Selected Highlights of Recent Belle Results

Presented by Hitoshi Yamamoto Tohoku University

Representing the Belle collaboration

February 4, 2002. Aspen Winter Conference

Plan

- 1. $\sin 2\beta$
- 2. Modes useful for β
- 3. Modes useful for γ (and α)
- 4. CKM matrix elements
- 5. Understanding basic *B* decay mechanisms and long-distance QCD

Measurement of $\sin 2\beta$

 $\Delta t \equiv t_{CP} - t_{tag} \sim rac{\Delta z}{eta \gamma \, c}$ (t: decay time in the B rest frame)

We found: If the tag side is B^0 (\overline{B}^0), the $J/\Psi K_S$ side tends to decay later (earlier) than the tag side ($\rightarrow CPV$)

CP-side Reconstruction

CP mode	ξ_{CP}	N_{evt}	N_{bkg}
$\overline{\Psi K_S(o \pi^+\pi^-)}$	_	457	11.9
$\Psi K_S(o \pi^0\pi^0)$	_	76	9.4
$\Psi'(ightarrow \ell^+\ell^-)K_S$	_	39	1.2
$\Psi'(ightarrow \Psi\pi^+\pi^-)K_S$	_	46	2.1
$\chi_{c1}K_S$	_	24	2.4
$\eta_c (ightarrow K^+ K^- \pi^0) K_S$	_	23	11.3
$\eta_c (ightarrow K_S K^- \pi^+) K_S$	—	41	13.6
$\Psi K^{*0}(o K_S\pi^0)$	+/-	41	6.7
ΨK_L	+	569	223

Detection modes
$\Psi{ ightarrow}\ell^+\ell^-~(\ell=e,\mu)$
$K_S{ ightarrow}\pi^+\pi^-$
$\Psi' { ightarrow} \ell^+ \ell^-, \Psi \pi^+ \pi^-$
$\chi_{c1}{ ightarrow}\Psi\gamma$
$\eta_c { ightarrow} K^+ K^- \pi^0, K_S K^- \pi^+$

Tagging of B Flavor

What distinguish B^0 and \bar{B}^0 ?

1. Leptons (e, μ)

• $b \rightarrow \ell^-$: high-P lepton.

• $b \rightarrow c \rightarrow \ell^+$: low-P lepton.

2. Charged kaons. $b \to c \to s(K^-)$

3. $\Lambda(\to p\pi^-)$. $b \to c \to s(\Lambda)$

4. Charged pions.

•
$$\bar{B} \rightarrow D^{(*)}\pi^-$$
 etc.: high-P pion.

•
$$b \rightarrow D^{*+} \rightarrow D^0 \pi^+$$
: low-P pion.

Multi-dimentional likelihood tagging

Time-dependent asymmetry

$$A_{CP}(t) \equiv \frac{\Gamma_{\bar{B}^0} - \Gamma_{B^0}}{\Gamma_{\bar{B}^0} + \Gamma_{B^0}} = \xi_f \sin 2\beta \sin \delta m t$$

 $\sin 2\beta = 0.99 \pm 0.14 (stat) \pm 0.06 (sys)$

Other Modes Useful for β

Observable:
$$\lambda \equiv rac{q \ Amp(ar{B}^0 o f)}{p \ Amp(B^0 o f)}$$
 $(B_{H,L} = pB^0 \pm qar{B}^0)$

- $b \rightarrow s$ penguin process.
 - $\phi K_S (CP-)$: Im $\lambda \sim \sin 2\beta$ pure penguin (short or long-distance) may be modified by new physics in $b \rightarrow s$.

