Measuring Angle ϕ_3/γ

Hitoshi Yamamoto

University of Hawaii

At Tohoku University, 2000/8

- 1. CP Violation and Unitarity of CKM Matrix (what is the angle ϕ_3/γ ?)
- 2. Decay modes for the angle ϕ_3/γ

General left-handed quark-W Interaction

$$L_{\text{int}}(t) = \int d^3x \left(\mathcal{L}_{qW}(x) + \mathcal{L}_{qW}^{\dagger}(x) \right)$$
$$\mathcal{L}_{qW}(x) = \frac{g}{\sqrt{8}} \sum_{i, j=1,3} V_{ij} \, \bar{U}_i \, \gamma_{\mu} (1 - \gamma_5) D_j \, W^{\mu}$$
$$U_i(x) \equiv \begin{pmatrix} u(x) \\ c(x) \\ t(x) \end{pmatrix}, \quad D_j(x) \equiv \begin{pmatrix} d(x) \\ s(x) \\ b(x) \end{pmatrix}$$
$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \quad \text{(CKM matrix)}$$

Experimentally, V has a hierarchical structure. Approximately,

$$|V_{ij}| \sim \begin{pmatrix} 1 & \lambda & \lambda^3 \\ \lambda & 1 & \lambda^2 \\ \lambda^3 & \lambda^2 & 1 \end{pmatrix}$$

 $\lambda \sim 0.22$

Transformation of L_{int} under CP

exchanges particle $(n) \leftrightarrow$ antiparticle (\bar{n}) *CP*: flips momentum sign $(\vec{p} \leftrightarrow -\vec{p})$ (a) keeps the spin *z*-component (σ) the same

Such *CP* operator in Hilbert space is not unique:

$$\mathcal{CP}a_{n,\vec{p},\sigma}^{\dagger}\mathcal{P}^{\dagger}\mathcal{C}^{\dagger}=\eta_{n}a_{\bar{n},-\vec{p},\sigma}^{\dagger}$$

 η_n : 'CP phase': arbitrary, depends on n(for antiparticle: $\eta_{\bar{n}} = (-)^{2J} \eta_n^*$)

The choice of η_n amounts to choosing a specific operator in Hilbert space among those satisfying (a).

Then, a pure algebra leads to

$$\mathcal{CP} \ \bar{u}(x)\gamma_{\mu}(1-\gamma_{5})d(x)W^{\mu}(x) \ \mathcal{P}^{\dagger}\mathcal{C}^{\dagger} \\ = \eta_{u}\eta_{d}^{*}\eta_{W}^{*} \left(\bar{u}(x')\gamma^{\mu}(1-\gamma_{5})d(x')W_{\mu}(x')\right)^{\dagger} \\ x' \equiv (t,-\vec{x})$$

 \mathcal{L}_{qW} transforms as (taking $\eta_W = 1$)

$$\mathcal{CP} \mathcal{L}_{qW}(x) \mathcal{P}^{\dagger} \mathcal{C}^{\dagger} = \frac{g}{\sqrt{8}} \sum_{i,j=1,3} \eta_{U_i} \eta_{D_j}^* V_{ij} \left(\bar{U}_i(x') \gamma^{\mu} (1-\gamma_5) D_j(x') W_{\mu}(x') \right)^{\dagger}$$

IF $\eta_{U_i}\eta_{D_j}^*$ can be chosen s.t.

$$\eta_{U_i}\eta_{D_j}^*V_{ij} = V_{ij}^*$$
 (2),

then, $L_{int}(t)$ becomes invariant under CP:

$$\mathcal{CP} \ \mathcal{L}_{qW}(x) \ \mathcal{P}^{\dagger} \mathcal{C}^{\dagger} = \mathcal{L}_{qW}^{\dagger}(x') \quad (x' = (t, -\vec{x}))$$

$$\rightarrow \mathcal{CP} \ L_{\text{int}}(t) \ \mathcal{P}^{\dagger} \mathcal{C}^{\dagger} \\ = \int d^{3}x \ \mathcal{CP} \big[\mathcal{L}_{qW}(x) + \mathcal{L}_{qW}^{\dagger}(x) \big] \mathcal{P}^{\dagger} \mathcal{C}^{\dagger} \\ = \int d^{3}x \ \big[\mathcal{L}_{qW}^{\dagger}(x') + \mathcal{L}_{qW}(x') \big] \\ = L_{\text{int}}(t)$$

 \rightarrow S operator is invariant under CP (through Dyson series)

Condition for CP Invariance

Rewrite the condition (2):

 $\frac{\eta_{D_j}}{\eta_{U_i}} = 2 \arg V_{i,j}$

Thus, for a given (arbitrary) matrix $V_{i,j}$, if the CP phases η 's can be chosen so that the phase difference between η_{D_j} and η_{U_i} is twice the arbitrary phase of $V_{i,j}$, then the physics is invariant under CP.

