
Chapter 1

Lorentz Group and Lorentz
Invariance

In studying Lorentz-invariant wave equations, it is essential that we put our under-
standing of the Lorentz group on firm ground. We first define the Lorentz transfor-
mation as any transformation that keeps the 4-vector inner product invariant, and
proceed to classify such transformations according to the determinant of the transfor-
mation matrix and the sign of the time component. We then introduce the generators
of the Lorentz group by which any Lorentz transformation continuously connected to
the identity can be written in an exponential form. The generators of the Lorentz
group will later play a critical role in finding the transformation property of the Dirac
spinors.

1.1 Lorentz Boost

Throughout this book, we will use a unit system in which the speed of light c is unity.
This may be accomplished for example by taking the unit of time to be one second
and that of length to be 2.99792458× 1010 cm (this number is exact1), or taking the
unit of length to be 1 cm and that of time to be (2.99792458× 1010)−1 second. How
it is accomplished is irrelevant at this point.

Suppose an inertial frame K (space-time coordinates labeled by t, x, y, z) is mov-
ing with velocity β in another inertial frame K ′ (space-time coordinates labeled by
t′, x′, y′, z′) as shown in Figure 1.1. The 3-component velocity of the origin of K

1One cm is defined (1983) such that the speed of light in vacuum is 2.99792458 × 1010 cm per
second, where one second is defined (1967) to be 9192631770 times the oscillation period of the
hyper-fine splitting of the Cs133 ground state.
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Figure 1.1: The origin of frame K is moving with velocity β⃗ = (β, 0, 0) in frame K ′,

and the origin of frame K ′ is moving with velocity −β⃗ in frame K. The axes x and
x′ are parallel in both frames, and similarly for y and z axes. A particle has energy
momentum (E, P⃗ ) in frame K and (E ′, P⃗ ′) in frame K ′.

measured in the frame K ′, β⃗′K , is taken to be in the +x′ direction; namely,

β⃗′K (velocity of K in K ′) = (β, 0, 0)
def≡ β⃗. (1.1)

Assume that, in the frame K ′, the axes x, y, z are parallel to the axes x′, y′, z′. Then,
the velocity of the origin of K ′ in K, β⃗K′ , is

β⃗K′ = −β⃗′K = (−β, 0, 0) (velocity of K ′ in K). (1.2)

Note that β⃗′K (β⃗K′) is measured with respect to the axes of K ′ (K).

If a particle (or any system) has energy and momentum (E, P⃗ ) in the frame K,

then the energy and momentum (E ′, P⃗ ′) of the same particle viewed in the frame K ′

are given by

E ′ =
E + βPx√
1− β2

, P ′y = Py ,

P ′x =
βE + Px√
1− β2

, P ′z = Pz, .

(1.3)

This can be written in a matrix form as(
E ′

P ′x

)
=

(
γ η

η γ

)(
E

Px

)
,

(
P ′y
P ′z

)
=

(
Py

Pz

)
(1.4)
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Figure 1.2: Starting from the configuration of Figure 1.1, the same rotation is applied
to the axes in each frame. The resulting transformation represents a general Lorentz
boost.

with

γ ≡ 1√
1− β2

, η ≡ βγ =
β√

1− β2
. (1.5)

Note that γ and η are related by

γ2 − η2 = 1 . (1.6)

Now start from Figure 1.1 and apply the same rotation to the axes of K and
K ′ within each frame without changing the motions of the origins of the frames and
without touching the paqrticle (Figure 1.2). Suppose the rotation is represented by

a 3 × 3 matrix R. Then, the velocity of K ′ in K, β⃗K′ , and and the velocity of K in
K ′, β⃗′K , are rotated by the same matrix R,

β⃗′K → Rβ⃗′K , β⃗K′ → Rβ⃗K′ , (1.7)

and thus we still have
β⃗′K = −β⃗K′

def≡ β⃗ , (1.8)

where we have also redefined the vector β⃗ which is well-defined in both K and K ′

frames in terms of β⃗K′ and β⃗′K , respectively. The transformation in this case can

be obtained by noting that, in (1.4), the component of momentum transverse to β⃗

does not change and that Px, P
′
x are the components of P⃗ , P⃗ ′ along β⃗ in each frame.