- $b \rightarrow c\bar{c}d(s)$ tree process ($b \rightarrow c\bar{c}d$: some penguin with V_{td})
 - $D^+D^-(CP^+)$ ($b \rightarrow c\bar{c}d$): Im $\lambda \sim \sin 2\phi_1$
 - $D^{*+}D^{*-}$: $(b \to c\bar{c}d)$: $\mathrm{Im}\lambda \sim \sin 2\phi_1$ *CP*-diluted by polarizations (as in $J/\Psi K_S^*$).
 - $D^{*+}D^ (b \to c\bar{c}d)$, $D^{(*)+}D^{(*)-}K_S$ $(b \to c\bar{c}s)$: $\mathrm{Im}\lambda \sim r\sin(2\phi_1 + \delta_{\mathrm{strong}})$ CP-diluted. In general, $r \equiv |Amp(\bar{B}^0 \to f)/Amp(B^0 \to f)| \neq 1$, and the strong phase δ_S does not cancel out.

Technique: Full B Reconstruction (When all B decay products are detected)

(In this talk, all E's and \vec{P} 's are in the $\Upsilon 4S$ frame.)

 $B o f_1 \cdots f_n$

 $E_B = 5.28$ GeV and $|\vec{P}_B| = 0.35$ GeV/c are known. Use energy-momentum conservation:

• $E_{\text{tot}} = \Sigma_i^n E_i \longrightarrow \Delta E \equiv E_{\text{tot}} - E_{\text{beam}}$ (Energy difference)

•
$$\vec{P}_{\mathrm{tot}} = \Sigma_i^n \vec{P}_i \longrightarrow M_{bc} \equiv \sqrt{E_{\mathrm{beam}}^2 - P_{\mathrm{tot}}^2}$$

(beam-constrained mass)

Technique: Continuum Suppression

Most rare modes: background is dominated by continuum $e^+e^- \rightarrow q\bar{q}$ 2-jet events.

- Event shape variables: Fox-Wolfram R_l , thrust, etc. continuum: skinny, $B\bar{B}$: spherical.
- Angle(B candidate axis, axis of the rest) continuum: aligned, $B\overline{B}$: uniform.
- Angle(*B*, beam) continuum: $1 + \cos^2 \theta$, *B*: $\sin^2 \theta$.
- Fisher: $F = \sum_i c_i X_i$ (above+ X_i energy flow etc.) Adjust c_i to maximize the separation.

Preliminary

Partial Reconstruction of $D^{*+}D^{-}$

 $B^0
ightarrow D^{*+}D^-$, $D^{*+}
ightarrow D^0 \pi^+_{slow}$ D^- and $\pi +_{slow}$ back-to-back

No reconstruction of D^0 .

 θ : helicity angle of D^{*+} decay. (expect $\cos^2 \theta$) Require $\cos \theta$ is 'physical' Plot $\cos \theta_{D^- - \pi^+_{slow}}$

Two samples: w/ and w/o lepton tag.

Lepton-tag

$$Br(B^0 \to D^{*+}D^-) + Br(B^0 \to D^{*-}D^+) = (1.84 \pm 0.43^{+0.68}_{-0.63}) \times 10^{-3}$$

Modes useful for γ

 $B^- \rightarrow D_{CP}K^-$

В

 $B^-
ightarrow D_{CP} K^-$ (29.1 fb $^{-1}$)

 D^0h^- : assign π mass to h^- . Signal at $\Delta E = -49$ MeV.

$$egin{array}{c} \mathsf{CP} & +: & & & \ & K^+K^-, \pi^+\pi^- & \ & \mathsf{CP} & -: & & \ & K_S\pi^0, K_S\omega, K_S\eta, K_S\eta' & \end{array}$$

$$B^- \rightarrow D_{CP}K^-$$

Preliminary

	CP+	CP-
A _{CP}	$A_1 = 0.29^{+0.29}_{-0.24} \pm 0.05$	$A_2 = -0.22^{+0.26}_{-0.22} \pm 0.04$
	$-0.14 < A_1 < 0.79$	$-0.60 < A_2 < 0.21$
R _{CP}	$R_1 = 1.38 \pm 0.38 \pm 0.15$	$R_2 = 1.37 \pm 0.36 \pm 0.12$

$$R_i \equiv rac{Br(B^\pm
ightarrow D_i K^\pm)/Br(B^\pm
ightarrow D_i \pi^\pm)}{Br(B^\pm
ightarrow D^0 K^\pm)/Br(B^\pm
ightarrow D^0 \pi^\pm)}$$

