2}$ are mixture of Wino and Higgino:

$${
m Mass \ term} = (ilde W^+ \, ilde H^+) egin{pmatrix} M_2 & \sqrt{2} m_W \coseta \ \sqrt{2} m_W \coseta \ \mu \end{pmatrix} egin{pmatrix} ilde W^- \ ilde H^- \end{pmatrix}$$

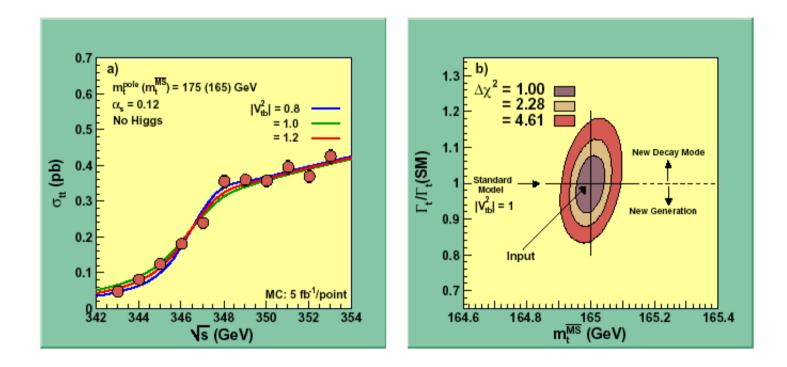
With e_R^- beam:

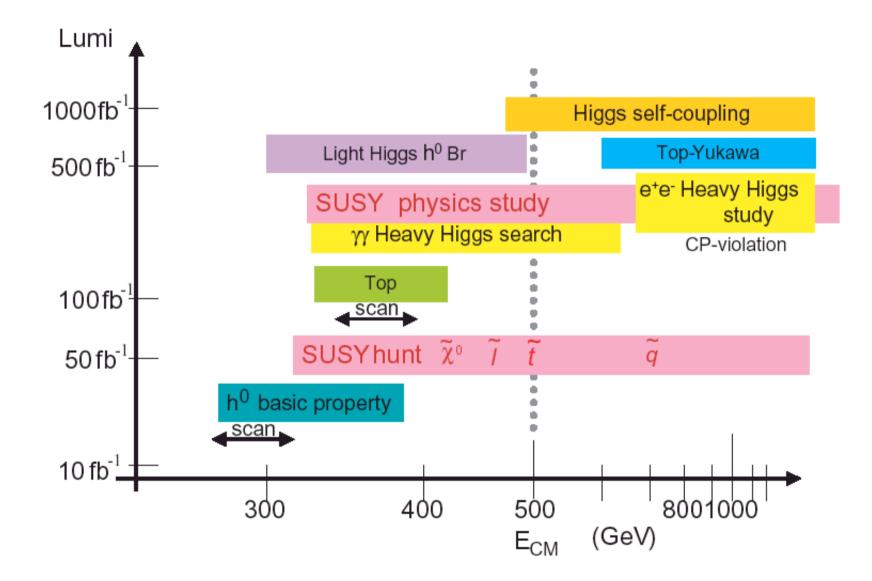

- only $\tilde{\tilde{H}}^{\pm}$ component of $\tilde{\chi}_1^+$ contribute to $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ creation.
- depends on \tilde{B} in $\tilde{e}_R^+ \tilde{e}_R^-$ creation.

Perform global fit $(M_1, M_2, \tan\beta, \mu)$ to

 $\sigma(e^+e^-_R
ightarrow ilde e^+_R ilde e^-_R
ightarrow ilde \chi^+_1 ilde \chi^-_1)\,,\quad m_{ ilde \chi^0_1}\,,\quad m_{ ilde \chi^+_1}\,.$

Determination of SUSY Parameters (cont'd)


 $\sqrt{s}=500GeV$, 50 fb $^{-1}$


Serves as a test of GUT relation (or other mechanisms).