Namely, the tranformation can be written as(
E ′

P ′∥

)
=

(
γ η

η γ

)(
E

P∥

)
, P⃗ ′⊥ = P⃗⊥ , (1.9)
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where ∥ and ⊥ denote components parallel and perpecdicular to β⃗, repectively. Note

that P⃗ ′⊥ and P⃗⊥ are 3-component quantities and the relation P⃗ ′⊥ = P⃗⊥ holds compo-
nent by component because we have applied the same roation R in each frame.

The axes of K viewed in the frame K ′ are no longer perpendicular to each other
since they are contracted in the direction of β⃗′K . Thus, the axes of K in general
are not parallel to the corresponding axes of K ′ at any time. However, since the
same rotation is applied in each frame, and since components transverse to β⃗ are
the same in both frames, the corresponding axes of K and K ′ are exactly parallel
when projected onto a plane perpendicular to β⃗ in either frames. The transformation
(1.9) is thus correct for the specific relative orientation of two frames as defined here,
and such transformation is called a Lorentz boost, which is a special case of Lorentz
transformation defined later in this chapter for which the relative orientation of the
two frames is arbitrary.

1.2 4-vectors and the metric tensor gµν

The quantity E2 − P⃗ 2 is invariant under the Lorentz boost (1.9); namely, it has the
same numerical value in K and K ′:

E ′2 − P⃗ ′2 = E ′2 − (P ′2∥ + P⃗ ′2⊥ )

= (γE + ηP∥)
2 −

[
(ηE + γP∥)

2 + P⃗ 2
⊥

]
= (γ2 − η2)︸ ︷︷ ︸

1

E2 + (η2 − γ2)︸ ︷︷ ︸
−1

P 2
∥ − P⃗ 2

⊥

= E2 − P⃗ 2 ,

(1.10)

which is the invariant mass squared m2 of the system. This invariance applies to any
number of particles or any object as long as E and P⃗ refer to the same object.

The relative minus sign between E2 and P⃗ 2 above can be treated elegantly as
follows. Define a 4-vector P µ (µ = 0, 1, 2, 3) by

P µ = (P 0, P 1, P 2, P 3)
def≡ (E,Px, Py, Pz) = (E, P⃗ ) (1.11)

called an energy-momentum 4-vector where the index µ is called the Lorentz index
(or the space-time index). The µ = 0 component of a 4-vector is often called ‘time
component’, and the µ = 1, 2, 3 components ‘space components.’

Define the inner product (or ‘dot’ product) A ·B of two 4-vectors Aµ = (A0, A⃗)

and Bµ = (B0, B⃗) by

A ·B def≡ A0B0 − A⃗ · B⃗ = A0B0 − A1B1 − A2B2 − A3B3 . (1.12)
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Then, P 2 ≡ P ·P is nothing but m2:

P 2 = P 02 − P⃗ 2 = E2 − P⃗ 2 = m2 (1.13)

which is invariant under Lorentz boost. This inner product P ·P is similar to the norm
squared x⃗2 of an ordinary 3-dimensional vector x⃗, which is invariant under rotation,
except for the minus signs for the space components in the definition of the inner
product. In order to handle these minus signs conveniently, we define ‘subscripted’
components of a 4-vector by

A0
def≡ A0, Ai

def≡ −Ai (i = 1, 2, 3) . (1.14)

Then the inner product (1.12) can be written as

A ·B = A0B
0 + A1B

1 + A2B
2 + A3B

3 def≡ AµB
µ = AµBµ , (1.15)

where we have used the convention that when a pair of the same index appears in the
same term, then summation over all possible values of the index (µ = 0, 1, 2, 3 in this
case) is implied. In general, we will use Roman letters for space indices (take values
1,2,3) and greek letters for space-time (Lorentz) indices (take values 0,1,2,3). Thus,

xiyi =
3∑

i=1

xiyi (= x⃗ · y⃗), (Aµ +Bµ)Cµ =
3∑

µ=0

(Aµ +Bµ)Cµ , (1.16)

but no sum over µ or ν in

AµB
ν + CµD

ν (µ, ν not in the same term). (1.17)

When a pair of Lorentz indices is summed over, usually one index is a subscript
and the other is a superscript. Such indices are said to be ‘contracted’. Also, it is
important that there is only one pair of a given index per term. We do not consider
implied summations such as AµBµCµ to be well-defined. [(Aµ+Bµ)Cµ is well-defined
since it is equal to AµCµ +BµCµ.]

