## Beam Profile Monitor for Linear Collider

KEK-Tohoku-Hawaii collaboration

Presented by Hitoshi Yamamoto Tohoku University October 2001, Beijing ACFA meeting

#### **Interaction Region**



#### Kinematic configuration of pair background



#### Pair background

- $|\mathbf{E}| = |\mathbf{B}|$ : No force from the co-moving bunch.
- E, B ~  $4x10^7$  gauss  $\rightarrow$  r = 170µm ( $\sigma_z$ ~ 80µm)
- For an incoming e<sup>+</sup> bunch,
  - e<sup>-</sup> oscillates around the beam plane.
  - e<sup>+</sup> acquires a large pt kick vertically.
- Round beam: no  $\phi$  dependence  $\phi$  dependence  $\rightarrow$  information on  $\sigma_v / \sigma_x$

#### Motion in the solenoid field



ρ (cm) = pt(MeV)/3B(Tesla)
φ (rad) = 3B(Tesla)L(cm)/pz(MeV)
(L: distance from IP, B: solenoid field)

#### Hit location

•  $\rho$  measures pt,  $\phi$  measures  $p_z$ .

• For  $E_{beam} = 250 \text{ GeV}$ ,  $N_{bunch} = 10^{10}$ And  $\sigma_{x/y/z} = 260 \text{nm}/3 \text{nm}/80 \mu\text{m}$ ,  $pt_{max} \sim 20 \text{MeV} \rightarrow \rho \sim 3.3 \text{cm}$ 

- For L = 176cm and pz = 300MeV,  $\phi \sim \pi$ .
- Look at  $\phi$  pattern at r ~  $2\rho$  ~ 6cm.

#### GEANT simulation (by Tauchi)

Pairs at the Monitor, 100bunches, B=212 10 8 6 4 2 0.2 0.4 0.6 0.8 0 1 ID=138,N=105928 BM: Energy(GeV) vs R(cm)

• Energy vs radius

# **GEANT simulation of pulseheight** (by Tauchi)

#### 0.3mm thick, $0.1 \times 0.1$ mm<sup>2</sup> pixel



Solid line: per pixel. Dashed line: per cluster.

70keV cut eliminates X-ray background (EGS simulation needed)

# **GEANT simulation of pulseheight** (by Tauchi)

#### 0.1mm thick, $0.05 \times 0.05$ mm<sup>2</sup> pixel



Solid line: per pixel. Dashed line: per cluster.

Signal pulseheight  $\rightarrow 1/3$ . Less cell sharing.

#### Requirements for pair monitor

- Detect e<sup>+</sup>/e<sup>-</sup> of a few 100 MeV.
- High rate : ~30hits/mm<sup>2</sup>/train.
- ~50kRad dose/yr (not bad).
- Identify bunch in a train (at least front, middle, back, or hopefuly each bunch).
- Threshold (~70keV for 0.3mm) to reject x-rays.
- Real time information on  $\sigma_v / \sigma_x$

#### Selection of detector type

- Rate is too high for a Si strip detector.
- CCD has difficulty rejecting X-rays. (also no bunch identification by time)
  - $\rightarrow$  active pixel sensor

#### **Pixel detector configuration:**

 $0.1 \times 0.1 \text{ mm}^2 \sim 0.05 \times 0.05 \text{ mm}^2$  pixel  $0.1 \sim 0.3 \text{ mm}$  thick gating, or TDC for bunch identification.

# Pixel beam profile monitor arrangement (one disk)

2 rings.  $R \sim 8cm$ 



#### One stave



↓ IP side

#### 3D pixel sensor



- Pole electrodes transverse to the sensor plane.
- Drift field parallel to the sensor plane.

## 3D pixel sensor

#### Merits

- Fast: signal pulse 1/10 of typical pixel sensor.
- V<sub>depletion</sub>~ 5V (low!). Radhard.
- Flexible geometry (e.g. trapisoid).
- Active all the way to the edge (no guard rings).

#### **Drawbacks:**

- Requires a special etcher.
- Technology not fully established.

## **3D** sensor tests

prototype

- 120µm thick wafer
- Electrode diameter 20µm
- Pitch : 100µm and 200µm (2 versions)
- 14 by 28 array

#### 100µm pitch version



• PN junction between n and p electrodes

#### IR laser test



## **Thickness**

- Thick: easier to eliminate X-rays.
- Thin: easier to fabricate 3D electrodes.
- Thin: less cell sharings.

## **Cell size**

- Large: easier for readout electronics.
- Large: less cell sharings.
- Large: less dead reagion due to electrodes
- Small: takes higher rate.
- Small: less multiple hits.

#### Possible timing circuit (very preliminary)



- Low threshold defines timing, and high threshold defines hit.
- TDC value stored in each pixel (8bits)
- Readout time ~ 3.5 ms

## Thin die bump bonding



dummy sensor (patterned side)



- Dummy Si sensors and dummy readout chips fabricated at SNF (former CIS) at Stanford.
- 5 pairs: both back-thinned to 100µm thick (lap and polish).
- 4 pairs: 300µm-thick each.
- 24x40 array, 100x200µm<sup>2</sup> pitch.



- Bump-bonded by AIT (Advanced Interconnect Technology), Hong Kong.
- Indium bumps.

## **IR microscope inspection of bonds**



- Works as well as X-ray photos.
- Identifies misalignment, excess force, etc.
- Real-time, easy to use.

## **IR microscope inspection**



Good bonds.

## **IR microscope inspection**



Misaligned.

## **IR microscope inspection**



Excessive bonding force.

## **Electical tests of bonds by AIT**

- No misconnections found.
- Shorts : ~ 2% (Run A), ~ 0.1% (Run B) per bond. (likely to get better after 'practices')
- ~  $100\Omega$ /bond for thin dies.
- ~ 1k Ω/bond for thick dies.
   probably due to an oxidized surface layer on bump.
   (reduced to ~ 3 Ω when heated by a high current)

## **Optical microscope inspection**

- Indium bumps before bonding (unbomded sample).
- UBM (under-bump metalization) connection seen.



## (Re)organization

- HY: Hawaii → Tohoku.
- Prof. Ikada (KEK) joined to work on the readout electronics.
- Two tohoku students, one working with Prof. Ikeda, one on X-ray background simulation.

## Next steps

- 1. Readout electronics design.
- 2. Submission to foundry, tests.
- 3. Bump-bond prototype readout electronics and a 3D sensor.
- 4. Fabricate and bond large readout chips and large sensors.