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1. CP Violation and Unitarity of CKM Matrix
(what is the angle ¢3/~7)
2. Decay modes for the angle ¢3/v



General left-handed quark-W Interaction

Lint(t) = / z(Low(x) + L W(w))

g —
Law(@) == > Vi Ui yu(1 —4s) Dy W
1,7=1,3

u(z) d(x)
Ui(x) = c(a:)) D;(z) = (s(w))
t(x) b(x)

Vub
V = (VCd VCS Vcb> (CKM matrix)
Via Vis Va

Experimentally, V has a hierarchical structure.
Approximately,

1 X )3
Vijl~1 A 1 A2
A3 N2 1

A~ 0.22



Transformation of L+ under CP

exchanges particle (n) « antiparticle (n)
CP: flips momentum sign (p <~ —p) (a)
keeps the spin z-component (o) the same

Such CP operator in Hilbert space is not unique:

CPal . Pict = nual

n,p,o n,—p,o

nn. 'CP phase’: arbitrary, depends on n
(for antiparticle: nz = (—)%/n})

The choice of n, amounts to choosing a specific
operator in Hilbert space among those satisfying (a).

Then, a pure algebra leads to

CP u(x)v.(1 — v5)d(x)WH(x) PICT T
= iy (@) (1 = 35)d(@IW,(a))

' = (t, —7)



L,w transforms as (taking ny = 1)

CP Ly (z) PiCT

g * 7 f
=T 2 mmbVis (01 A1 = 38) D)W
i,j=1,3

IF nUin*Dj can be chosen s.t.

77Ui"72k)j%j — ‘/:;; (2) ’

then, Lint(t) becomes invariant under CP:

CP Low(x) PiCt =Ll (') (&' = (t,—&))

— CP Lint(t) PfCt
— / Az CP[Low (x) + L ()] PiCT
_ / B [L] () + Low ()]
- Lint(t)

— S operator is invariant under CP
(through Dyson series)



Condition for CP Invariance

Rewrite the condition (2):

"D,
Nu;

=2argV;;

Thus, for a given (arbitrary) matrix V;;, if the CP
phases n's can be chosen so that the phase difference
between np, and ny, is twice the arbitrary phase of V; ;,

then the physics is invariant under CP.

This is equivalent to rotate the quark phases to make
Vi; all real.

In general, there are 5 phase differences for 6 quarks
— 5 elements of V can be set to real always.

For example.,

V= <x‘?d e x‘?b> Vi« real
- d cs cb .
¢ Vi complex
Viae Vis Vi 7 P
(No unitarity condition imposed)

Any of the four red elements is not real
— CP violation



Vexn Phase Conventions
(without unitarity constraint)

One can do
Vud Vus Vub .
V= <VCd Ves Vd’) X‘;;] : giaerlex
V%d %s ‘/tb b

Our standard phase convention
(Also force, Vig, Vus, —Ved, Vap, —Vis > 0)

or,
Vud Vus Vub .
V = <Vcd Ves Vcb> “?J : (r:eoaerIeX
‘/td Vz%s ‘/tb b
etc.. ..

But one cannot do,

Vud Vus Vub .
V = <Vcd Ves Vcb> “jf] : ::iaerlex
%d ‘/ts ‘/tb b



A Main Question of the CPV Study in B:
‘Is V unitary?’

e.g: orthogonality of d-column and b-column:
VuaVp + VeaVy, + ViaViy, = 0

ViaVig VeV ViV
azarg(%),ﬁgarg(ﬂ)’vgarg( d V¥ ub
—VaudVyp - —
(3)

With our phase convention:

ViaVy,
o = arg ( ti/f’) , B=arg (VigVw) , v =arg (Vi)
~ Vub



For any complex numbers a, b, ¢, trivially

a+B8+~y=n (mod2n)

a b c
azarg<_—b>, Bzarg<_—c>, yzarg(_—a>.

— The condition a+ 8+~ =x (mod2x) holds
even if the triangle does not close.
It does not test the unitarity of Vexkwm.

It simply tests if the angles measured are
as defined in (3) in terms of Vekm.

— It is critical to measure the length of the sides.



With Unitarity Constraint

Use our standard phase convention,
and the hierarchy of the sizes of the elements:

Vud Vus Vub Abs 1 A )\3
V=|Va Ve Vu|~[Ar 1 X

Via Vis Vi A3 N2 1

Assume ImV,,, ImV,y ~ A3
(i.e., the phase angles are of order unity), then

(612

d VuVi=0 —  ImVi~2*
D VaVi=0 — ImVy~ A7

Under unitarity condition, V. is nearly real.
Assume it for now.