Now, define the metric tensor gµν by

g00 = 1 , g11 = g22 = g33 = −1 , gµν = 0 (µ ̸= ν) (1.18)

which is symmetric:
gµν = gνµ . (1.19)

The corresponding matrix G is defined as

{gµν}
def≡

0 1 2 3 = ν

0

1

2

3


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


||

µ

def≡ G (1.20)
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When we form a matrix out of a quantity with two indices, by definition we take the
first index to increase downward, and the second to increase to the right.

As defined in (1.14) for a 4-vector, switching an index between superscript and
subscript results in a sign change when the index is 1,2, or 3, while the sign is
unchanged when the index is zero. We adopt the same rule for the indices of gµν . In
fact, from now on, we enforce the same rule for all space-time indices (unless otherwise
stated, such as for the Kronecker delta below). Then we have

gµν = gµν , gµ
ν = gµν = δµν (1.21)

where δµν is the Kronecker’s delta (δµν = 1 if µ = ν, 0 otherwise) which we define to
have only subscripts. Then, gµν can be used together with contraction to ‘lower’ or
‘raise’ indices:

Aν = gµνA
µ, Aν = gµνAµ (1.22)

which are equivalent to the rule (1.14).
The inner product of 4-vectors A and B (1.12) can also be written in matrix form

as

A ·B = AµgµνB
ν =

(A0 A1 A2 A3)


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1



B0

B1

B2

B3

 = ATGB . (1.23)

When we use 4-vectors in matrix form, they are understood to be column vectors
with superscripts, while their transpose are row vectors:

A
def≡


A0

A1

A2

A3

 =


A0

Ax

Ay

Az

 , AT = (A0, A1, A2, A3) (in matrix form). (1.24)

1.3 Lorentz group

The Lorentz boost (1.4) can be written in matrix form as

P ′ = ΛP (1.25)

with

P ′ =


E ′

P ′x
P ′y
P ′z

 , Λ =


γ η 0 0

η γ 0 0

0 0 1 0

0 0 0 1

 , P =


E

Px

Py

Pz

 . (1.26)
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In terms of components, this can be written as

P ′µ = Λµ
νP

ν , (1.27)

where we have defined the components of the matrix Λ by taking the first index to be
superscript and the second to be subscript (still the first index increases downward
and the second index increases to the right):

Λ
def≡ {Λµ

ν} =

0 1 2 3 = ν

0

1

2

3


γ η 0 0

η γ 0 0

0 0 1 0

0 0 0 1


||

µ

(1.28)

For example, Λ0
1 = η and thus Λ01 = −η, etc. Why do we define Λ in this way? The

superscripts and subscript in (1.27) were chosen such that the index ν is contracted
and that the index µ on both sides of the equality has consistent position, namely,
both are superscript.

We have seen that P 2 = E2 − P⃗ 2 is invariant under the Lorentz boost given by
(1.4) or (1.9). We will now find the necessary and sufficient condition for a 4 × 4
matrix Λ to leave the inner product of any two 4-vectors invariant. Suppose Aµ and
Bµ transform by the same matrix Λ:

A′µ = Λµ
αA

α, B′ν = Λν
βB

β . (1.29)

Then the inner products A′ ·B′ and A ·B can be written using (1.22) as

A′ ·B′ = A′ν︸︷︷︸
gµν A

′µ︸︷︷︸
Λµ

αA
α

B′ν︸︷︷︸
Λν

βB
β

= (gµνΛ
µ
αΛ

ν
β)A

αBβ

A ·B = Aβ︸︷︷︸
gαβA

α

Bβ = gαβA
αBβ .

