GLC Detector

presented by: Hitoshi Yamamoto (Tohoku University)

Cornell, July 2003

JLC: New names were solicited over internet (EPOC, ILIAD, TYPHOON etc. etc.)

Naming committee of ACFA (chair: Prof. Namkung) 2003 May: officially renamed JLC \rightarrow GLC

GLC machine parameters

version	'A'	'Y'	
E_{CM}	535 GeV	501 GeV	
pulse rep. rate	150 Hz		
#bunch/pulse	95	190	
bunch separation	2.8 ns	1.4 ns	
pulse duration	266 ns		
pulse to pulse	6.67 ms		
#particle/bunch	0.75 ×10 ¹⁰	0.70 ×10 ¹⁰	
σ_x	277 nm	239 nm	
σ_y	3.39 nm	2.55 nm	
σ_{z}	90 µm	80 µm	
full crossing angle	6~8 mrad		
Luminosity	9.84×10^{33} /cm ² s	27.0×10^{33} /cm ² s	

Generic GLC detector

Evolution of GLC Detector Pradigm

Driven mostly by the solenoid field and the final focus design

• Solenoid field:

Keeps the pair backgrounds tightly around the beamline.

2 Tesla \rightarrow 3 Tesla

Shrinks the size of CDC $(\rightarrow$ the whole detector shrinks)

• Short final focus design: (by Raimondi&Seryi)

Final focus section $1800 \rightarrow 500m$ ($E_b = 500$ GeV) IP-QC1 distance (ℓ^*): $2m \rightarrow 4.3m$

Changes the IR design (easier in general)

Simulation

Generation of pair background: CAIN Ebeam=250GeV "A" option ("Y" option)

Detector Simulation:

JIM (based on GEANT3) Ecut for γ: 10 keV Ecut for n: 1 keV B field of compensatiom mag. & QC included

3T Detector

3T *l**=**4.3m Detector**

Impact of the new optics ($l^{*}=4.3m$) on the detector

- Huge W-mask NOT needed
- Background hit much smaller (CDC, CAL)
- No need for Compensation magnet (?)

if the B field @4.3m is weak enough

or Super conducting QC1 is adopted

- Better forward coverage for calorimetry
- Smaller R_{min} of CDC and CAL possible

Detector Model	CDC hits / BX		CAL Edep (GeV / BX)		θ_{\min}
	(γ)	(n)	(γ)	(n)	(mrad)
2 T	2	30	~0	0.6	50
3T (<i>l</i> *=2 m)	1	2	~0	0.9	50
3T (<i>l</i> *=4.3 m)	1	0.1	0.01	0.03	22

Vertex Detector

Present Design Parameters in JIM (JLC full Simulator)

- 4 layers of CCDs at *r* = 24, 36, 48, 60 mm --Another layer at smaller *r* ?
- Angular coverage of $|\cos\theta| < 0.9$
- Wafer thickness of 300 µm -- Thinner wafer ?
- Pixel size of 25 μm^2
- $-\sigma = 4 \ \mu m$
- $\delta^2 = 7^2 + (20/p)^2 / \sin^3\theta$ [µm]

Expected Performance of CCD Vertex Detector

Better than $7\mu m$ expected by VTX alone at large Pt due to high resolution CDC

$$\sigma_{b} = \frac{\sigma_{in} r_{out}}{r_{out} - r_{in}} \oplus \frac{\sigma_{out} r_{in}}{r_{out} - r_{in}} \oplus \frac{0.014 r_{in}}{p\beta} \sqrt{\frac{Xr}{sin^{3}\theta}}$$

R&D Status & Plan of CCD Vertex Detector

1) Spatial resolution

- Resolution of $<3\mu m$ has been confirmed with test beam
- Laser beam (1064 nm) scanner with 2µm spot size (Niigata Univ.)

2) Study of distortion of CCD wafers

Thinner wafer is desireble
--- 20μm is enough for particle detection
--- but how to support?
Thermal distortion shoud be reasonably small and has repeatability
Idea of C.Damerell's group: 50μm wafer stretched from both ends

-> proposed in TESLA TDR Another idea: Partially thinned wafer like SHOJI in traditional Japanese house

System of distortion measurement has been constructed

3) CCD radiation hardness

The result of our study so far using ⁹⁰Sr irradiation is;

```
CCD can survive > 3 years with

B = 2T

Rmin = 24 mm

Machine parameter ''A'' (Standard Luminosity)
```

But it is preferable to have

Rmin< 24 mm</th>High Luminosity ("Y") Option

-> Study of radiation hardness should be continued

Issues to be studied:

```
- Effect of readout speed
-> Fast readout (~10MHz) is needed
```

- How to inject the "Fat Zero Charge"
- Radiation damage effect on the spatial resolution
 -> @Niigata Univ.
- Radiation damage by high energy (>10MeV) electrons
 Sooner or later

4) Fast readout electronics

CCD Signal Processor chip for Digi-Cam

- Correlated double sampler
- Variable gain amp
- 10bit/40MHz or 12bit/20MHz ADC

These functions in 9x9 mm² chip size by \$6/chip

Vertifcal CTI

(Beam = 150 MeV electrons. Sr90/beam both $6 \times 10^{10}/\text{cm}^2$.)