Top Studies

 $e^+e^-
ightarrow tar{t}$

5 fb⁻¹/point $\rightarrow \sigma_{m_t} \sim 50$ MeV (LHC: $1 \sim 2$ GeV) Detailed study of top production/decays. (New generation, new decay modes, CP violations)

No time to cover many other physics.

GLC Detector

GLC detector should take advantage of the clean environment of linear collider to achieve best possible performances.

GLC detector will be designed/constructed in an entirely international environment.

'Best possible' is defined by expertise available worldwide.

The machine may be warm or cold. (to be determined in about a year by the 'wise-person's committee' or otherwise)

Detector performance goals (compiled by the int'l R&D review)

• vertexing: $\sigma_{r\phi,z}(ip) \leq 5 \,\mu \mathrm{m} \oplus \frac{10 \,\mu \mathrm{m \, GeV/c}}{p \sin^{3/2} \theta}$, (1/5 r_{beampipe} , 1/30 pixel size, 1/30 thin w.r.t LHC)

(Example) b, c tagging. $(H \rightarrow b\bar{b} \text{ vs } c\bar{c})$ $t \rightarrow 3 \text{jets reconstruction.}$

• central tracking: $\sigma(\frac{1}{p_t}) \le 5 \times 10^{-5} (\text{GeV/c})^{-1}$ (~ 1/10 LHC. 1/6 material in tracking volume.)

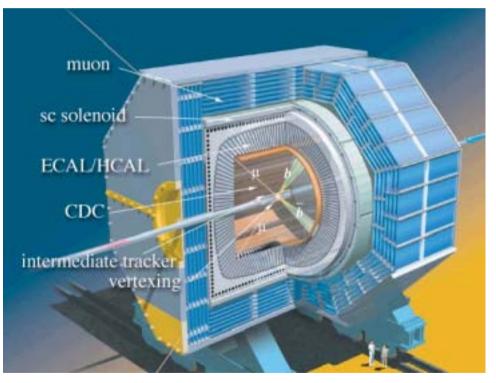
(Example) M_H by $e^+e^- \to ZH \to \ell^+\ell^- X$ $M_{\tilde{\ell}}$ by $e^+e^- \to \tilde{\ell}\tilde{\ell} \to \ell^+\ell^-\chi^0\chi^0$

Detector performance goals (cont'd)

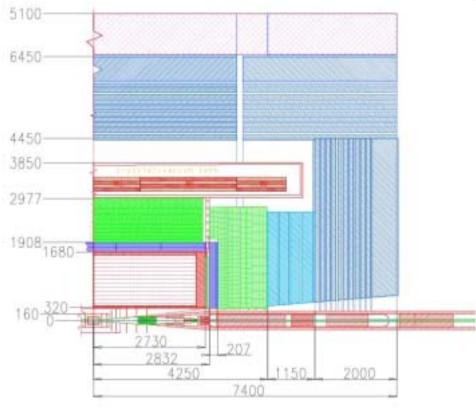
• forward tracking: $\sigma(\frac{1}{p_t}) \leq 3 \times 10^{-4} (\text{GeV/c})^{-1}$, $\sigma(\delta\theta) \leq 2\mu \text{rad to } |\cos \theta| \sim 0.99$.

(Examples) SUSY *t*-channel production. $d\mathcal{L}/dE$ by forward Bhabha.

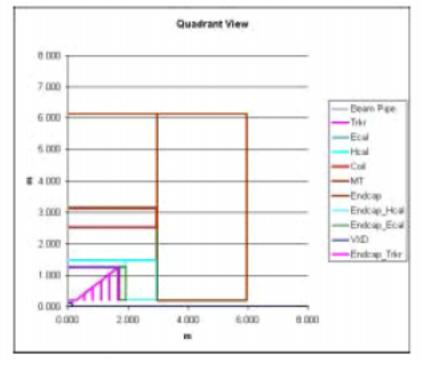
• Jet 'particle-flow': $\frac{\sigma_E}{E} \simeq 0.30 \frac{1}{\sqrt{E(\text{GeV})}}$ (1/200 calorimeter granularity w.r.t. LHC) jet 4-momentum measurement.