(1.30)

In order for A′ ·B′ = A ·B to hold for any A and B, the coefficients of AαBβ should
be the same term by term (To see this, set Aν = 1 for ν = α and 0 for all else, and
Bν = 1 for ν = β and 0 for all else.):

gµνΛ
µ
αΛ

ν
β = gαβ . (1.31)
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On the other hand, if Λ satisfies this condition, the same derivation above can be
traced backward to show that the inner product A ·B defined by (1.12) is invariant.
Thus, (1.31) is the necessary and sufficient condition.

What does the condition (1.31) tell us about the nature of the matrix Λ? Using
(1.22), we have gµνΛ

µ
α = Λνα, then the condition becomes

ΛναΛ
ν
β = gαβ

raise α on both sides
−→ Λν

αΛν
β = gαβ (= δαβ) . (1.32)

Compare this with the definition of the inverse transformation Λ−1:

Λ−1Λ = I or (Λ−1)ανΛ
ν
β = δαβ , (1.33)

where I is the 4× 4 indentity matrix. The indexes of Λ−1 are superscript for the first
and subscript for the second as before, and the matrix product is formed as usual by
summing over the second index of the first matrix and the first index of the second
matrix. We see that the inverse matrix of Λ is obtained by

(Λ−1)αν = Λν
α , (1.34)

which means that one simply has to change the sign of the components for which
only one of the indices is zero (namely, Λ0

i and Λi
0) and then transpose it:

Λ =


Λ0

0 Λ0
1 Λ0

2 Λ0
3

Λ1
0 Λ1

1 Λ1
2 Λ1

3

Λ2
0 Λ2

1 Λ2
2 Λ2

3

Λ3
0 Λ3

1 Λ3
2 Λ3

3

 , −→ Λ−1 =


Λ0

0 −Λ1
0 −Λ2

0 −Λ3
0

−Λ0
1 Λ1

1 Λ2
1 Λ3

1

−Λ0
2 Λ1

2 Λ2
2 Λ3

2

−Λ0
3 Λ1

3 Λ2
3 Λ3

3

 . (1.35)

Thus, the set of matrices that keep the inner product of 4-vectors invariant is made of
matrices that become their own inverse when the signs of components with one time
index are flipped and then transposed. As we will see below, such set of matrices
forms a group, called the Lorentz group, and any such transformation [namely, one
that keeps the 4-vector inner product invariant, or equivalently that satisfies the
condition (1.31)] is defined as a Lorentz transformation.

To show that such set of matrices forms a group, it is convenient to write the
condition (1.31) in matrix form. Noting that when written in terms of components,
we can change the ordering of product in any way we want, the condition can be
written as

Λµ
αgµνΛ

ν
β = gαβ, or ΛTGΛ = G . (1.36)

A set forms a group when for any two elements of the set x1 and x2, a ‘product’
x1x2 can be defined such that

1. (Closure) The product x1x2 also belongs to the set.
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2. (Associativity) For any elements x1, x2 and x3, (x1x2)x3 = x1(x2x3).

3. (Identity) There exists an element I in the set that satisfies Ix = xI = x for
any element x.

4. (Inverse) For any element x, there exists an element x−1 in the set that satisfies
x−1x = xx−1 = I.

In our case at hand, the set is all 4 × 4 matrices that satisfy ΛTGΛ = G, and
we take the ordinary matrix multiplication as the ‘product’ which defines the group.
The proof is straightforward:

1. Suppose Λ1 and Λ2 belong to the set (i.e. ΛT
1GΛ1 = G and ΛT

2GΛ2 = G). Then,

(Λ1Λ2)
TG(Λ1Λ2) = ΛT

2 ΛT
1GΛ1︸ ︷︷ ︸
G

Λ2 = ΛT
2GΛ2 = G. (1.37)

Thus, the product Λ1Λ2 also belongs to the set.