This is equivalent to rotate the quark phases to make $V_{i,j}$ all real.

In general, there are 5 phase differences for 6 quarks \rightarrow 5 elements of V can be set to real always.

For example.,

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \quad \begin{array}{c} V_{i,j} : \text{real} \\ V_{i,j} : \text{complex} \end{array}$$

(No unitarity condition imposed)

Any of the four red elements is not real \rightarrow CP violation

V_{CKM} **Phase Conventions** (without unitarity constraint)

One can do

$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$	$V_{i,j}$: real $V_{i,j}$: complex
--	--------------------------------------

Our standard phase convention (Also force, $V_{ud}, V_{us}, -V_{cd}, V_{cb}, -V_{ts} > 0$)

or,

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \quad \begin{array}{c} V_{i,j} : \text{real} \\ V_{i,j} : \text{complex} \end{array}$$

etc...

But one cannot do,

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \quad \begin{array}{c} V_{i,j} : \text{real} \\ V_{i,j} : \text{complex} \end{array}$$

A Main Question of the CPV Study in B: 'Is V unitary?'

e.g: orthogonality of *d*-column and *b*-column:

 $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$

$$\boldsymbol{\alpha} \equiv \arg\left(\frac{V_{td}V_{tb}^{*}}{-V_{ud}V_{ub}^{*}}\right), \ \boldsymbol{\beta} \equiv \arg\left(\frac{V_{cd}V_{cb}^{*}}{-V_{td}V_{tb}^{*}}\right), \ \boldsymbol{\gamma} \equiv \arg\left(\frac{V_{ud}V_{ub}^{*}}{-V_{cd}V_{cb}^{*}}\right)$$
(3)

With our phase convention:

$$\boldsymbol{\alpha} \equiv \arg\left(\frac{V_{td}V_{tb}^{*}}{-V_{ub}^{*}}\right), \ \boldsymbol{\beta} \equiv \arg\left(V_{td}^{*}V_{tb}\right), \ \boldsymbol{\gamma} \equiv \arg\left(V_{ub}^{*}\right)$$

→ The condition $\alpha + \beta + \gamma = \pi \pmod{2\pi}$ holds even if the triangle does not close. It does **not** test the unitarity of V_{CKM} .

С

It simply tests if the angles measured are as defined in (3) in terms of V_{CKM} .

 \rightarrow It is critical to measure the length of the sides.

With Unitarity Constraint

Use our standard phase convention, and the hierarchy of the sizes of the elements:

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \stackrel{\text{abs}}{\sim} \begin{pmatrix} 1 & \lambda & \lambda^3 \\ \lambda & 1 & \lambda^2 \\ \lambda^3 & \lambda^2 & 1 \end{pmatrix}$$

Assume $\mathrm{Im}V_{ub}, \mathrm{Im}V_{td} \sim \lambda^3$ (i.e., the phase angles are of order unity), then

$$\sum_{i} V_{ui} V_{ci}^{*} = 0 \quad \rightarrow \quad \text{Im} V_{cs} \sim \lambda^{4}$$
$$\sum_{i} V_{ci} V_{ti}^{*} = 0 \quad \rightarrow \quad \text{Im} V_{tb} \sim \lambda^{2}$$

Under unitarity condition, V_{cs} is nearly real. Assume it for now.