(Cabibbo suppression factor ratio, D_{CP} vs D^0)

$$A_1 \sim -A_2$$
 expected. $\left[rac{A_1-A_2}{2}=2r\sin\delta\sin\gamma=0.26\pm0.18~(stat)
ight]$

Still consistent with no asymmetry.

$$B o \pi \pi/K\pi/KK$$

Direct CPV by tree-penguin interference.

Statistically more favorable than DK modes, but theoretically challenging.

Future: use theoretical expressions (QCD factorization etc.) for multiple modes and perform fit for ϕ_3 .

$B o \pi \pi/K\pi$ (10.4 fb $^{-1}$) $\pi^+\pi^-, K_S\pi^+ agar^+\pi^0, K^+\pi^0, K_S\pi^0$

 π^{\pm}/K^{\pm} : assigned the π mass; $\Delta E = -44$ MeV for K^{\pm}

$B ightarrow \pi\pi/K\pi/KK$

 $\pi^+\pi^0$: tree. $K^0\pi^+$: penguin.

- $K^+\pi^-$ mostly penguin?
- Large penguin in $\pi^+\pi^-$?
- No signal in KK.

Direct *CP* Violation in $K\pi$ (10.4 fb⁻¹)

$$A_{CP} \equiv rac{\Gamma(ar{B}
ightarrow ar{f}) - \Gamma(B
ightarrow f)}{\Gamma(ar{B}
ightarrow ar{f}) + \Gamma(B
ightarrow f)}$$

 $K^{\pm}\pi^{\mp}$: assume $B^0 \not\rightarrow K^-\pi^+$, $\bar{B}^0 \not\rightarrow K^+\pi^ K^{\pm}\pi^0$, $K_S\pi^{\pm}$: self-tagged by charge.

A_{CP}	Belle	(90% C.L)	Ref1	Ref2
$K^{\pm}\pi^{\mp}$	$0.044\substack{+0.186+0.018\\-0.167-0.021}$	-0.25:0.37	0.05 ± 0.10	-0.19
$K^{\pm}\pi^{0}$	$-0.059\substack{+0.222+0.055\\-0.196-0.017}$	-0.40:0.36	0.06 ± 0.10	-0.18
$K_S\pi^0$	$0.098\substack{+0.430+0.020\\-0.343-0.063}$	-0.53:0.82	0.01 ± 0.01	-0.01

Ref1: Beneke, Buchalla, Neubert, and Sachrajda, 2001 Ref2: Kuem, Li, and Sanda, 2001

- $K_S \pi^+$ is penguin-dominated o small A_{CP}
- 20% error at 10 fb⁻¹ \rightarrow 6% error next year.
- Large unceditainties in theoretical predicctions.

CKM Matrix Elements

Technique: Neutrino reconstruction

 $B \to X \ell \nu$ as an example

$$ec{P}_
u = -\sum\limits_i ec{P}_i\,, \quad P_
u = (|ec{P}_
u|, ec{P}_
u))$$

(*i*: all detected particles of the event)

Cuts to improve the resolution: • no other leptons in the event. • $|Q_{tot}| \le 1$

 $\begin{aligned} & \text{Consistency cuts (typical):} \\ & M_{miss}^2 = E_{miss}^2 - \vec{P}_{\nu}^2 < 2 \,\text{GeV}^2 \quad (E_{miss} = 2E_{beam} - \sum_i E_i) \\ & |\cos \theta_{B,(X\ell)}| \leq 1 \,, \quad (\cos \theta_{B,(X\ell)} = \frac{2E_B E_{X\ell} - M_B^2 - M_{X\ell}^2}{2|\vec{P}_D||\vec{P}_{Y\ell}|}) \end{aligned}$

