Status of the GLC and World-Wide LC Studies

presented by H. Yamamoto Tohoku University

One LC in the world with one/two generic LC detectors

Challenges our ability in a truly international collaborative endeavor

> Beijing October 14, 2003

International LC Organization

Define LC : Parameter Sub-committee

- R. Heuer (chair), F. Richard, S. Komamiya,
 D. Son, M. Oreglia
- The report is about to come out (as of Oct. 2003).
- Preliminary consensus :
 - 1. Initial max c.m. energy = 500 GeV.
 - 2. $\mathcal{L} = 1 \sim 3 \times 10^{34} / \text{cm}^2 \text{s}.$
 - 3. 500 fb $^{-1}$ in 4 years.
 - 4. Energy scanable.
 - 5. 2 IR's.
 - 6. Upgradable to ~ 1 TeV.

Technology choice : Technical Review Comm.

- G. Leow (chair). Large overlap with the acc. sub-comm. (TRC is older)
- Reviewed 4 options : Tesla, GLC-X/NLC, CLIC, GLC-C.
- The second report delivered in 2003. Ranked R&D's needed : R1-R4.
- **R1:** Demontration of feasibility of machine.
- R2: Finalize design and ensure reliability.
- R3: R&D's for production.
- R4: Technology/cost optimization.

TRC R1 Scores (based on M. Tigner's LP03 talk)

	Tesla	GLC-X/NLC		
RF freq.	1.3 GHz (L)	11.4 GHz (X)		
RF temp.	SC ('cold')	room temp. ('warm')		
Acc. grad.	35 MV/m	50 MV/m		
$E\mathrm{cm}_{\mathrm{max}}$	0.8 TeV	1.0-1.3 TeV		
R1 cleared?				
Modulator	yes	yes		
Klystron	yes	yes		
RF distribution	yes	no(yes 11/03?)		
Acc. structure	yes(500 GeV) no(800 GeV)	no(yes 11/03?)		

Technology choice : Wise-person's Committee

- Charged by ILCSC to 'choose' technology by the end of 2004.
- 4 members from each region, 12 total. Nominated by each region considering -
 - International statue,
 - Experience with large-scale experiments,
 - Acc. phycisists, Theorists.
- The exact charge and members to be finalized at the ILCSC meeting in Paris, 11/19/03.
- Starts working around Jan, 2004.

Organization Model

- 'Globalization committee' started July 2001 by Sugawara (then the director of KEK). Report delivered Dec 2002 :
 - GLCC (global linear collider center) to be formed by treaties among nations.
 - Pre-GLCC to be formed by agreements among labs before GLCC to do real works.
- A system to do real design work after the choice by the Wise-person's comm. is envisaged : pre-GDO (global design organization) to generate CDR and then TDR of LC.
- pre-GLCC \sim pre-GDO : the name is to be unified.
- pre-GDO task force (chair: S. Ozaki) was formed and started its work to define pre-GDO (1st meeting on 9/11/03).

Physics of Linear Collider

LC program studies : EW symmetry breaking (Higgs) and possible new physics in TeV scale.

LC is to start 2012~2015, i.e. 5-8 years later than LHC.

However, LC can exploit

- cleaner and simpler physics events, with
- well-controlled initial states (incl. beam polarizations).
- larger fraction of physics/event.
 - (\rightarrow less backgrounds)
- lower rates and radiation dose.
 - (\rightarrow push for better detector performances)

One example : Higgs Studies

Plot $\ell\ell$ recoil mass (Higgs not directly measured). Decay-independent measurements of Higgs mass, production rate. Detecting Higgs decays \rightarrow absolute Brs, background reduction($ee \rightarrow ZZ$).

SM Higgs Sensitivity

SM HIggs branching fractions

- 5σ discovery in ~ 1 day.
- LHC : 5σ in ~ 1 year.
 GLC starts 5-8 years later →
 'discovery machine' after one week.
- 500 fb⁻¹ \rightarrow 10⁵ Higgs detected in clean environments.

