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Abstract

We investigate the space-time profile as well as the luminosity factor of beam-
beam interactions when the beams collide with finite crossing angles. Cases with
and without crab cavity are considered. The widths and offsets of interaction profile
are estimated using gaussian approximation. Effects of timing error, different beam
sizes for e+ and e−, as well as the waist effect are also included.



1 Introduction

The space distribution of interactions in e+e− colliders are needed in variety of
studies including vertex constraint of charged particle tracking. On the other hand,
the time profile of the interaction has implication on time-of-flight measurements.
The shape of the interaction profile can be directly measured if the measurement
resolution is good enough, but often it is not the case. It is thus desirable to predict
the ineraction profile from the physical bunch dimensions that are obtained from
accelerator information. The problem becomes non-trivial when the two beams cross
with a finite crossing angle with or without crab crossing. Also, often two beams
have different dimensions, and the resulting effects need to be included. We will
also consider the possibility that the two beams are not exactly in synchronized or
transversely offset. As we will see, the off-timing or transverse displacement has no
effect on the interaction profile even though it reduces luminosity.

2 Luminosity formulas

When a distribution of electrons with density ρ− passes through a distribution of
positrons with density ρ+, the interaction per unit time per unit volume n0 is given
by

n0 = vrel ρ−ρ+σ(s) , (collinear) (1)

where σ(s) is the cross section of the interaction evaluated at the corresponding
C.M. energy squared s, and vrel is the relative velocity of e+ and e− measured in the
laboratory. This formula is valid even when the two beams have different velocities
(or different energies) as long as they are collinear.

If the two beams are not collinear, the above expression needs to be modified.
In order to derive the correct formula, we start from a head-on collision case [Fig-
ure 1 (a)] where the e+(e−) beam has energy p+

0 (p−0 ). In Figure 1 (b) is shown
the configuration after boosting it in the x direction with velocity β. We assume
that the electron mass is much smaller than the energy scale of interest, and use
a unit system where c = 1. The energies of e− and e+ are increased by the factor
γ = 1/

√
1− β2 and the angle from the z axis is given by

cos θ =
1

γ
, tan θ = η , sin θ = β , (2)

where η ≡ βγ. Now focus on an ‘event’ where a single electron projectile is moving
with velocity (v+

x , v
+
y , v

+
z ) = (sin θ, 0, cos θ) inside a cloud of positrons moving with

velocity (v−x , v
−
y , v

−
z ) = (sin θ, 0,− cos θ). Let ρ∗± be the density of e± in the vicinity

of this ‘event’ evaluated in the rest frame of each bunch. The density in other frame
is increased by the Lorentz contraction. The density in the head-on collision case
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(a) is then ρ0
± = γ∗±ρ

∗
±, where γ∗± is the γ-factor of e±. On the other hand, the

corresponding Lorentz contraction factor in the x-boosted frame (b) is γp±0 /me =
γγ∗± which means that the density in that frame is ρ± = γγ∗±ρ

∗
±. Namely, the

densities in frame (a) and those in frame (b) are related by

ρ± = γρ0
± . (3)

In the x-boosted frame (b), what is the number of interaction for the given electron
to interact with positron within a time window of ∆t = t2 − t1, or between the
space-time point w1 (defined as the position of the given electron at the start of the
time window t1) and w2 (defined as the position of the given electron at the end of
the time window t2)? We will boost these two events back to the head-on frame
where the number of interaction is easily evaluated. The 4-vector ∆w ≡ w2 − w1 is
given by

∆w ≡


∆t
∆x
∆y
∆z

 =
(

∆t
~v+∆t

)
=


∆t

sin θ∆t
0

cos θ∆t

 . (4)

In the head-on frame, ∆w′ is then given by(
∆t′

∆x′

)
=
(
γ −η
−η γ

)(
∆t
∆x

)
=
(

∆t/γ
0

)
, (5)

where we have used ∆x = sin θ∆t = β∆t. Then the number of interaction in the
head-on frame between the two events, n12, is the product of the length of the travel,
the density of target, and the cross section (with vrel = 2 and ρ0