Take P_{ν} as just another 4-momentum for ΔE and M_{bc}

$$ar{B}^0
ightarrow D^+ \ell^-
u$$
 (10.8 fb⁻¹) ($\ell = e \text{ or } \mu$)
 $rac{d\Gamma}{dy} = rac{G_F^2}{48\pi^3} (m_B + m_D)^3 m_D^3 (y^2 - 1)^{3/2} |V_{cb}|^2 F_D^2(y)$

 $y \equiv v_B \cdot v_D$ (γ factor of D in B frame)

Large correlated background $(D^*/D^{**}\ell\nu)$

 $F_D(1) = 1$ in the heavy-quark limit $\rightarrow |V_{cb}|$ Need corrections for $F_D(1)$: use $F_D(1) = 0.913 \pm 0.042$

Preliminary ($\sim 10 \text{ fb}^{-1}$)

	$D^+\ell u$	$D^{*+}\ell u$
$ V_{cb} F(1)(imes 10^{-2})$	$3.73 \pm 0.35 \pm 0.43$	$3.62 \pm 0.15 \pm 0.18$
F(1) used	0.98 ± 0.07	0.913 ± 0.042
$ V_{cb} (imes 10^{-2})$	$4.06 \pm 0.46 \pm 0.46 (\pm 0.28)$	$3.97 \pm 0.16 \pm 0.20 (\pm 0.19)$
Br(%)	$2.09 \pm 0.11 \pm 0.31$	$4.77 \pm 0.38 \pm 0.40$

 $Br(\Upsilon 4S o B^0 ar B^0) = 0.5$, $au_{B^0} = 1.548 \pm 0.032$ ps.

Dominant systematics:

- 1. ν reconstruction simulation
- 2. Slow π^{\pm} efficiency (for $D^{*+}\ell^{-}\nu$)
- 3. Tracking efficiency

Will hit the systematics limit soon.

$B^0 ightarrow \pi^- \ell^+ u$ (21.3 fb $^{-1}$)

 $|V_{ub}|$ to be extracted. Requires $F_{\pi}(1)$: HQ limit cannot be used. \rightarrow large uncertainty.

Recoil mass analysis under way.

Inclusive $B o X \ell^+ u$ (5.1 fb⁻¹)

Tag a $B\bar{B}$ event with a lepton (e or μ , P > 1.4 GeV)

Look for a e^{\pm} on 'the other side'.

Use the charge correlation to separate $b \rightarrow \ell^-$ and $b \rightarrow c \rightarrow \ell^+$.

Unfold B^0 - \overline{B}^0 mixing.

 $Br = 10.86 \pm 0.14 \pm 0.47\%$ $|V_{cb}| = 0.040 \pm 0.001 \pm 0.004$ (ISGW model) Preliminary

Systematics limited. (*e* detection efficiency)

$$B^0 o D_S^+ \pi^-$$
 (21.3 fb $^{-1}$) $(D_S^+ o \phi \pi^+, K^{*0}K^+, K_SK^+)$

Extract $|V_{ub}|$ hopefully soon. (Need $B \rightarrow \pi$ form factor)

 $Br(D_{S}^{+}\pi^{-}) < 1.1 \times 10^{-4}$ $Br(D_{S}^{+}K^{-}) < 0.7 \times 10^{-4}$ (Preliminary)

Radiative Charmless Decays

b

s,d

Idea:

 $rac{\Gamma(b
ightarrow d\gamma)}{\Gamma(b
ightarrow s\gamma)} \propto \left|rac{V_{td}}{V_{ts}}
ight|^2$

- Large pQCD correction ($\sim \times 3$) \rightarrow A good test of pQCD.
- Complete next-to-leading calculation done.
- New physics may enter the loop. (e.g. Higgs replacing W)
- Inclusive $b \to d\gamma$ has a large background from $b \to s\gamma$. Try exclusive ($B \to \rho\gamma$ etc.).