Determination of Higgs Parameters

For $m_h = 120$ GeV with 500 fb $^{-1}$:

- $\sigma_{m_h} = 40$ MeV (model-independent).
- Spin, CP by angular distributions of Higgs productions and decays as well as energy scan.
- ZZH, WWH couplings to a few % by $ee \rightarrow ZH$ and $ee \rightarrow \nu \bar{\nu} H$.
- Higgs total width to 5% by $Br(H \to WW)$ and $\Gamma(H \to WW)$.
- Couplings to b, c, τ by $Br(H \to f\bar{f})$. (*b*, *c*-tagging by vertexing essential)
- Coupling to t by $ee \rightarrow t\bar{t}H$.
- Higgs self coupling by $ee \rightarrow ZHH$ and $\nu \bar{\nu} HH$.

Higgs Coupling Sensitivities

 $\sqrt{s}=300~{
m GeV}$ (b,c, au,W,Z), 500 GeV (H), 700 GeV (t).

SM Higgs : coupling \propto particle mass.

No time to cover many other physics. Please see : Roadmap report http://lcdev.kek.jp/

GLC Detector

GLC detector should take advantage of the clean environment of linear collider to achieve best possible performances.

GLC detector will be designed/constructed in an entirely international environment.

'Best possible' is defined by expertise available worldwide.

The machine may be warm or cold. (to be determined in about a year by the 'wise-person's committee' or otherwise)

Detector performance goals

(Int'l R&D review group, charged by the phys./det. sub-comm.)

• vertexing: $\sigma_{r\phi,z}(ip) \leq 5 \,\mu \mathrm{m} \oplus \frac{10 \,\mu \mathrm{m \, GeV/c}}{p \sin^{3/2} \theta}$, (1/5 r_{beampipe} , 1/30 pixel size, 1/30 thin w.r.t LHC)

(Example) b, c tagging. $(H \rightarrow b\bar{b} \text{ vs } c\bar{c})$ $t \rightarrow 3 \text{jets reconstruction.}$

• central tracking: $\sigma(\frac{1}{p_t}) \leq 5 \times 10^{-5} (\text{GeV/c})^{-1}$ (~ 1/10 LHC. 1/6 material in tracking volume.)

(Example) M_H by $e^+e^- o ZH o \ell^+\ell^- X$ $M_{\tilde{\ell}}$ by $e^+e^- o \tilde{\ell}\tilde{\ell} o \ell^+\ell^-\chi^0\chi^0$

Detector performance goals (cont'd)

• forward tracking: $\sigma(\frac{1}{p_t}) \leq 3 \times 10^{-4} (\text{GeV/c})^{-1}$, $\sigma(\delta\theta) \leq 2\mu \text{rad to } |\cos \theta| \sim 0.99$.

(Examples) SUSY *t*-channel production. $d\mathcal{L}/dE$ by forward Bhabha.

• Jet 'particle-flow': $\frac{\sigma_E}{E} \simeq 0.30 \frac{1}{\sqrt{E(\text{GeV})}}$ (1/200 calorimeter granularity w.r.t. LHC) jet 4-momentum measurement.

(e.g. $Z, W, H \rightarrow 2$ jets, $t \rightarrow 3$ jets)

• hermeticity

(only ~ 10 mrad hole along beamline)

Missing energy measurement (LSP etc.).

LC Beam Structures

	warm	cold	
CM energy	500 GeV		
#bunch/train	192	2820	
#train/s	150 Hz	5 Hz	
bunch sp.	1.4 ns	337 ns	
train length	269 ns	950 μs	
gap/train	6.6 ms	199 ms	

Readout/DAQ tougher for cold.

Generic LC detector (GLC)

- Pixel-based vertex detector.
- High B-field (≥ 3T) (For *p*-resolution.
 Also, squeeze pair background)
- ECAL&HCAL within B-field.
- Flux-return as muon detector. (catches hadronic shower tail)

'Small' design (NLC Small Version) (Silicon-based central tracker)

^{&#}x27;Large' design (Tesla)
(gas-based central tracker)

Vertex Detector

GLC Default: Charge-Coupled Devices (CCD's)

Pros: proven performance at SLD Small pixel size $\sim (20 \mu m)^2$ Relatively easy to thin

Cons: slow readout (→ parallel readout) modest radhardness (probably OK) Needs to be cooled(?)

Solution exists for warm machine. Cold machine may have a readout difficulty.