2. The matrix multiplication is of course associative: (Λ1Λ2)Λ3 = Λ1(Λ2Λ3).

3. The identity matrix I (Iµν = δµν) belongs to the set (ITGI = G), and satisfies
IΛ = ΛI = Λ for any element.

4. We have already seen that if a 4 × 4 matrix Λ satisfies ΛTGΛ = G, then its
inverse exists as given by (1.34). It is instructive, however, to prove it more
formally. Taking the determinant of ΛTGΛ = G,

det ΛT︸ ︷︷ ︸
detΛ

detG︸ ︷︷ ︸
−1

detΛ = detG︸ ︷︷ ︸
−1

→ (det Λ)2 = 1 , (1.38)

where we have used the property of determinant

det(MN) = detM detN (1.39)

with M and N being square matrices of same rank. Thus, det Λ ̸= 0 and
therefore its inverse Λ−1 exists. Also, it belongs to the set: multiplying ΛTGΛ =
G by (Λ−1)T from the left and by Λ−1 from the right,

(Λ−1)TΛT︸ ︷︷ ︸
(ΛΛ−1︸ ︷︷ ︸

I

)T

GΛΛ−1︸ ︷︷ ︸
I

= (Λ−1)TGΛ−1 → (Λ−1)TGΛ−1 = G . (1.40)

This completes the proof that Λ’s that satisfy (1.36) form a group.
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Since the inverse of a Lorentz transformation is also a Lorentz transformation as
just proven above, it should satisfy the condition (1.31)

gαβ = gµν(Λ
−1)

µ

α(Λ
−1)

ν

β = gµνΛα
µΛβ

ν → gµνΛα
µΛβ

ν = gαβ , (1.41)

where we have used the inversion rule (1.34). The formulas (1.31), (1.41), and their
variations are then summarized as follows: on the left hand side of the form g Λ Λ = g,
an index of g (call it µ) is contracted with an index of a Λ and the other index of
g (call it ν) with an index of the other Λ. As long as µ and ν are both first or
both second indices on the Λ’s, and as long as the rest of the indices are the same
(including superscript/subscript) on both sides of the equality, any possible way of
indexing gives a correct formula. Similarly, on the left hand side of the form Λ Λ = g,
an index of a Λ and an index of the other Λ are contracted. As long as the contracted
indices are both first or both second indices on Λ’s, and as long as the rest of the
indices are the same on both sides of the equality, any possible way of indexing gives
a correct formula.

A natural question at this point is whether the Lorentz group defined in this
way is any larger than the set of Lorentz boosts defined by (1.9). The answer is

yes. Clearly, any rotation in the 3-dimensional space keeps A⃗ · B⃗ invariant while it
does not change the time components A0 and B0. Thus, it keeps the 4-vector inner
product A ·B = A0B0 − A⃗ · B⃗ invariant, and as a result it belongs to the Lorentz
group by definition. On the other hand, the only way the boost (1.9) does not change
the time component is to set β = 0 in which case the transformation is the identity
transformation. Thus, any finite rotation in the 3-dimensional space is not a boost
while it is a Lorentz transformation.

Furthermore, the time reversal T and the space inversion P defined by

T
def≡ {T µ

ν}
def≡


−1

1

1

1

 , P
def≡ {P µ

ν}
def≡


1

−1
−1
−1

 (1.42)

satisfy

T TGT = G, P TGP = G , (1.43)

and thus belong to the Lorentz group. Even though the matrix P has the same
numerical form as G, it should be noted that P is a Lorentz transformation but G
is not (it is a metric). The difference is also reflected in the fact that the matrix
P is defined by the first index being superscript and the second subscript (because
it is a Lorentz transformation), while the matrix G is defined by both indices being
subscript (or both superscript).
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As we will see later, boosts and rotations can be formed by consecutive infinitesi-
mal transformations starting from identity I (they are ‘continuously connected’ to I),
while T and P cannot (they are ‘disconnected’ from I, or said to be ‘discrete’ trans-
formations). Any product of boosts, rotation, T , and P belongs to the Lorentz group,
and it turns out that they saturate the Lorentz group. Thus, we write symbolically

Lorentz group = boost + rotation + T + P . (1.44)

Later, we will see that any Lorentz transformation continuously connected to I is a
boost, a rotation, or a combination thereof.