Technique: Semi-inclusive Reconstruction

(Continuum suppression for rare inclusive measurements)

 $B \rightarrow X_s \gamma$ as an example.

- Select a candidate γ .
- $X_s = K^{\pm}/K_S + n\pi$ ($1 \le n \le 4$, upto one π^0) Take all combinations.
- Require that ΔE and M_{bc} of the $X_s \gamma$ system are in the signal region.
- Rquire that X_s and γ are back-to-back.
- Pick one candidate per event by vertex consistency, or if no charged tracks, by the back-to-backness of X_s - γ .

$B ightarrow X_s \gamma$ Semi-inclusive (5.8 fb $^{-1}$)

$$Br(B \to X_s \gamma) = (3.36 \pm 0.53 \pm 0.42^{+0.50}_{-0.54}) \times 10^{-4}$$

SM theory: $(3.28 \pm 0.33) \times 10^{-4}$

- Triumph of SM and pQCD!
- Photon spectrum agree with expectation also. (Kagan and Neubert, 1999.)

Exclusive $B ightarrow X_s \gamma$ (21.3 fb $^{-1}$)

 $K_2^*(1430)\gamma$

 $K^{*0}\pi^+\gamma$

 $K^+
ho^0 \gamma$

Exclusive $B \to X_s \gamma$

Preliminary

	$Br(imes 10^{-5})$
$K^{*0}\gamma$	$4.96 \pm 0.67 \pm 0.45$
$K^{*+}\gamma$	$3.89 \pm 0.93 \pm 0.41$
$K_2^{st 0}(1430)\gamma$	$1.26 \pm 0.66 \pm 0.10$
$K^{*0}\pi^+\gamma$	$5.6\pm1.1\pm0.9$
$K^+ ho^0\gamma$	$6.5\pm1.7\pm1.1$

A large fraction of $X_s \gamma$ inclusive is accounted for.

 $B \rightarrow \rho \gamma$ is not seen yet (10.4 fb⁻¹):

$$rac{Br(
ho\gamma)}{Br(K^*\gamma)} < 0.19$$
 (90% C.L.)

$$X_s\ell^+\ell^-$$

Preliminary		
	$Br(imes 10^{-6})$	
$K\mu^+\mu^-$	$1.01^{+0.39}_{-0.32}\pm 0.11$	
Ke^+e^-	< 1.2	
$K^*\mu^+\mu^-$	< 3.0	
$K^*e^+e^-$	< 5.1	
$\overline{X_s \mu^+ \mu^-}$	< 19.1	
$X_s e^+ e^-$	< 10.1	
$K\mu^+\mu^-$ is seen (4.7 σ)		

Understanding Basic Decay Mechanisms

- Color-suppressed $b \rightarrow c \bar{u} d$. (factorization)
- $B^+ \rightarrow \chi_{c0} K^+$. (factorization)
- $B \rightarrow \chi_{c2} X$. (factorization)
- $B^+ \rightarrow p\bar{p}K^+$ (baryon in rare modes)
- Some other rare modes

Color-suppressed $b ightarrow c ar{u} d$ Modes

$Br(imes 10^{-4})$	Belle	Th.Mode
$D^0\pi^0$	$3.1\pm0.4\pm0.5$	0.7
$D^{*0}\pi^0$	$2.7\substack{+0.8+0.5\\-0.70.6}$	1.0
$D^0\eta$	$1.4^{+0.5}_{-0.4}\pm 0.3$	0.5
$D^{*0}\eta$	$2.0^{+0.9}_{-0.8}\pm 0.4$	1.0
$D^0 \omega$	$1.8\pm0.5^{+0.4}_{-0.3}$	0.7
$D^{*0}\omega$	$3.1^{+1.3}_{-1.1}\pm 0.8$	1.7