+ = ρ+/γ)

n12 = (vrel∆t
′) ρ0

+ σ(s) = 2
∆t

γ

ρ+

γ
σ(s) . (6)
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Figure 1: The luminosity formula for the case where two beams do not collide head-
on, the configuration (b), can be obtained by transversely boosting the head-on
configuration (a) by velocity β. (η ≡ βγ.)
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Figure 2: Finite-angle collision without crab crossing. The configuration shown
corresponds to σz = 5 mm, σx = 0.1 mm, t = −4 and the electron bunch is delayed
by a = 5. The crossing angle is ±11 mrad. Each bunch is shown in (a), and the
product of the two is shown in (b). Unit is mm.

The number of interactions between two events on the path of a particle is the same
in any frame. In the x-boosted frame (b), the number of projectile in a unit volume
is ρ−, thus the number of interaction per unit time per unit volume in the x-boosted
frame is

n =
n12ρ−

∆t
=

2

γ2
ρ−ρ+ σ(s) = 2 cos2 θ ρ−ρ+ σ(s) . (x-boosted frame) (7)

Or, the luminosity density `(w) at a given space-time point w is given by

`(w) ≡ n

σ(s)
= 2 cos2 θ ρ−ρ+ . (8)

When we compare the luminosity for different crossing angles, we will fix the center
of mass energy, and thus σ(s), and vary the angle θ, while the beam sizes in the
laboratory frame are kept the same. This means that we vary the beam energies for
different crossing angles.

3 Finite-angle collision without crab crossing

We first study the case where two beams collide with a finite crossing angle without
using a crab cavity, an example of which is shown in Figure 2. We recall that c = 1,
and time is measured in mm. We include the possibility that the two beams do not
collide at the exact crossing point of the design orbits. Specifically, we assume that
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the electron bunch is delayed relative to the positron bunch by a. When one of the
beam is transversely shifted, it is equivalent to a such timing offset.

If the crossing angle were zero, the densities of positron and electron at a space-
time point w = (x, y, z, t) is given by

ρ0
±(w) = A exp

(
− 1

2
f 0
±(w)

)
, (9)

with

f 0
−(w) =

x2

σ2
x

+
(z − t+ a)2

σ2
z

f 0
+(w) =

x2

σ2
x

+
(z + t)2

σ2
z

. (10)

The constant A does not depend on w nor on a. We will be interested in the widths
and means of the distributions, and not the absolute rates except for the relative
luminosities when the crossing angle θ or the timing offset a is varied. Thus, the
actual value of the constant A is irrelevant. We have assumed that the beam shape is
gaussian. We also assume that the design orbits are in the xz plane and the y profile
is independent of x, z, t; then, the y-dependence decouples from the rest and can be
ignored. Later, we will discuss the waist effect which violates this assumption. The
crossing angle is incorporated by rotating the electron bunch by an angle θ and the
positron bunch by −θ. Namely, ρ± = A exp(−1

2
f±) with

f−(x, z, t) = f 0
−(cos θ x− sin θ z, sin θ x+ cos θ z, t)

f+(x, z, t) = f 0
+(cos θ x+ sin θ z,− sin θ x+ cos θ z, t) . (11)

For example, the design values for KEK-B are[1]

σx = 0.077 mm, σz = 5 mm, θ = 0.011 rad ; (12)

namely, σx/σz and θ are of the same order.
The luminosity density is then obtained by (8):

`(x, z, t) = 2A2 cos2 θ exp
(
− 1

2
g(x, z, t)

)
(13)

with

g(z, x, t) =
(cos θ x− sin θ z)2 + (cos θ x+ sin θ z)2

σ2
x

+
(sin θ x+ cos θ z − t+ a)2 + (− sin θ x+ cos θ z + t)2

σ2
z

. (14)
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This is a multivariate gaussian in the space of (x, z, t). Due to cancellation of cross
terms, there is no xz term, indicating that the gaussian is not tilted in the xz-plane.