Gronau-London-Wyler (GLW) method to extract ~
B~ — DgpK~
D2, : CP eigenstate. e.g. Kgn®, KTK~ ..

Both D9 and D° decay to a CP eigenstate.
— 2 diagrams

e

A= Amp(B~ — D°K~) B = Amp(B~ — D°K™)

AV Vip ~ 0.4V,
Color-favored Color-suppressed
(a1 +ax ~1.24) (ax ~ 0.24)

A= Amp(BT — D°KT) B = Amp(BT — DO°K™)

A= A* B = B*
(A ~ 0.22: Cabbibo factor)



Strong final-state-interaction phase:
B relative to A : ¢” (§ could be complex)

Phase convention: A = A*

vy=argB* =argV,,

Measure 4 lengths:
Amp(B~ — D2 pK ™)
Amp(BT — DS ,KT)
Al by B~ — D°K~, D% — K—nt
| B| by B- — D°K—, D% — K+tn~

Reconstruct two triangles — ~



CP asymmetry expected:
_I[B™ — (Ksm®) K] -T[BT — (Ksm%)KT]
Acp =
"7 rB- - (Kgnm9)K-]+ Bt — (Kgn9) K]

B
ﬁ ~ \(color factor)A(CKl\/l factorl ~ 0.08
a> e

—2 02 Y g4
a1 + a2 AV

— agp is of order 10%.

(v can be measured even if a, = 0)

Relevant D° decay modes:

KgmO 1.06 £0.11%| CP—
Ksp® 0.60+0.09%| CP—
CP eigenstates | Kg ¢ 0.84 +£0.10%| CP—
KTK~ 0.4340.03%|CP+
VI o 0.15+0.01%| CP+
calibration |K—nt 3.83+£0.12%

DO decay FSI phase does not contribute.
— Can be combined.

Once B~ — (K—nT)K~ is observed, CP asymmetry in
C P eigenstates is not far away.
(apart from extracting =)



Problem with the GLW method and Solution
[Atwood, Dunietz, Soni (ADS)]

How to measure B = Amp(B~ — D°K~)7?

B~ 2 D°K- butalso B 2 DOK-
s KTa~ < KTr~ (DCSD)

The ratio of the two amplitudes (Rpcsp):

A Amp(D° — KT77)

B Amp(Doj K—7t)
1 0.088+0.020

0.08 (CLEO 94)

Phase of Rpcsp not known — cannot measure |Bj|.
(Difficult to detect D° — X, /D)

Rpcsp =

But: This interference causes CP asymmetry
of order unity in the wrong-sign Km modes:

MB™ — (KTn)K™] vs [[BT = (K n)KT]

To see this, in the GLW method simply replace

Amp(D° — K—7T)
Amp(D® — K+n—)
d — & :combined FSI phases of B/D decays

Bl —|B (~ [A])



ADS method to extract ~

Measure B~ — DK™~ in two decay modes of D:
wrong-sign flavor-specific modes or C' P eigenstates,
say KTn~ and Kgn° (and their conjugate modes).

MB- — (KTn )K~] T[BT — (K nt)KT]
(B~ — (Kgn®)K~] T[BT — (Kgn%)KT]

Assume we know |A| and D branching fractions
— 4 unknowns:

|B|
v, 5K*7T+ ’ 5K57r0 ’ T A
| Al

— can be solved.

Statistics: Possible at B-factories
(300 fb~! needed)



Avoid using wrong-sign BT — DOKT

External input (experiment, theory):
B B
r=|—| =|=| ~0.08
A A

Measure

(B~ — D1K~)=1+7r242rcos(y 4+ 9)
(B~ — DK ) =14 1r?—2rcos(y +9)
(BT - D1KT) =1+ 724 2rcos(y —§)
(BT — DoKT) =14 12— 2rcos(y —§)

in unit of M(B~ — DYK ).
— fit for v and §.

Ambiguity: the equations are symmetric under

Yy— nmxd

5 — Fnmw 4y (n : integer)



Fit result for v and ¢

Input:

v=18,6=0.4
o(lMs) =10% (100 events each)
(300fb~1)




Fit result for v and §

=
U1 O
~N




Statistics Estimate

1. Relative yields (compare to D° — K—nT)

o K77(3.9%)

e Di: KTK(0.43%) + nt7n=(0.15%)
= 0.58%.

o Do K,m9(1.05%)x2/3(KsBr) x 1/2(x9)
= 0.35%.

2. Yield of B— D°K~—, D° - K—nt at 3.1 fb!

e CLEO: N(D%°~) =239 at 3.1 fb~!
e Then, N(D°K~)=17.5 at 3.1 fb!