(e.g. $Z, W, H \rightarrow 2$ jets, $t \rightarrow 3$ jets)

• hermeticity


(only ~ 10 mrad hole along beamline)

Missing energy measurement (LSP etc.).


Generic LC detector (GLC)

- Pixel-based vertex detector.
- High B-field (≥ 3T) (For *p*-resolution.
 Also, squeeze pair background)
- ECAL&HCAL within B-field.
- Flux-return as muon detector. (catches hadronic shower tail)

'Small' design (NLC Small Version) (Silicon-based central tracker)

^{&#}x27;Large' design (Tesla)
(gas-based central tracker)

Vertex Detector

GLC Default: Charge-Coupled Devices (CCD's)

Pros: proven performance at SLD Small pixel size $\sim (20 \mu m)^2$ Relatively easy to thin

Cons: slow readout (→ parallel readout) modest radhardness (probably OK) Needs to be cooled(?)

Solution exists for warm machine. Cold machine may have a readout difficulty.

- LCFIcollaboration (UK institutions)
- US collaboration (Oregon, Yale)
- Japanese collaboration (KEK, Niigata, Tohoku, Saga)

Vertexing Option: Active Pixel Sensors (APS)

- Hybrid pixel sensors (i.e. bump-bonded readout/sensor) (CERN, Helsinki, INFN, Krakow, Warsow)
 - material is thick.
 - pixel size typ. 50x400 μ m² too big.
 - capacitively-coupled readout to reduce #channel.
- Monolithic active pixel sensors (MAPS).
 CMOS image sensor technology. Pixel size ~CCD
 Commercial fab process. Readout/sensor on one chip.
 - large-area sensor (3.5 cm^2) tested OK.
 - fast readout (50 MHz possible) works.
 - thinned to 120 μ m, tested OK.
 - Seems to work at least for warm machine.

MAPS Collaboration newly formed

The roadmap of MAPS collaboration (IRES&LEPSI, DESY, NIKHEF, University of Geneve)

Chip design and chip interconnection - stitching **IRES&LEPSI** DESY (simulations,radhard,tests)

DAQ – hybrid design University of Geneve DESY ?

Thinning Industry – can do up to 80 μ m -> further labs

Mechanical support DESY (pulse powering) DESY&NIKHEF(design) Power consumption and cooling IRES-LEPSI (chip based) DESY (cooling system, FEA) NIKHEF(FEA)

Physics simulation aiming to optimize MAPS vertex detector design (pixel size, ladder position) DESY

Goal: to have a full ladder 6 chips done by 2005 – not the final design

Central Tracker

Two basic types:

• Gaseous

large, many samplings/trk

dE/dx π/K separation promissing.

- Jet chamber
 - (GLC default more or less OK)
- TPC

• Silicon

small, ~5 samplings/trk No dE/dx π/K separation.

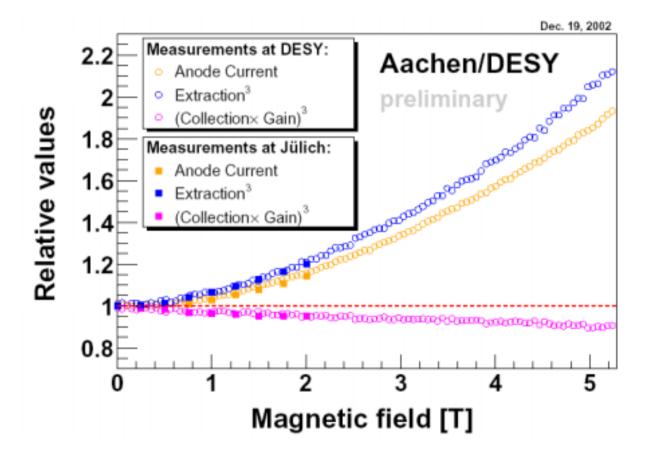
Main goal : reduce volume of ECAL (SiW).