In general, the width σ and mean µ of a gaussian distribution

exp [− 1

2
(ax2 + bx+ c)] (15)

are given by

σ =
1√
a
, µ = − b

2a
. (16)

For the distribution (14) at given z and t, the width and mean of x can be readily
extracted:

σ′x(z, t) =
1√
2

σz
σc
σx , µx(z, t) =

(
t− a

2

)σ2
x

σ2
c

sin θ , (17)

where
σc ≡

√
σ2
z cos2 θ + σ2

x sin2 θ . (18)

We have used σ′ to denote a width of luminosity as opposed to the bunch width. For
KEK-B, we have σc ∼ σz. The motion of mean x, µx(z, t), is finite but practically
zero. If the crossing angle is zero, the x width is exactly the x width of bunch divided
by
√

2. The factor 1/
√

2 comes from the fact that the luminosity is proportional to
the product of the two gaussians. This argument holds for the y width which are
decoupled from other dimensions:

σ′y =
1√
2
σy . (19)

For given x and t, the width and mean of z are

σ′z(x, t) =
1√
2

σx
σs
σz , µz(x, t) = −a

2

σ2
x

σ2
s

cos θ , (20)

where
σs ≡

√
σ2
x cos2 θ + σ2

z sin2 θ . (21)

We have σx cos θ ∼ σz sin θ for KEK-B; in fact, numerically σs ∼ 1.23σx for the
design values and thus σ′z(x, t) ∼ 0.57σz. The extra suppression by the factor σx/σs
in addition to the 1/

√
2 factor is caused by the crossing angle. Similarly, for a given

space point (x, z), the width and mean of the time distribution of interaction is

σ′t(x, z) =
1√
2
σz , µt(x, z) =

a

2
+ x sin θ . (22)

Inspecting (17), (20), and (22), we notice that the widths do not depend on time as
the bunches cross. They are also independent of the timing delay a. The average

5



z is shifted proportionally to a, but it is independent of x and t. It indicates that
when integrated over x and t, the z width will stay the same. The average t is a
function of x, thus the time width will be wider when integrated over x and z.

Integration of (13) over t can be easily accomplished with the following formula:

∫ ∞
−∞
dx e−

1
2

(ax2+bx+c) =

√
2π

a
e
− 1

2

(
c− b2

4a

)
. (23)

The result is a diagonal multivariate gaussian in xz-plane (namely, there is no xz
term), and the widths and means of x and z can be identified as before. The result
for x is

σ′x =
1√
2

σx
cos θ

, µx = 0 . (24)

As expected, the width is larger than that for a given time t. The mean is averaged
over to become zero. For z, we have

σ′z =
1√
2

σx
σs
σz , µz = −a

2

σ2
x

σ2
s

cos θ , (25)

which are the same as those at a given time t as expected.
Similarly, one can integrate (13) over x and z to investigate the overall time

profile. The resulting width and mean are

σ′t =
1√
2

σc
cos θ

, µt =
a

2
. (26)

The width of the overall time distribution is slightly larger than that at a fixed point
(x, z) which was expected since the average time depended on x. The timing shift
is simply a/2 which is the same as the naive expectation for the head-on case with
small point-like bunches.

Integrating over all three variables, one obtains the total luminosity per bunch
crossing:

L ≡
∫
dxdzdt `(x, z, t) . (27)

Define the luminosity factor r(θ, a) by

r(θ, a) =
L(θ, a)

L(θ = 0, a = 0)
. (28)

Performing the integral, the luminosity factor is found to be

r(θ, a) = exp
(
− a2 sin2 θ

4σ2
s

) σx
σs

cos θ . (29)
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Figure 3: FInite-angle collision with crab crossing. The configuration shown cor-
responds to σz = 5 mm, σx = 0.1 mm, t = −4 and the electron bunch is delayed
by a = 5. The crossing angle is ±11 mrad. Each bunch is shown in (a), and the
product of the two is shown in (b).