Gronau-London-Wyler (GLW) method to extract γ

 $B^- \to D_{CP}^0 K^-$

 D_{CP}^{0} : CP eigenstate. e.g. $K_{S}\pi^{0}, K^{+}K^{-}\cdots$

Both D^0 and $\overline{D}{}^0$ decay to a CP eigenstate. \rightarrow 2 diagrams

Strong final-state-interaction phase: B relative to $A : e^{i\delta}$ (δ could be complex)

Phase convention: $A = A^*$

 $\gamma \equiv \arg B^* = \arg V_{ub}^*$

Measure 4 lengths:

$$Amp(B^{-} \to D^{0}_{CP}K^{-})$$
$$Amp(B^{+} \to D^{0}_{CP}K^{+})$$
$$|A| \quad \text{by } B^{-} \to D^{0}K^{-}, \ D^{0} \to K^{-}\pi^{+}$$
$$|B| \quad \text{by } B^{-} \to \overline{D}^{0}K^{-}, \ \overline{D}^{0} \to K^{+}\pi^{-}$$

Reconstruct two triangles $\rightarrow \gamma$

CP asymmetry expected: $a_{cp} \equiv \frac{\Gamma[B^- \to (K_S \pi^0) K^-] - \Gamma[B^+ \to (K_S \pi^0) K^+]}{\Gamma[B^- \to (K_S \pi^0) K^-] + \Gamma[B^+ \to (K_S \pi^0) K^+]}$ $\frac{|B|}{|A|} \sim \underbrace{(\text{color factor})}_{\frac{a_2}{a_1 + a_2}} \underbrace{(\text{CKM factor})}_{\frac{V_{ub}}{\lambda V_{cb}}} \sim 0.4$

 $\rightarrow a_{cp}$ is of order 10%.

(γ can be measured even if $a_{cp} = 0$)

Relevant D^0 decay modes:

	$K_S \pi^0$	$1.06\pm0.11\%$	CP-
	$K_S ho^0$	$0.60\pm0.09\%$	CP-
CP eigenstates	$K_S \phi$	$0.84\pm0.10\%$	CP-
	K^+K^-	$0.43\pm0.03\%$	CP+
	$\pi^+\pi^-$	$0.15\pm0.01\%$	CP+
calibration	$K^-\pi^+$	$3.83\pm0.12\%$	

 D^0 decay FSI phase does not contribute. \rightarrow can be combined.

Once $B^- \rightarrow (K^-\pi^+)K^-$ is observed, CP asymmetry in CP eigenstates is not far away. (apart from extracting γ)

Problem with the GLW method and Solution [Atwood, Dunietz, Soni (ADS)]

How to measure $B = Amp(B^- \rightarrow \overline{D}^0 K^-)$?

$$\begin{array}{ccc} B^- \xrightarrow{B} \bar{D}^0 K^- & \text{but also} & B^- \xrightarrow{A} D^0 K^- \\ & \hookrightarrow K^+ \pi^- & & \hookrightarrow K^+ \pi^- \text{ (DCSD)} \end{array}$$

The ratio of the two amplitudes (R_{DCSD}) :

$$R_{DCSD} = \underbrace{\frac{A}{B}}_{\sim \frac{1}{0.08}} \underbrace{\frac{Amp(D^0 \to K^+\pi^-)}{Amp(D^0 \to K^-\pi^+)}}_{0.088 \pm 0.020} \sim 1$$

Phase of R_{DCSD} not known \rightarrow cannot measure |B|. (Difficult to detect $D^0 \rightarrow X_s^- \ell^+ \bar{\nu}$)

But: This interference causes CP asymmetry of **order unity** in the wrong-sign $K\pi$ modes:

$$\Gamma[B^- \to (K^+\pi^-)K^-]$$
 vs $\Gamma[B^+ \to (K^-\pi^+)K^+]$

To see this, in the GLW method simply replace

$$|B| \to \left| B \frac{Amp(D^0 \to K^- \pi^+)}{Amp(D^0 \to K^+ \pi^-)} \right| (\sim |A|)$$

 $\delta \to \delta_f$:combined FSI phases of B/D decays

ADS method to extract γ

Measure $B^- \rightarrow DK^-$ in two decay modes of D: wrong-sign flavor-specific modes or CP eigenstates, say $K^+\pi^-$ and $K_S\pi^0$ (and their conjugate modes).

$$\Gamma[B^- \to (K^+ \pi^-) K^-] \quad \Gamma[B^+ \to (K^- \pi^+) K^+]$$

$$\Gamma[B^- \to (K_S \pi^0) K^-] \quad \Gamma[B^+ \to (K_S \pi^0) K^+]$$

Assume we know |A| and D branching fractions \rightarrow 4 unknowns:

$$\gamma\,,\quad \delta_{K^-\pi^+}\,,\quad \delta_{K_S\pi^0}\,,\quad rac{|B|}{|A|}$$

 \rightarrow can be solved.

