Do we need a pixel upgrade?

Hitoshi Yamamolto The Univeristy of Hawaii

Belle general meeting, March 24, 1999.

A proposal for systematic simulation study for vertexing upgrade.

+ A status report on pixel technology

♠: items needing MC study

Physics benefits of better vertex resolution (apart from the obvious improvement in $\sigma_{\Delta z}$)

- Combinatorics
 - Inclusive (e.g. $K^{*0} \rightarrow K^{-}\pi^{+})$ ◦ $B \rightarrow D^{0}D^{-}, D^{+}D^{-}, D^{0}K^{-}$ etc. ♠

- Charm vertex \rightarrow tag-side z resolution. \blacklozenge
- Vertical *B* travel: $\rightarrow \Delta z \rightarrow \Delta t$

Currently, the correction makes the resolution worse (crude calculation). \blacklozenge

• Continuum suppression by Δz \blacklozenge

Continuum suppression by z vertex separation

 $e^+e^- \rightarrow B_1B_2$

 Δz distribution:

$$\propto \exp\left(-\frac{|\Delta z|}{L_0}
ight)$$

 $L_O(B \text{ mean decay length}) \sim 211 \mu(Belle)$

 Δz distribution (assume gaussian):

$$\propto \exp\left(-rac{\Delta z^2}{2\sigma_{\Delta z}^2}
ight)$$

 $\sigma_{\Delta z} \sim 125 \mu$

Discovery sensitivity improvement:

 $\#\sigma$ probability of background fluctuate up to the signal.

$$\#\sigma = \frac{N_{\rm sig}}{\sqrt{N_{\rm bkg}}}$$

The improvement factor for $\#\sigma$ is then

fig. merit =
$$\frac{\epsilon_{sig}}{\sqrt{\epsilon_{bkg}}}$$
 (discovery)

Does not depend on $N_{\rm sig}/N_{\rm bkg}$ before the vertex separation cut.

Discovery sensitivity improvement:

$$x\equiv rac{L_0}{\sigma_{\Delta z}}~~\sim$$
 2 for Belle, BaBar

 L_0 : *B* mean decay length (211 μ for Belle)

Example: Can we find $B^- \rightarrow K^{*0}K^$ if Br is 1/20 of $\rho^0\pi^-$? \blacklozenge

CLEO 2.5: $ho^0\pi^-$ S/N \sim 20/20 @ 5 fb^{-1}

Assume factor of 4 reduction in bkg by a loose particle ID cut.

 $ightarrow K^{*0}K^{-} \text{ S/N} \sim 1/5 @ 5 \text{ fb}^{-1}$ ightarrow K^{*0}K^{-} \text{ S/N} \sim 10/50 @ 50 \text{ fb}^{-1}

Significance = $10/\sqrt{50} = 1.4\sigma$: Not a signal.

With $\sigma_{\Delta z} - > 1/2$ and 1% tail,

Significance \rightarrow 1.4 × 5.2 = 7.3 σ : Clear signal.

 $K^{*0}K^-$ is an important mode to understand FSI, annihilation diagram, and $b \rightarrow d$ penguin.

There are many important modes at this Br level: D^+K_S , D^0K^+ , $K^*\eta'$... Many of them play critical roles in direct CP studies.

Factor of 2 improvement in $\sigma \Delta z$ resolution can be achieved by (rough calculation)

- $R_{\text{beampipe}} 2\text{cm} \rightarrow 1\text{cm}.$
- 1/2 reduction of material (Si, support, beampipe).
- Keeping the same $\sigma_{\text{measurement}}$.

In general,

- σ_{measure} counts for high-P tracks (P > 2 GeV).
- Material reduction is important.
- R_{beampipe} reduction is <u>essential</u>.