3. Yields at 300 fb—1

o N(DYK—nT)K~) = 1694
e N(D1K~) =252 (126 each for B¥)
e N(D>yK~) =152 (76 each for B¥)

Background? Needs a good vertexing to reject
continuum background.



Measurement of B— — DK~

Expect

Br(B- — DYK~- 2
r(B” — )N/\Q(fK) ~ 0.07

Br(B- — DOx-) fr

D° channels used:
D® — K—rn+t (3.83%)
Km0 (13.9%)
Kntn—nt (7.5%)

On 'Y‘ﬁLS, the B mesons are generated with a known Ep
and |PB|

B— fi+-+fa
Etot = Zz E;, = E_)B
Piot = | ), pil = | PB]
or euivqglently, plot:

AFE = Etot — EB
Mp=+/E? — P2, (beam-constrained mass)

OM, ™~ 2.5 MeV.
~ x10 better than M = \/E2, — P2,.




Two major backgrounds and rejection parameters:

1. B- — D%~
AFE, dE/dx(K)

2. continuum (eTe™ — 2jets)
0s: angle between the sphericity axis of the B can-
didate and that of the rest of the event.
Op: B momentum polar angle in lab.
F': Fischer discriminant

Fischer discriminant of variables ¥ = (z1...2y):
F=X-7

A. constants to be chosen to maximize separation S
between signal and background:

o= UF) = (P2 _ (K- (@) — (@)

o2 MV
s :signal, b:bkg, V :covariant matrix of &
oS -
SV 0 — A=V 1{(@)s— (D))

For &, use the energy flows in 9 cones around the event
axis, an event shape variable (Fox-Wolfram), and the
polar angle in lab of B candidate event axis.



Maximum likelihood fit for the signal and background
yields in the space of

Mp, AFE, dE/dz(K), Mp, coslp, F

3590198-005
60 | 1 | 1 | 1 | I I I I I I I I I | I I I I

| (a) BY"— D)™ Region |

Events / 0.45
Events / 15 MeV

160

EEETIT Ik TR N T ROV SR

0 0.1 0.2
AE (GeV)




Events / 3.3 MeV

dE/dr < —0.75 and =50 < AFE < 10 MeV
(D°K~ ‘signal region’)

3590198-006

—— Fit Function

30 - All Backgrounds _
- e Continuum + Combinatoric BB .

B ———— Continuum .

20

5.255 5.265 5.275 5.285 5.295
MbC (GeV)

Br(D°K™)

= 0.055+0.014 £ 0.005.
Br(DO%—)




B — DK~ (Belle)

7w /K separation by Aerogel Cerenkov Counter.
(with dEdx, TOF)

Allows simple cuts/fits (e.g. AFE plot; no Fischer)

250

@ a4

200 |

Nevents/2 MeV/c?

150 F

100 |

50 |

e SO IO T o Bl VT i _ T BT} O RO S P T ]
52 5.22 5.24 5.26 5.28 53
o _ Mb (GeV/c?)
D1t (combined)

o Eo(b)

15 g

Nevents/2 MeV/c?

10 F

5.3
Mb (GeV/c?)

D°K (combined)

Br(D°K™)

= 0.081 £0.014 £0.011
Br(DO%—)




B° — D*TK~ (Belle)
D*t — DOzt
Reconstruct B° — D*th~ (h = K, 7).

Assign pion mass always in calculating AFE

AFE = Fiot — Ep (In T45 C.m.)
(AE for DT K~ ~ —0.05 GeV)

N
(€

ol

(@)

N
o

(b)

N

=
(631

Nevents/5 MeV
w

Nevents/10 MeV

Iy
o
N

a1
[HEN

l

-00.2 -0.1 O 0.1 0.2 E)0.2 -0.1 0 0.1 0.2
AE(GeV) AE(GeV)
D*tTx~ sample D*tT K~ enriched
Br(D*tTK™)

= 0.134799%> 1 0.015
BT(D*—*_’]T_) —0.038



Nevents/5 MeV

B~ — D*OK~ (Belle)
D*O N DOT('O
Reconstruct B~ — D*tTh~ (h= K, 7).