When θ = 0, we have σs = σx and thus r = 1; namely, for a head-on collision, there
is no luminosity loss regardless of the timing offset a. The exponential represents the
luminosity loss due to the timing offset, and the ratio σx/σs represents the luminosity
loss due to the crossing angle without crab crossing. For a = 0 and θ << 1, the
formula above reduces to

r(a, θ) ∼ σx√
σ2
x + σ2

zθ
2

(a = 0, θ ¿ 1) , (30)

which agrees with the result of Ref [2].

4 Finite-angle collision with crab crossing

In crab crossing, a rotational oscillation in the xz-plane is induced for each bunch
such that, when they collide, they cross head-on while moving transversely. Such
configuration is shown in Figure 3. To express it analytically, we start from the
simple function

h0(x, z) =
x2

σ2
x

+
z2

σ2
z

, (31)

then apply an transformation

h−(x, z) = h0

(
x− sin θ (t− a), z − cos θ (t− a)

)
h+(x, z) = h0

(
x− sin θ t, z + cos θ t

)
(32)

7



and exponentiate them to define the particle densities as

ρ± = A exp
(
− 1

2
h±
)
. (33)

The crossing angle is still θ, and the electron bunch is delayed relative to the positron
bunch by a as before. The luminosity density is then given by (8) and the rest is
identical to the previous section. The result is listed below: before the integration
over time, the interaction profile is a gaussian with all three axes aligned with the
coordinate axes where

σ′x(z, t) =
σx√

2
, µx(z, t) =

(
t− a

2

)
sin θ , (34)

σ′z(x, t) =
σz√

2
, µz(x, t) = −a

2
cos θ , (35)

σ′t(x, z) =
1√
2

σx
σs
σz , µt(x, z) =

a

2
+
σ2
z

σ2
s

x sin θ , (36)

where σs is defined by (21) as before. From (34) and (35), one can see that the
interaction profile is a gaussian of fixed x and z widths moving in the +x direction
with velocity sin θ. There is no motion in z direction. After integrating over t, we
still have a gaussian aligned with the coordinate axes with

σ′x =
1√
2

σs
cos θ

, µx = 0 , (37)

σ′z =
σz√

2
, µz = −a

2
cos θ . (38)

The x width became larger since the interaction profile is moving in x direction,
while the z width did not change since µz(x, t) is a constant.

Integrating over x and z, the time profile is

σ′t =
1√
2

σz
cos θ

, µt =
a

2
, (39)

and the luminosity factor is obtained by integrating over all three variables:

r(θ, a) = exp
(
− a2 sin2 θ

4σ2
x

)
cos θ , (40)

which does not contain the ‘crossing angle factor’ σx/σs, which is the main purpose
of the crab crossing.
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5 If bunch sizes differ for e− and e+

When the electron and positron bunches have different bunch sizes, the expressions
for the interaction profile become quite complicated. One may simply form linear
averages of the two bunch sizes

σi =
σ−i + σ+

i

2
(i = x, z) , (41)

where σ±i are the e± bunch sizes, and blindly use them in the expressions obtained
earlier. The approximations are reasonably good when two sizes are nearly equal.
In some cases, such as the x width in a head-on collision, the smaller of the two
sizes is weighted more. However, in some other cases, such as z width in the same
situation, the larger of the two sizes is weighted more. Also, the cancellation of xz
terms in (14) does not occur if two beam sizes are different and the gaussian will not
be aligned with the laboratory coordinates. This is true for both with and without
crab cavity.