Statistics: Possible at B-factories (300 fb $^{-1}$ needed)

Avoid using wrong-sign $B^+ \rightarrow D^0 K^+$

External input (experiment, theory):

$$r = \left|\frac{B}{A}\right| = \left|\frac{\bar{B}}{\bar{A}}\right| \sim 0.08$$

Measure

$$\Gamma(B^- \to D_1 K^-) = 1 + r^2 + 2r \cos(\gamma + \delta)$$

$$\Gamma(B^- \to D_2 K^-) = 1 + r^2 - 2r \cos(\gamma + \delta)$$

$$\Gamma(B^+ \to D_1 K^+) = 1 + r^2 + 2r \cos(\gamma - \delta)$$

$$\Gamma(B^+ \to D_2 K^+) = 1 + r^2 - 2r \cos(\gamma - \delta)$$

in unit of $\Gamma(B^- \to D^0 K^-)$.

 \rightarrow fit for γ and $\delta.$

Ambiguity: the equations are symmetric under

 $\begin{array}{ccc} \gamma \rightarrow & n\pi \pm \delta \\ \delta \rightarrow \mp n\pi \pm \gamma \end{array} & (n: \text{integer}) \end{array}$

Input:

Statistics Estimate

- 1. Relative yields (compare to $D^0 \rightarrow K^- \pi^+$)
 - $K^{-}\pi^{+}(3.9\%)$
 - D_1 : $K^+K^-(0.43\%) + \pi^+\pi^-(0.15\%)$ = 0.58%.
 - D_2 : $K_s \pi^0(1.05\%) \times 2/3(K_s Br) \times 1/2(\pi^0)$ = 0.35%.
- 2. Yield of $B \rightarrow D^0 K^-$, $D^0 \rightarrow K^- \pi^+$ at 3.1 fb⁻¹
 - CLEO: $N(D^0\pi^-) = 239$ at 3.1 fb⁻¹
 - Then, $N(D^0K^-) = 17.5$ at 3.1 fb⁻¹
- 3. Yields at 300 fb^{-1}
 - $N(D^0(K^-\pi^+)K^-) = 1694$
 - $N(D_1K^-) = 252$ (126 each for B^{\pm})
 - $N(D_2K^-) = 152$ (76 each for B^{\pm})

Background? Needs a good vertexing to reject continuum background.

Measurement of $B^- \rightarrow D^0 K^-$

Expect

$$\frac{Br(B^- \to D^0 K^-)}{Br(B^- \to D^0 \pi^-)} \sim \lambda^2 \left(\frac{f_K}{f_\pi}\right)^2 \sim 0.07$$

 D^0 channels used:

$$D^{0} \rightarrow K^{-}\pi^{+}$$
 (3.83%)
 $K^{-}\pi^{+}\pi^{0}$ (13.9%)
 $K^{-}\pi^{+}\pi^{-}\pi^{+}$ (7.5%)

On $\Upsilon 4S$, the B mesons are generated with a known E_B and $|\vec{P}_B|$.

$$B \to f_1 + \dots + f_n$$
$$E_{\text{tot}} \equiv \sum_i E_i = E_B$$
$$P_{\text{tot}} \equiv |\sum_i \vec{p_i}| = |\vec{P_B}|$$

or euivglently, plot:

$$\Delta E \equiv E_{tot} - E_B$$

$$M_B \equiv \sqrt{E_B^2 - P_{tot}^2} \quad \text{(beam-constrained mass)}$$

 $\sigma_{M_B} \sim 2.5$ MeV. $\sim \times 10$ better than $M = \sqrt{E_{tot}^2 - P_{tot}^2}$. Two major backgrounds and rejection parameters:

- 1. $B^- \rightarrow D^0 \pi^ \Delta E, \ dE/dx(K)$
- 2. continuum ($e^+e^- \rightarrow 2jets$)

 θ_s : angle between the sphericity axis of the *B* candidate and that of the rest of the event. θ_B : *B* momentum polar angle in lab. *F*: Fischer discriminant

Fischer discriminant of variables $\vec{x} = (x_1 \dots x_n)$:

 $F\equiv \vec{\lambda}\cdot \vec{x}$

 $\vec{\lambda}$: constants to be chosen to maximize separation S between signal and background:

$$S \equiv \frac{(\langle F \rangle_s - \langle F \rangle_b)^2}{\sigma_F^2} = \frac{(\vec{\lambda} \cdot (\langle \vec{x} \rangle_s - \langle \vec{x} \rangle_b))^2}{\vec{\lambda}^T V \vec{\lambda}}$$

s : signal, b : bkg, V : covariant matrix of \vec{x}

$$rac{\partial S}{\partial \lambda_i} = 0 \quad o \quad ec{\lambda} = V^{-1}(\langle ec{x}
angle_s - \langle ec{x}
angle_b)$$

For \vec{x} , use the energy flows in 9 cones around the event axis, an event shape variable (Fox-Wolfram), and the polar angle in lab of *B* candidate event axis.