If the origins of the inertial frames K and K ′ touch at t = t′ = 0 and x⃗ = x⃗′ = 0,
the coordinate xµ = (t, x⃗) of any event transforms in the same way as P µ:

x′µ = Λµ
νx

ν . (1.45)

This can be extended to include space-time translation between the two frames:

x′µ = Λµ
νx

ν + aµ , (1.46)

where aµ is a constant 4-vector. The transformation of energy-momentum is not
affected by the space-time translation, and is still given by P ′ = ΛP . Such transfor-
mations that include space-time translation also form a group and called the ‘inho-
mogeneous Lorentz group’ or the ‘Poincaré group’. The group formed by the trans-
formations with aµ = 0 is sometimes called the homogeneous Lorentz group. Unless
otherwise stated, we will deal with the homogeneous Lorentz group.

1.4 Classification of Lorentz transformations

Up to this point, we have not specified that Lorentz transformations are real (namely,
all the elements are real). In fact, Lorentz transformations as defined by (1.31) in
general can be complex and the complex Lorentz transformations plays an impor-
tant role in a formal proof of an important symmetry theorem called CPT theorem
which states that the laws of physics are invariant under the combination of particle-
antiparticle exchange (C), mirror inversion (P), and time reversal (T) under certain
natural assumptions. In this book, however, we will assume that Lorentz transfor-
mations are real.

As seen in (1.38), all Lorentz transformation satisfy (det Λ)2 = 1, or equivalently,
det Λ = +1 or −1. We define ‘proper’ and ‘improper’ Lorentz transformations as{

detΛ = +1 : proper

det Λ = −1 : improper
. (1.47)
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Since det(Λ1Λ2) = detΛ1 detΛ2, the product of two proper transformations or two
improper transformations is proper, while the product of a proper transformation and
a improper transformation is improper.

Next, look at the (α, β) = (0, 0) component of the defining condition gµνΛ
µ
αΛ

ν
β =

gαβ:

gµνΛ
µ
0Λ

ν
0 = g00 = 1 , → (Λ0

0)
2 −

3∑
i=1

(Λi
0)

2 = 1 (1.48)

or

(Λ0
0)

2 = 1 +
3∑

i=1

(Λi
0)

2 ≥ 1 , (1.49)

which means Λ0
0 ≥ 1 or Λ0

0 ≤ −1, and this defines the ‘orthochronous’ and ‘non-
orthochronous’ Lorentz transformations:{

Λ0
0 ≥ 1 : orthochronous

Λ0
0 ≤ −1 : non-orthochronous

. (1.50)

It is easy to show that the product of two orthochronous transformations or two non-
orthochronous transformations is orthochronous, and the product of an orthochronous
transformation and a non-orthochronous transformation is non-orthochronous.

From the definitions (1.42) and Iµν = δµν , we have

det I = det(TP ) = +1, detT = detP = −1,
I00 = P 0

0 = +1, T 0
0 = (TP )00 = −1

(1.51)

Thus, the identity I is proper and orthochronous, P is improper and orthochronous,
T is improper and non-orthochronous, and TP is proper and non-orthochronous. Ac-
cordingly, we can multiply any proper and orthochronous transformations by each of
these to form four sets of transformations of given properness and orthochronousness
as shown in Table 1.1. Any Lorentz transformation is proper or improper (i.e. det Λ =
±1) and orthochronous or non-orthochronous (i.e. |Λ0

0|2 ≥ 1). Since any improper
transformation can be made proper by multiplying P and any nonorthochronous
transformation can be made orthochronous by multiplying T , the four forms of trans-
formations in Table 1.1 saturate the Lorentz group. For example, if Λ is improper and

orthochronous, then PΛ
def≡ Λ(po) is proper and orthochronous, and Λ can be written

as Λ = PΛ(po).
It is straightforward to show that the set of proper transformations and the set

of orthochronous transformations separately form a group, and that proper and or-
thochronous transformations by themselves form a group. Also, the set of proper
and orthochronous transformations and the set of improper and non-orthochronous
transformations together form a group.
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Λ0
0≥1

orthochronous
Λ0

0≤−1
non-orthochronous

detΛ=+1
proper Λ(po) TPΛ(po)

detΛ=−1
improper PΛ(po) TΛ(po)

Table 1.1: Classification of the Lorentz group. Λ(po) is any proper and orthochronous
Lorentz transformation.