Here, we will list the correct expressions for the overall x, z, and t widths, where
‘overall’ means that after integrating over all other variables. First, define two kinds
of averages:

σai
2 ≡ 1

2
(σ−i

2
+ σ+

i
2
) (i = x, y, z) , (42)

and
1

σbi
2 ≡

1

2

(
1

σ−i
2 +

1

σ+
i

2

)
(i = x, y, z) , (43)

which satisfy
σai σ

b
i = σ−i σ

+
i (i = x, z) . (44)

Then, for crossing angle without crab cavity, the overall widths are found to be

σ′x =
1√
2

σax
σas

√
σbx

2 + σaz
2 tan2 θ ,

(without crab) σ′z =
1√
2

σax
σas

σaz , (45)

σ′t =
1√
2

√
σax

2σaz
2 + (σ−x

2 − σ−z 2)(σ+
x

2 − σ+
z

2) cos2 θ sin2 θ

σas cos θ
,

with
σas ≡

√
σax cos2 θ + σaz sin2 θ . (46)

For crossing angle with crab cavity, we have

σ′x =
1√
2

√
σbx

2 + σaz
2 tan2 θ
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(crab) σ′z =
1√
2
σaz , (47)

σ′t =
1√
2

σaz
cos θ

.

The above widths are for the distribution projected on to the axis of interest
after integrated over all other vairiables. This was necessary since there is non zero
xz term after integration over t. Another interesting parameter then is the tilt of
the axis of the interaction profile after integrated over t. We express it in the form
of

x = λz (48)

where the origin is taken to be the center of the multi-variate gaussian. It is extracted
in the approximation of small θ and σz À σx by

λ = − Cxz
2Cx2

. (49)

where Cx2,xz is the coefficient of x2 or xz term in the exponent of the gaussian. For
the case of crossing without crab cavity, this slope paramter is given by

(without crab) λ =
σ−x

2 − σ+
x

2

σ−x
2 + σ+

x
2 tan θ . (50)

It should be noted that there may be an intrinsic tilt of the major axis of bunch
with respect to the direction of motion in the laboratory frame due to the transverse
force excerted on a bunch during finite angle crossing. This tilt angle, however, is
estimated to be less than 0.2 mrad for the operating point of KEK-B [1]. For the
case of crab crossing, λ is given by

(crab) λ =
σ+
z

2 − σ−z
2

σ+
z

2 + σ−z
2 tan θ . (51)

We see that the tilt angle is never greater than the crossing angle itself, and is
suppressed by the asymmetry parameter of the x width squared for the case of
crossing without crab cavity, and for crab crossing it is suppressed by the asymmetry
parameter of z width squared.

For completeness, we give the fomulas for the luminosity per bunch crossing:

(without crab) Lbunch = n+n−e
−a2 sin2 θ

4σax
2 cos θ

4πσasσ
a
y

, (52)

(with crab) Lbunch = n+n−e
−a2 sin2 θ

4σas
2 cos θ

4πσaxσ
a
y

, (53)

where n± is the number of particles in one e± bunch. One sees that if one replaces
σax’s in the luminosity formula with crab by σas one obtains that without crab.
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6 Waist effects

The beam size in x or y at a given point along the orbit is given by

σi(s) =
√
βi(s)εi + (ηi(s)δ)2 (i = x, y) , (54)

where βi(s) is the amplitude function, εi is the emittance, ηi(s) is the dispersion
or off-energy function, δ is the fractional energy spread, and s is the longitudinal
distance from some reference point on the orbit. Near IP, the off-energy function is

usually small and can be ignored. The beam width is thus changing as
√
βx,y(s) in

the absence of the energy spread term. The beta function varies quite rapidly near
IP as [2]

βi(s) = β∗i

(
1 +

s2

β∗2i

)
(i = x, y) , (55)

where β∗i is the minimum value of the beta function which is assumed to occur at
s = 0. Namely, at s = β∗i the beam width is

√
2 times its minimum value. In the

ideal case, the minimum is at IP where the design orbits of the two beams cross and
we have s = z. We assume that such is the case. We also assume that the crossing
angle θ is small in this section. When the beam is expanded due to a large value
of the beta function, the density of the particles becomes less and as a result the
luminosity density becomes smaller. The effects this has on the interaction profile
can sometimes be quite large. This associated effects are called ‘waist effects’ or
‘hourglass effects’.