Full MC study needed. 🔶

Studies needed:

- Beam background control and IR design (incl. beampipe).
- Detector thin and tolerant of radiation/noise hits

Possible detector candidates for inner layers: (e.g. 2 inner layers out of 5 total for vertexing)

Silicon strip
 Pixel

Pros and cons of the pixel solution

Cons:

- Requires substantial R& D to apply to Belle (A few pixel detectors working in HEP experiments)
- 2. Readout electronics adds to the material budget (could be as thin as a few 10's of μ ; will see)

Pros:

1. Measures true 3D points \rightarrow noise hit tolerance

Assume 40 real hits on a $1 \times 3 \text{ cm}^2$ sensor. (pitch: 50μ)

occupancy	point hit	3 pitches/hit
pixel:	$3 imes10^{-4}$	$3 imes 10^{-3}$
strip:	20%	60%

Needs realistic track finding simulation. 🔶

- 2. Low capacitance per channel ($\ll 1 \text{ pF}$) \rightarrow low noise
- 3. Low leakage current per channel (\sim fA) \rightarrow low noise Low noise partially translates to radiation tolerance.

A study on silicon strip detectors: $(1 \text{cm} \times 1.3 \text{cm}, \text{ shaping time } 0.7 \mu \text{sec}, {}^{90}\text{Sr})$

A large common-mode noise seen for 100μ sensor.

Monolithic Pixel Detector

Readout electronics and sensor on the same chip

Hawaii-Stanford monolithic pixel detectors Fabricated at CIS, Stanford

- Thickness $300\mu m$
- Bulk: p^+ (i.e. collects holes) Backside: n^+ -diffusion
- One PMOS readout circuit in *n*-well for each pixel.
- Operated with full depletion at \sim 60 V.

Two versions of monolithic pixel detector succesfully tested:

V1. 1993. Pitch 34 × 125μm²
 1.02mm×1.02mm active area
 Full readout
 Tested at Fermilab (muon beam)

 $\rightarrow \sigma = 2.0 \mu \text{m} (34 \mu \text{m} \text{ pitch direction})$

V2. 1996. Pitch $65 \times 67 \mu m^2$ 32×32 array (~ 1mm² active area) Sparse readout Tested by ²⁴¹Am

Challenges for the monolithic pixel design:

1. Larger array

Using the same sparse readout scheme, 320×320 array (1 cm²), 0.5% pixel occupancy $\rightarrow \sim 300\mu$ s readout.

But, at this size most of the rows are hit (the sparse readout operates on rows) \rightarrow might as well read all rows (future)

2. Foundry

Difficult to find a foundry who is

- willing to closely collaborate,
- has deep-submicron technology,
- can respond to non-standard facbrications: rad-hard design, high-purity bulk silicon.

 \rightarrow keep looking for a foundry, but pursue hybrid design meanshile.

Hybrid Pixel Detectors

Hybrid = Bump-bonded

Sensor:high-resistivity silicon (typically float-zone) **Readout chip:**Commercial CMOS OK

 \rightarrow Fabricate separately and bond them (flip-chip technology)

Most current and proposed HEP pixel detectors uses hybrid design.

(DELPHI, WA97, ATLAS, CMS., ALICE, BTeV...)

	pixel size	# pixel (total)	sensor thickness	heat/cell
DELPHI	$330 \times 330 \mu^2$	1.2 M	300μ	$40\mu W$
WA97	$50{ imes}500\mu^2$	1.2 M	300μ	
	$75{ imes}500\mu^2$			
ATLAS	$50{ imes}300\mu^2$	105 M	200-250 μ	$50 \mu W$
CMS	$150{ imes}150\mu^2$	56 M	200-250 μ	$60 \mu W$
ALICE	$50{ imes}300\mu^2$	15.7 M	150μ	$30 \mu W$
BTeV	$50{ imes}300\mu^2$	60 M	300μ	${<}40\mu{ m W}$

Issues for a Belle pixel detector:

- (a) Readout electronics (that fits in $50 \times 50 \mu^2$)
- (b) Thinning of sensor and readout chips
- (c) Bump bonding
- (d) Radiation hardening

(a) Proposed readout electronics (Conceptual design by G. Varner)

- Avoid sending analog signal by digitizing on each pixel.
- V_{ramp}+Comparator and 5-line counting bus. LVDS driver at the end of sensor.
- 1cm×3cm, 50 × 50 μ m² pixel. 2% occupancy \rightarrow 200 μ s read out time.