Exercise 1.1 Classification of Lorentz transformations.
(a) Suppose Λ = AB where Λ, A, and B are Lorentz transformations. Prove that
Λ is orthochronous if A and B are both orthochronous or both non-orthochronous,
and that Λ is non-orthochronous if one of A and B is orthochronous and the other is
non-orthochronous.
[hint: Write Λ0

0 = A0
0B

0
0 + a⃗ · b⃗ with a⃗ ≡ (A0

1, A
0
2, A

0
3) and b⃗ ≡ (B1

0, B
2
0, B

3
0).

One can use |⃗a · b⃗| ≤ |⃗a||⃗b| and a⃗2 = A0
0
2 − 1,⃗b2 = B0

0
2 − 1 (derive them) to show

|⃗a · b⃗| ≤ |A0
0B

0
0|. ]

(b) Show that the following sets of Lorentz transformations each form a group:

1. proper transformations

2. orthochronous transformations

3. proper and orthochronous transformations

4. proper and orthochronous transformations plus improper and non-orthochronous
transformations

As mentioned earlier (and as will be shown later) boosts and rotations are con-
tinuously connected to the identity. Are they then proper and orthochronous? To
show that this is the case, it suffices to prove that an infinitesimal transformation
can change det Λ and Λ0

0 only infinitesimally, since then multiplying an infinitesimal
transformation cannot jump across the gap between det Λ = +1 and detΛ = −1 or
the gap between Λ0

0 ≥ 1 and Λ0
0 ≤ −1.

An infinitesimal transformation is a transformation that is very close to the iden-
tity I and any such transformation λ can be written as

λ = I + dH (1.52)

where d is a small number andH is a 4×4 matrix of order unity meaning the maximum
of the absolute values of its elements is about 1. To be specific, we could define it such
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that maxα,β |Hα
β| = 1 and d ≥ 0, which uniquely defines the decomposition above.

We want to show that for any Lorentz transformation Λ, multiplying I + dH changes
the determinant or the (0, 0) component only infinitesimally; namely, the change in
the determinant vanish as we take d to zero.

The determinant of a n× n matrix A is defined by

detA
def≡

∑
permutations

si1,i2,...inAi11Ai22 . . . Ainn (1.53)

where the sum is taken over (i1, i2, . . . in) which is any permutation of (1, 2, . . . n),
and si1,i2,...in is 1(−1) if (i1, i2, . . . in) is an even(odd) permutation. When applied to
4× 4 Lorentz transformations, this can be written as

detA
def≡ ϵαβγδA

α
0A

β
1A

γ
2A

δ
3 , (1.54)

where the implicit sum is over α, β, γ, δ = 0, 1, 2, 3 and ϵαβγδ is the totally anti-
symmetric 4-th rank tensor defined by

ϵαβγδ
def≡


=

{
+1

−1

}
if (αβγδ) is an

{
even

odd

}
permutation of (0, 1, 2, 3)

= 0 if any of αβγδ are equal

(1.55)

The standard superscript/subscript rule applies to the indices of ϵαβγδ; namely, ϵ0123 =
−ϵ0123 = 1, etc. Then, it is easy to show that

det(I + dH) = 1 + dTrH + (higher orders in d) , (1.56)

where the ‘trace’ of a matrix A is defined as the sum of the diagonal elements:

TrA
def≡

3∑
α=0

Aα
α . (1.57)

Exercise 1.2 Determinant and trace.
Determinant of a n× n matrix is defined by

detA
def≡ si1i2,...inAi11Ai22 . . . Ainn

where sum over i1, i2 . . . in is implied (each taking values 1 through n ) and s(i1, i2 . . . in)
is the totally asymmetric n-th rank tensor:

si1i2...in ≡
{
+1(−1) if (i1, i2 . . . in) is an even (odd ) permutation of (1, 2, . . . n).

0 if any of i1, i2 . . . in are equal.
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Show that to first order of a small number d, the determinant of a matrix that is
infinitesimally close to the identity matrix I is given by

det(I + dH) = 1 + dTrH + (higher orders in d) ,

where H is a certain matrix whose size is of order 1, and the trace (Tr) of a matrix
is defined by

TrH ≡
n∑

i=1

Hii .