For KEK-B, the design values are β∗y = 1 cm and β∗x = 33 cm which should be
compared to the longitudinal beam size of σz = 0.5 cm. Typically, β∗x À σz and
the waist effect cause by the variation of σx along z is usually negligible. Thus, the
gaussian density distribution so far used in the luminosity profile estimations should
be corrected by the variation of σy along z, which leads to the factor

√
β∗y/βy(z) for

each beam. In particular, the vertical size of the interaction is now

σ′y(z) = σ′y

√√√√1 +
z2

β∗2y
, (56)

where σ′y is the vertical width without the waist effect, or the vertical size at z = 0.
This effectively reduces the longitudinal size of the interaction profile. On the other
hand, the overall vertical size is enlarged by the very effect of the vertical enlargement
of the bunch away from IP.

Let `(z) be the luminoisty density at z after integarted over t and x. For a
given number of particles, the luminosity scales as inverse of the cross sectional
area. Assuming that β∗y is the same for both beams, the correction factor for the
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Figure 4: Various correction factors for the waist effect plotted as functions of
b ≡ β∗y/σ

′
z. rz is for z width, ry is for y width, and rlum is for luminosity.

luminosity density as a function of z is then
√
β∗y/βy(z). Namely, `(z) is now

`(z) ∝ exp
(
− z2

2σ′2z

)(
1 +

z2

β∗2y

)− 1
2

(57)

where σ′z, as before, is the z-width of the interaction profile estimated without the
waist effect. This is no longer a gaussian where the gaussian tail is suppressed by
the correction factor. When the experimental shape of z profile is to be compared
with theory, the appropriate expression to be used would be (57) with σ′z given by
(25) or (38). The rms of this distribution can be given in a closed form:

σrms
z = rzσ

′
z (58)

with

r2
z =
√
πe−

b2

4

U
(

1
2
, 0, b

2

2

)
K0

(
b2

4

) , (59)

where U is the confluent hypergeometric function, K is a Bessel function, and

b ≡ β∗y
σ′z
. (60)

The correction factor rz as a function of b is plotted in Figure 4. The KEK-B design
value corresponds to b ∼ 3 which leads to σrms

z ∼ 0.96σ′z. For CESR, b ∼ 1.4 and
the correction factor is ∼0.89.
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The vertical size is estimated by taking the average of σ′y
2(z) (56) over the cor-

rected z profile (57), which also can be written in a closed form:

σrms
y

2 =

∫∞
−∞ dz σ

′
y(z)2 `(z)∫∞

−∞ dz `(z)
=

2
√
π

b2
e−

b2

4
U(−1

2
, 0, b

2

2
)

K0( b
2

4
)

σ′y
2
. (61)

For b ∼ 3, we have σrms
y ∼ 1.15σ′y. The distribution is not a gaussian; it has an

enhanced tail due to the enlargement of the beam size at large |z|.
The interaction profiles in the previous sections are gaussian with all three axes

aligned with the coordinate axes regardless of whether the distribution was at a
given time or after integrated over time. The waist effect is to enlarge the vertical
size according to (56) and weight the distribution as a function of z according to
(57). At a given z, the x width does not change by enlarging the vertical size, nor
does it depend on the weighting since the x width is independent of z. Thus, the
expressions of σ′x obtained in the previous sections are valid even with the waist
effect (as long as β∗x À σz).

Another quantity of interest is the luminosity loss factor due to the waist effect.
It is given by

rlum(β∗y) ≡
∫∞
−∞ dz `(z)∫∞

−∞ dz `(z)
∣∣∣
β∗y→∞

=
b√
2π
e−

b2

4 K0

(b2

4

)
, (62)

which is roughly the inverse of the vertical expansion factor ry.
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