- LCFIcollaboration (UK institutions)
- US collaboration (Oregon, Yale)
- Japanese collaboration (KEK, Niigata, Tohoku, Saga)

Vertexing Option: Active Pixel Sensors (APS)

- Hybrid pixel sensors (i.e. bump-bonded readout/sensor) (CERN, Helsinki, INFN, Krakow, Warsow)
 - material is thick.
 - pixel size typ. 50x400 μ m² too big.
 - capacitively-coupled readout to reduce #channel.
- Monolithic active pixel sensors (MAPS).
 CMOS image sensor technology. Pixel size ~CCD
 Commercial fab process. Readout/sensor on one chip.
 - large-area sensor (3.5 cm^2) tested OK.
 - fast readout (50 MHz possible) works.
 - thinned to 120 μ m, tested OK.
 - Seems to work at least for warm machine.

MAPS Collaboration newly formed

The roadmap of MAPS collaboration (IRES&LEPSI, DESY, NIKHEF, University of Geneve)

Chip design and chip interconnection - stitching **IRES&LEPSI** DESY (simulations,radhard,tests)

DAQ – hybrid design University of Geneve DESY ?

Thinning Industry – can do up to 80 μ m -> further labs

Mechanical support DESY (pulse powering) DESY&NIKHEF(design) Power consumption and cooling IRES-LEPSI (chip based) DESY (cooling system, FEA) NIKHEF(FEA)

Physics simulation aiming to optimize MAPS vertex detector design (pixel size, ladder position) DESY

Goal: to have a full ladder 6 chips done by 2005 – not the final design

Central Tracker

Two basic types:

• Gaseous

large, many samplings/trk

dE/dx π/K separation promissing.

– Jet chamber

(GLC default - more or less OK)

- TPC

• Silicon

small, \sim 5 samplings/trk No dE/dx π/K separation.

Main goal : reduce volume of ECAL (SiW).

Tracking Option: TPC

Europe (Aachen, DESY/Hamburg, Karlsruhe, Krakow, MPI-Munich, NIKHEF, Novosibirsk, Orsay/Sacley, Rostok) N. America (Carleton,/Montreal, LBNL, MIT) KEK (new)

Pros:

Works at high B field (>3 T) Good 2-trk resolution, dE/dx. No thick endplates, no wires in tracking volume.

Cons (?):

probably needs new charge readout system.

 Novel readouts: GEM, MicroMEGAS, or silicon-based. Avoid high-tension wires (reduce material of endplate). Reduce dead regions.

Prototypes are working well (Aachen/DESY: even at 5 Tesla)

Calorimeters

ECAL (EM Calorimeter)

 GLC default: Tile-fibre calorimeter Modest granurarity (4 × 4cm²) (KEK, Niigata, Tsukuba)

More or less achieves goal.

• Option: Si-W calorimeter

High granurarity ($\sim 1 \text{ cm}^2$), but expensive: \$100M/Si now. How far does it do down? (CALICE collaboration, Oregon/SLAC)

Option: Strip-fiber calorimeter
 Use scint.strip/fiber instead of tile/fiber.
 (Tsukuba U.)

HCAL (Hadron Calorimeter)

• GLC default: Tile-fibre calorimeter

Larger granurarity than the ECAL version. Fe: good for effective Moliere radius. Pb: hardware compensation at 4mm/1mm sampling. (CALICE, KEK, Kobe/Konan)

R&D items:

Photon detectors in high B field:
 APD, SiPM, HPD, HAPD, EBCCD.

HCAL (cont'd)

• Option: Digital calorimeter

Very-high granurarity ($\sim 1 \text{ cm}^2$) with 1-bit readout. Use granurarity also for compensation. ('software compensation'+finer trk matching) (CALICE collaboration, U. Texas)

Principle still to be demonstarated (MC).

Read out: RPC or wires as default. R&D: GEM, VLPC.

LHC and GLC

- LHC has wider ranges of particle searches.
- GLC has more precise measurements.
- History shows the complementality of hadron and lepton machines:
 - Charm (J/Ψ) discovered by hadron and lepton machines, followed immediately by detailed studies by leptonic machines.
 - Bottom discovered by a hadron machine and then studied in detail by lepton machines (e.g. LEP, B-factories).
- Sign of a new particle by GLC → LHC and vice versa real-time. (with necessary refinements in software/hardware)
- Simultaneous running of LHC and GLC is essential in achieving such cross fertilizations.