Maximum likelihood fit for the signal and background yields in the space of

 $M_B\,,\quad \Delta E\,,\quad dE/dx(K)\,,\quad M_D\,,\quad \cos heta_B\,,\quad F$

dE/dx < -0.75 and $-50 < \Delta E < 10$ MeV $(D^0K^-$ 'signal region')

$B \rightarrow D^0 K^-$ (Belle)

 π/K separation by Aerogel Cerenkov Counter. (with dEdx, TOF)

Allows simple cuts/fits (e.g. ΔE plot; no Fischer)

 $\frac{Br(D^0K^-)}{Br(D^0\pi^-)} = 0.081 \pm 0.014 \pm 0.011$

 $D^{*+}\pi^-$ sample

 $D^{*+}K^{-}$ enriched

$$\frac{Br(D^{*+}K^{-})}{Br(D^{*+}\pi^{-})} = 0.134^{+0.045}_{-0.038} \pm 0.015$$

Pion mass is always assigned to $h^-\,$

$$B^- \to D^0 K^{*-}$$
 ($K^{*-} \to K_S \pi^-$)

CLEO, Very Preliminary

 $K_s \rightarrow \pi^+ \pi^-$ vertex: no need for π^+/K^+ separation. (No contamination from $B \rightarrow D^0 \rho^0$)

Classification of $\bar{B}^0 \to DK$

T: tree, C: color-suppressed, A: annihilation (T, C: depends on $b \rightarrow c$ or $b \rightarrow u$)

 $\lambda_c = V_{cb} V_{cs}^*, \quad \lambda_u = V_{ub} V_{us}^*.$

$$Amp(\bar{B}^{0} \to D^{+}K^{-}) = \lambda_{c}T_{c}$$

$$Amp(\bar{B}^{0} \to D^{0}\bar{K}^{0}) = \lambda_{c}C_{c}$$

$$Amp(\bar{B}^{0} \to \bar{D}^{0}\bar{K}^{0}) = \lambda_{u}C_{u}$$

$$Amp(\bar{B}^{0} \to D_{s}^{-}\pi^{+}) = \lambda_{u}T_{u}$$
(4)

Classification of $B^- \rightarrow DK$

 $Amp(B^{-} \to D^{0}K^{-}) = \lambda_{c}T_{c} + \lambda_{c}C_{c} \quad (5a)$ $Amp(B^{-} \to \overline{D}^{0}K^{-}) = \lambda_{u}C_{u} + \lambda_{u}A \quad (5b)$ $Amp(B^{-} \to D^{-}\overline{K}^{0}) = \lambda_{u}A \quad (5c)$ $Amp(B^{-} \to D_{s}^{-}\pi^{0}) = \frac{1}{\sqrt{2}}\lambda_{u}T_{u} \quad (5d)$

Final-state Rescatterings

Final-state rescattering can occur:

$$\overline{B}{}^{0} \to D^{+}K^{-}(T_{c}) \to D^{0}\overline{K}{}^{0}(C_{c})$$

$$\overline{B}{}^{0} \to D_{s}^{-}\pi^{+}(T_{u}) \to \overline{D}{}^{0}\overline{K}{}^{0}(C_{u})$$

We **define** T_c , C_c , T_u , C_u by (4) including rescattering effects.

Then, is (5a) still true?

 $Amp(B^{-} \to D^{0}K^{-}) = \lambda_{c}T_{c} + \lambda_{c}C_{c}$ = $Amp(\bar{B}^{0} \to D^{+}K^{-}) + Amp(\bar{B}^{0} \to D^{0}\bar{K}^{0})$

> which is nothing but the isospin relation for H_{eff} having $|1/2, -1/2\rangle$ structure: (good to all orders as long as $m_u = m_d$)

Final-state Rescatterings - annihilation

Final-state
$$D^- \bar{K}^0$$
 can be reached by

$$B^- \to D_s^- \pi^0 \to D^- \bar{K}^0$$

This is a 'long-distance' annihilation:

We thus **define** *A* by

 $Amp(B^- \to D^- \bar{K}^0) = \lambda_u A$ (5c)

including the rescattering effect.