Pion mass is always assigned to h~

w
o
ol

>
S
(c) 34-(0')
20t o
< R
53
[¢6)
<2
10}
I RIZIIN
0 - - oo 0 - - -

-0.2 -0.1 0 0.1 0.2 -0.2 -0.1 0 0.1 0.2
AE(GeV) AE(GeV)
D*%n— sample D*9K~ enriched
Br(D*°K")

= 0.06279930 + 0.013



B~ — DYK* (K*~ — Kgm~)
CLEO, Very Preliminary

Ks — nTm~ vertex: no need for T /KT separation.
(No contamination from B — D%p%)

D 300
Entries 26
. Mean . 5.249
RMS D.2636E—-01

T

5 A1 |
52 5225 525 5275 53

MB(GeV)



Classification of B° - DK

S .
D
C

T[+

9

Ac Ay
b b
Cc u
d — d —
d d
C u
b b
0 RO

ol
ol

T: tree, C: color-suppressed, A: annihilation
(T,C: depends on b — c or b — u)

Ae =V Vi, Au= ViV

Amp(B° — DTK™) = AT,
Amp(B° — D°K9%) = \.C.
Amp(B® — DORO) = A\Cy Y
Amp(B° — D;nT) = ATy



Classification of B~ — DK

K
b>< < N
u d

)

“ X D T RN
Amp(B~ — D°K™) = AT+ AC.  (5a)
Amp(B~ — D°K~) = \,Cu + XA  (5b)
Amp(B~ — DK% = )\, A (5¢)
Amp(B~ — D;70) = \%)\UTU (5d)



Final-state Rescatterings

Final-state rescattering can occur:
B° — DTK—(T.) — D°K°(C.)
B® — D ot (T,) — D°K°(C,)

We define T, C., T,, C, by (4) including
rescattering effects.

Then, is (5a) still true?

Amp(B~ — D°K™) = AT, + \.C.
= Amp(B® — DTK~) + Amp(B° — D°K9)

which is nothing but the isospin relation
for Hesr having |1/2,—1/2) structure:
(good to all orders as long as mq, = my)




Final-state Rescatterings - annihilation

Final-state D~ K° can be reached by
B~ — D;m° — D K"

This is a ‘long-distance’ annihilation:

" S > KO b S
—0
. . a K
b C\ d — <
u _ D_ T d _
T ¢ U > D
Y o

We thus define A by
Amp(B~ — D K°%) = \,A (5¢)
including the rescattering effect.

Then, the annihilation in B~ — D°K~ (5b) has exactly
the same rescattering contribution:

cl o
c
ol
v
c c
W) ~
o
]
| (=2
ol A w
c cl
Ol ~
o



B — DK Modes

Final state: one charm, one strange.

e NO penguine contaminations

b u,c,t s,d

9

.

Penguine should have even number of charms.
(True for charged and neutral B)

e Neutral B has no annihilations

c,u

b /s

.

\

c,u

Ql

Annihilations should have even number of stranges.



GLW, its variant, ADS methods:

Still work after including rescattering
and annihilation effects:

A= 2(T. 4+ C,)
B =X (C,+ A)
where T,., C., C,, and A as redefined above.

Then, in particular,

ATe + Ce
r = .
A Cy+ A

A scenario:
Non observation of D~ K, — smallness of A

D0 WK, D;n°% — r



Using B — Km,mm for ~/¢3

Tree-penguin interference
— large direct C'P asymmetries expected.

Each CP asymmetry requires and depends on FSI phases
(difficult to calculate).

But: Amplitude relations — «, v, FSI phases.

For example:

Note:
e All charged B modes — self-tagging.
e SU(3) breaking effect are reasonably under control.

Complication by EW penguins which breaks the
Isospin.



K7 modes summary

N (signal) signif. Br(107°)
o 9.9 220 <15
wt70 11.3 2.80 < 2.0
w070 2.7 2.40 < 0.93
Ktm- 21.6 5.60 1.5%7024+0.1+0.1
K+n0 8.7 270 <1.6
KOnt 9.2 320 2.375+03+0.2
K070 4.1 2.20 < 4.1
KtK- 0.0 0.0¢ < 0.43
KTKP° 0.6 0.20 <21
KOK?O 0 - <1.7
ht O 20.0 550 1.67)24+03+0.2

blue: the SU(3) triangle modes.



Angular correlation in B — D*p

1 dEr
Cdep deg,dx
9

o {alHo2 G, + (1H 2 + )53 53
HRCH-H oy + S(H-HY )52,]257 57

FIR(H_HE — HyHE)ey + S(H_HE — H+H5)cx]52913292}



Preliminary

— — %7 08 03
M(p)

> or

|Ho|? + |HL|? + |H_|?=1, Hp= real

B% — D*Tp~
|H | arg H(rad)
Hy 10.153 £0.052+£0.013 1.36 £0.36 +0.32
H_ |0.311 £0.0484+0.036 0.194+0.234+0.13
B~ — D*Op—
|H | arg H(rad)
Hy 10.221 £0.064 £ 0.035 0.984+0.30 == 0.08
H_ 10.2904+0.066 +0.038 1.1240.26 4+ 0.09