Expected heat generation

- Most of the time the MOS transistors do not dissipate heat, namely static. (much easier situation than LHC)
- Needs a completed design of the circuit, but roughly, $\sim 0.4 \mu$ W/pixel $\rightarrow \Delta T \sim 0.1^{\circ}$ K (side cooing)
- LVDS driver generates lots of heat, but it is at the end of sensor.

(b) Thinning of the sensor and readout chip

• Wafer thinning is a routine commercial process (for heat dissipation)

∫ Grinding-polishing-etching │ Plasma etching

- Readout electronics: Thinned after fabrication using a commercial process (e.g. MOSIS).
- Sensors may be thinned first. (needs a dedicated foundry)

Or, thinned after fabrication (still needs some processing of the thinned side)

• Thin before or after the bump bonding? If thinned after bonding, the read-out electronics may be made quite thin ($\sim 20\mu$?).

 \rightarrow more R& D needed.

(c) Bump bonding

 \bullet Bump bonding defects $< 10^{-4}$ (dummy tests). But some problems reported for the real ATLAS detector.

• Bump diameter can be $< 10\mu$, pitch can be $< 20\mu$ (e.g. GEC Marconi)

	Indium	Solder
UBM *	simple	complicated
bump deposition	both sides	one side
connection	pressure	fused
Strength (4K bumps) (tension& sheer)	2.5 lb	10-14 lb (strong)
alignment required	$1\text{-}2\mu$	$\sim 10 \mu$ (self-sligning)
resistance/bump	1-2 Ω (poor)	2-3 μΩ (good)

Two types of bumps

* UBM = Under Bump Metalization

(d) Radiation Hardening

Radition damage effects

- a) Effective dopant creation
- b) Leakage current increase
- c) Threshold shift of MOS transistors

a) Effective dopant creation

Mostly p type

- Change in $V_{\text{depletion}}$ (e.g. increase) \rightarrow high voltage breakdown, partial depletion
- Type conversion $(n \rightarrow p)$ at high dose (OK for Belle)

 \rightarrow Design the detector such that it can stand high voltage

(e.g. guard rings at the edges of sensor)

b) Leakage current

- 1. source-drain leakage
- 2. inter-transistor leakage
- 3. detector bulk leakage current

Strategy:

- Rad-hard design rules
 - * Surround-gate design
 - * *p*-stop around NMOS transistor

 current compensation for detector leakage (read-out electronics design)

c) Threshold shift of MOS transistor

Trapped positive ionization charges at gate-oxide \rightarrow induces electrons just below the gate.

$$\Delta V_{
m th} \propto \left\{ egin{array}{ll} t^2 & (t < 10 \,
m nm) \ t^3 & (t < 10 \,
m nm) \end{array}
ight.$$

t: gate thickness

Make the gate oxide thin:

← natural result of small scale processes. (e.g. <u>commercial</u> IBM 0.25μ process)

Pixel detector status summary:

- 1. Monolithic pixel proven to work $(32 \times 32 \text{ array})$.
 - larger detector

Challenges:

• foundry !!

rad-hardness

 \rightarrow try hybrid design.

2. Hybrid pixel design

- heat $< 50 \mu$ W/pixel for LHC. Less for Belle \rightarrow probably not a problem.
- thickness $< 250\mu$ (sensor & read-out) being tested. 150μ total seems feasible.
- bump bonding

yield > 99.99% :dummy test (some problems with real detectors)

pad size can be $< 10\mu$, pitch can be $< 20\mu$

• Rad-hardness of readout chip Deep sub μ + rad.hard rules \rightarrow 30 MRad : IBM 0.25 μ (ALICE) (Barely fits in 50 × 300 μ^2)

R& D Items Summary:

- 1. Readout electronics that fits in pixel and radhard.
- 2. Thinning of sensor ($\sim 100\mu$) and readout chip ($\sim 50\mu$).
- 3. Bump bonding for our specifics.

On-going efforts:

Prototype design

 $2mm \times 2mm$ pixel: $50\mu \times 100\mu$

- Readout electronics design by G. Varner. MOSIS submission in a few months.
- Sensor design by S. Parker and C. Kenney.
 To be fabricated at CIS in the same time scale.
- Bump-bonding test: in contact with GEC Marconi.
 Other companies are to be tested

Other companies are to be tested.