Consistently larger than the factorization model ($\times 2$ -3)

FSI rescattering from D^+X^- ?

$$B^+ o \chi_{c0} K^+$$

Prohibitted in naive factorization: $\langle \chi_{c0} | (\bar{c}c)_{V-A}^{\mu} | 0 \rangle = 0$ (*P* and *C* conservation. Conserved vector current also is relevant.)

$$Br(B^+ o \chi_{c0}K^+) = (8.0^{+2.7}_{-2.4} \pm 1.0 \pm 1.1[Br]) imes 10^4 \ Br(\chi_{c0}K^+)/Br(J/\Psi K^+) = 0.77^{+0.27}_{-0.23} \pm 0.11$$

Inclusive χ_{c2} Productions

Prohibitted in naive factorization:

 $\langle \chi_{c2} | (ar{c}c)^{\mu}_{V-A} | 0
angle = 0$

 $\chi_{c1,2}
ightarrow J/\Psi \gamma$, $J/\Psi
ightarrow \ell^+ \ell^-$

 $Br(B
ightarrow \chi_{c2}X) = (1.22 \pm 0.24 \pm 0.25) imes 10^{-2} \ Br(B
ightarrow \chi_{c1}X) = (3.14 \pm 0.16 \pm 0.29) imes 10^{-2}$

 $B^+ o p \bar{p} K^+$

Baryon production in charmless modes.

$$B^+ o p \bar{p} K^+$$

Reject charmonia $\rightarrow p\bar{p}$.Preliminary $Br(\times 10^{-6})$ $p\bar{p}K^+$ $4.2 \pm 0.8 \pm 0.6$ $(M_{p\bar{p}} < 3.4 {\rm GeV})$ $p\bar{p}$ < 1.6 $\Lambda\bar{\Lambda}$ < 2.3 $\bar{\Lambda}p$ < 2.1

Why not 2-body modes?

mode	$Br(imes 10^{-5})$
$\eta' K^+$	$7.9^{+1.2}_{-1.1}\pm 0.9$
$\eta' K^0$	$5.5^{+1.9}_{-1.6}\pm0.8$
$\eta'\pi^+$	< 7
ηK^{*0}	$2.12^{+0.54}_{-0.47}\pm0.20$
ηK^{*+}	< 4.99
ηho^0	< 0.55
ηho^+	< 0.68
$K^{*+}\pi^-$	$2.60 \pm 0.83 \pm 0.35$
$ ho^-K^+$	$1.58\substack{+0.51+0.17\\-0.46-0.30}$
$K^+\pi^-\pi^0$	$3.56^{+0.81}_{-0.77}\pm0.52$
0.00 < 4	$(117^{+}) < 0.22$

$Br(imes 10^{-5})$
$5.85 \pm 0.71 \pm 0.88$
$3.70 \pm 0.39 \pm 0.44$
$1.67\substack{+0.37+0.21+0.30\\-0.34-0.210.59}$
$1.17\substack{+0.25+0.15+0.41\\-0.27-0.150.10}$
< 0.77
< 0.60
< 0.21

4th error: model dependence (interferences)

 $-0.20 < A_{CP}(\eta' K^{\pm}) < 0.32$

Asymmetric B-factory Performances

(Jan 17, 02)	PEP2	KEK-B
$\mathcal{L}_{\max}(cm^{-2}s^{-1})$	4.51×10^{33}	5.49×10^{33}
$\int \mathcal{L} dt / {\sf day}$ (pb $^{-1}$)	303.4	311.5
$\int \mathcal{L} dt$ (fb $^{-1}$)	64.7	47.4

Each will have $\sim 100 \text{fb}^{-1}$ by this summer. (200 fb⁻¹ together \sim the original design for the lifetime of a B-factory)

 \sim 500fb⁻¹ each by 2006

This success was critically helped by healthy competition where each learned from mistakes and good ideas of the other.