Then, the annihilation in $B^- \rightarrow \overline{D}{}^0 K^-$ (5b) has exactly the same rescattering contribution:

$B \rightarrow DK$ Modes

Final state: one charm, one strange.

• No penguine contaminations

Penguine should have even number of charms. (True for charged and neutral B)

• Neutral *B* has no annihilations

Annihilations should have even number of stranges.

GLW, its variant, ADS methods:

Still work after including rescattering and annihilation effects:

$$A \equiv \lambda_c (T_c + C_c) B \equiv \lambda_u (C_u + A)$$

where T_c , C_c , C_u , and A as redefined above.

Then, in particular,

$$r = \frac{\lambda_u T_c + C_c}{\lambda_c C_u + A}.$$

A scenario:

Non observation of $D^-K_s \rightarrow$ smallness of A

$$D^0\pi^0$$
, ΨK^- , $D^-_s\pi^0
ightarrow r$

Using $B \to K\pi, \pi\pi$ for γ/ϕ_3

Tree-penguin interference

 \rightarrow large direct CP asymmetries expected.

Each *CP* asymmetry requires and depends on FSI phases (difficult to calculate).

But: Amplitude relations $\rightarrow \alpha$, γ , FSI phases.

For example:

Note:

- All charged $B \mod s$ self-tagging.
- SU(3) breaking effect are reasonably under control. Complication by EW penguins which breaks the isospin.

$K\pi$ modes summary

	N(signal)	signif.	$Br(10^{-5})$
$\pi^+\pi^-$	9.9	2.2σ	< 1.5
$\pi^+\pi^0$	11.3	2.8σ	< 2.0
$\pi^0\pi^0$	2.7	2.4σ	< 0.93
$K^+\pi^-$	21.6	5.6σ	$1.5^{+0.5}_{-0.4}\pm0.1\pm0.1$
$K^+\pi^0$	8.7	2.7σ	< 1.6
$K^0\pi^+$	9.2	3 .2 <i>σ</i>	$2.3^{+1.1}_{-1.0}\pm0.3\pm0.2$
$K^0\pi^0$	4.1	2.2σ	< 4.1
K^+K^-	0.0	0.0σ	< 0.43
K^+K^0	0.6	0.2σ	< 2.1
$K^0 K^0$	0	—	< 1.7
$h^+\pi^0$	20.0	5.5σ	$1.6^{+0.6}_{-0.5}\pm0.3\pm0.2$

blue: the SU(3) triangle modes.

Angular correlation in $B \rightarrow D^* \rho$

 $\frac{1}{\Gamma} \frac{d^3 \Gamma}{d c_{\theta_1} d c_{\theta_2} d \chi} =$

 $\frac{9}{32\pi} \Big\{ 4|H_0|^2 c_{\theta_1}^2 c_{\theta_2}^2 + (|H_+|^2 + |H_-|^2) s_{\theta_1}^2 s_{\theta_2}^2 \\
+ [\Re(H_-H_+^*) c_{2\chi} + \Im(H_-H_+^*) s_{2\chi}] 2 s_{\theta_1}^2 s_{\theta_2}^2 \\
+ [\Re(H_-H_0^* - H_+H_0^*) c_{\chi} + \Im(H_-H_0^* - H_+H_0^*) c_{\chi}] s_{2\theta_1} s_{2\theta_2} \Big\}$

Preliminary

 $|H_0|^2 + |H_+|^2 + |H_-|^2 = 1$, $H_0 = \text{real}$

$\bar{B}^0 \rightarrow D^{*+} \rho^{-}$	
---	--

	H	$\arg H(rad)$
H_+	$0.153 \pm 0.052 \pm 0.013$	$1.36 \pm 0.36 \pm 0.32$
H_{-}	$0.311 \pm 0.048 \pm 0.036$	$0.19 \pm 0.23 \pm 0.13$

$B^- ightarrow D^{*0} ho^-$		
	H	$\operatorname{arg} H(rad)$
H_+	$0.221 \pm 0.064 \pm 0.035$	$0.98 \pm 0.30 \pm 0.08$
H_{-}	$0.290 \pm 0.066 \pm 0.038$	$1.12 \pm 0.26 \pm 0.09$