S7030-1008 bare chip

20 μm (**24.6**×6 mm²)

300 µm

Measurement System

SLD (VTX3)	JLC
------------	-----

# of pixels	307 M	> 320 M
Readout time	200 ms	6 ms
R.O. frequency	5 MHz	20 (40) MHz
# of r.o. ch	384	> 2600 (1300)
Throughput	15 Gbps	> 500 Gbps
Fiber Optics	960Mbps x 16	3.4 Gbps (IEEE1394b) x 150 ??

Current CDC Parameters (R&D)

Mini- jet cell structure (5 anode wires /cell) Gas mixture $CO_2(90\%) - C_4 H_{10}(10\%)$ $\sigma_{xy} = 85 \,\mu \text{m}$

2–Tesla option

 $R_{in} = 45 \text{ cm}$ $R_{out} = 230 \text{ cm}$ L = 460 cm (Length of the chamber) B = 2 T n = 80 (Number of sampling points) 3-Tesla option

 $R_{in} = 45 \text{ cm}$ $R_{out} = 155 \text{ cm}$ L = 310 cm (Length of the chamber) B = 3 Tn = 50 (Number of sampling points)

<u>Calorimeter</u>

Baseline Design

- Structure : Lead/Plastic scintillator Sandwich EM : Pb/Sci=4mm/1mm had : Pb/Sci=8mm/2mm
- Scheme : Tile/Fiber

with hardware compensation

• Granularity : as small as reasonably achievable...under study Baseline Rect-Tile

EM : 4cm x 4cm (24mrad) x 3 longitudinal samplings

had : 14cmx14cm (72mrad) x 4 longitudinal samplings

Strip-EM option

1cm-wide strip-array (x-y layers) x ~20 longitudinal samplings

• Shower Max Detector

Baseline : 1cm-wide strip-array (x-y layers) Option : 1cm x 1cm Si-pad

Performances

• Single-particle response (measrured with testbeam)

 $_{E}\!/E = 15.4\%/~E + 0.2\%~$ for electrons (ZUES-type)

E/E = 46.7%/E + 0.9% for pions

 $x = 2 \sim 3mm$ even at over 50GeV

pion rejection = 1/1400 at e = 98%

• Jet response : under simulation study

Recent Activities

[I] Granularity Optimization with Full Simulation

Analysis of quick-simulation data gives very good performance

- ... but it is not the end of the story.
- 1) Construction of full-simulator
 - Done for baseline design (Rect-Tile).
 - not yet for optionl design (strip-EM).

2) Shower clustering ; in progress but very difficult

- a) hadron shower clustering
- <--- 2D-JADE ; not successful yet
 - 2D-contiguous ; not successful yet
 - 3D-contiguous ; not successful yet
 - Super-cluster = French method not yet tried (below)

- b) decomposition of overlapping showers under study including its necessity itself
- c) track-cluster association
 under study including 1st principle ;
 whether one-to-one or plural-to-one

Coming R&D plans

1) Further full-simulation studies on granularity optimization

2) Beam tests of fine-granularity EM module

includes

- Strip-EMC
- Rect-Tile EMC
- Direct-readout SHmax
- Optimum photon detectors for each
- 3) Lead alloy and structures
 - Further studies on alloys and hybrid materials Make test pieces of SUS-Pb sandwich
 - Engineering studies on structure
- 4) Mass production of tiles and fiber assemblies
 - Tiles ; Design optimization for "moldable" tiles MEGA-tile structure, groove cross section, etc.
 - Fiber assemblies ; low-cost heat-splicing, mirroring, etc.

Summary/Concluding Remarks

- 1. The name change: $JLC \rightarrow GLC$
- 2. New an longer IR seems promissing, but details needs to be studied.
- 3. Steady progresses on each front, but holes exist: Forward tracker, Intermediate tracker, particle ID.
- 4. Other options need to be studied: TPC, digital calorimeter.
- 5. Still more efforts needed for jet reconstruction study.