Tracking Option: TPC

Europe (Aachen, DESY/Hamburg, Karlsruhe, Krakow, MPI-Munich, NIKHEF, Novosibirsk, Orsay/Sacley, Rostok) N. America (Carleton,/Montreal, LBNL, MIT) KEK (new)

Pros:

Works at high B field (>3 T) Good 2-trk resolution, dE/dx. No thick endplates, no wires in tracking volume.


Cons (?):

probably needs new charge readout system.

Novel readouts: GEM, MicroMEGAS, or silicon-based.
 Avoid high-tension wires (reduce material of endplate).
 Reduce dead regions.

Prototypes are working well.

GEM-TPC Tested In 5Tesla (LC-TPC group)

Works fine at 5T.

Calorimeters

ECAL (EM Calorimeter)

 GLC default: Tile-fibre calorimeter Modest granurarity (4 × 4cm²) (KEK, Niigata, Tsukuba)

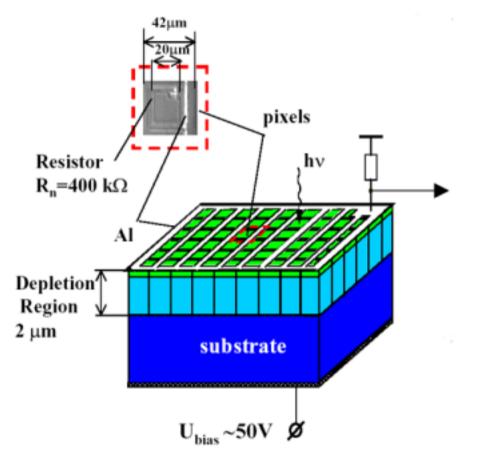
More or less achieves goal.

• Option: Si-W calorimeter

High granurarity ($\sim 1 \text{ cm}^2$), but expensive: \$100M/Si now. How far does it do down? (CALICE collaboration, Oregon/SLAC)

Option: Strip-fiber calorimeter
 Use scint.strip/fiber instead of tile/fiber.
 (Tsukuba U.)

HCAL (Hadron Calorimeter)


• GLC default: Tile-fibre calorimeter

Larger granurarity than the ECAL version. Fe: good for effective Moliere radius. Pb: hardware compensation at 4mm/1mm sampling. (CALICE, KEK, Kobe/Konan)

R&D items:

Photon detectors in high B field:
 APD, SiPM, HPD, HAPD, EBCCD.

SiPM (Silicon Photomultiplier)

- (42μm)² cell, limitted Geiger (1mm)² total/SiPM now.
- $V_{\rm bias} \sim$ 50 V.
- Works in a high B-field
- Quantum eff. \sim 0.3.
- Fast ($\sigma_{1\gamma} = 50$ ps).
- Quite cheap.

Still in R&D stage, but quite promissing.

HCAL (cont'd)

• Option: Digital calorimeter

Very-high granurarity ($\sim 1 \text{ cm}^2$) with 1-bit readout. Use granurarity also for compensation. ('software compensation'+finer trk matching) (CALICE collaboration, U. Texas)

Principle still to be demonstarated (MC).

Read out: RPC or wires as default. R&D: GEM, VLPC.

LHC and GLC

- LHC has wider ranges of particle searches.
- GLC has more precise measurements.
- History shows the complementality of hadron and lepton machines:
 - Charm (J/Ψ) discovered by hadron and lepton machines, followed immediately by detailed studies by leptonic machines.
 - Bottom discovered by a hadron machine and then studied in detail by lepton machines (e.g. LEP, B-factories).
- Sign of a new particle by GLC → LHC and vice versa real-time. (with necessary refinements in software/hardware)
- Simultaneous running of LHC and GLC is essential in achieving such cross fertilizations.