Since all diagonal elements of H are of order unity or smaller, (1.56) tells us that
detλ → 1 as we take d → 0. In fact, the infinitesimal transformation λ is a Lorentz
transformation, so we know that detλ = ±1. Thus, we see that the determinant of an
infinitesimal transformation is strictly +1. It then follows from det(λΛ) = detλ detΛ
that multiplying an infinitesimal transformation λ to any transformation Λ does not
change the determinant of the transformation.

The (0, 0) component of λΛ is

(λΛ)00 = [(I + dH)Λ]00 = [Λ + dHΛ]00 = Λ0
0 + d (HΛ)00 . (1.58)

Since (HΛ)00 is a finite number for a finite Λ, the change in the (0, 0) component tends
to zero as we take d → 0. Thus, no matter how many infinitesimal transformations
are multiplied to Λ, the (0, 0) component cannot jump across the gap between +1
and −1.

Thus, continuously connected Lorentz transformations have the same ‘properness’
and ‘orthochronousness.’ Therefore, boosts and rotations, which are continuously
connected to the identity, are proper and orthochronous.

Do Lorentz boosts form a group?
A natural question is whether Lorentz boosts form a group by themselves. The answer
is no, and this is because two consecutive boosts in different directions turn out to
be a boost plus a rotation as we will see when we study the generators of the Lorentz
group. Thus, boosts and rotations have to be combined to form a group. On the
other hand, rotations form a group by themselves.

1.5 Tensors

Suppose Aµ and Bµ are 4-vectors. Each is a set of 4 numbers that transform under
a Lorentz transformation Λ as

A′µ = Λµ
αA

α, B′ν = Λν
βB

β . (1.59)
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Then, the set of 16 numbers AµBν (µ, ν = 0, 1, 2, 3) transforms as

A′µB′ν = Λµ
αΛ

ν
βA

αBβ . (1.60)

Anything that has 2 Lorentz indices, which is a set of 16 numbers, and transforms as

( )′µν = Λµ
αΛ

ν
β( )αβ (1.61)

is called a second rank tensor (or simply a ‘tensor’). It may be real, complex, or even
a set of operators. Similarly, a quantity that has 3 indices and transforms as

( )′µνσ = Λµ
αΛ

ν
βΛ

σ
γ( )αβγ (1.62)

is called a third-rank tensor, and so on. A 4-vector (or simply a ‘vector’) is a first-
rank tensor. A Lorentz-invariant quantity, sometimes called a ‘scalar’, has no Lorentz
index, and thus it is a zero-th rank tensor:

( )′ = ( ) (scalar) . (1.63)

Contracted indices do not count in deciding the rank of a tensor. For example,

AµBµ : (scalar), AµT
µν : (vector), F µνGµσ : (tensor), etc. (1.64)

The metrix gµν has two Lorentz indices and thus can be considered a second-rank
tensor (thus, the metric tensor), then it should transform as

g′µν = Λµ
αΛ

ν
βg

αβ = gµν (1.65)

where the second equality is due to (1.31). Namely, the metric tensor is invariant
under Lorentz transformations.

In order for some equation to be Lorentz-invariant, the Lorentz indices have to be
the same on both sides of the equality, including the superscript/subscript distinction.
By ‘Lorentz-invariant’, we mean that if an equation holds in one frame, then it holds
in any other frame after all the quantities that appear in the equation are evaluated
in the new frame. In the literature, such equations are sometimes called Lorentz
covariant: both sides of the equality change values but the form stays the same. For
example, if an equation Aµν = Bµν (which is actually a set of 16 equations) holds in
a frame, then it also holds in any other frame:

A′µν = Λµ
αΛ

ν
βA

αβ = Λµ
αΛ

ν
βB

αβ = B′µν . (1.66)

Thus, equations such as
m2 = P µPµ ,

P µ = Aµ +Bµ ,

F µν = AµBν

(1.67)

are all Lorentz-invariant, assuming of course that the quantities transform in the
well-defined ways as described above.
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1.6 Fields (classical) and space-time derivatives

A field is a quantity that is a function of space-time point xµ = (t, x⃗) (or ‘event’).
A scalar quantity that is a function of space time is called a scalar field, a vector
quantity that is a function of space time is called a vector field, etc. The rank of
a field and the Lorentz transformation properties (scalar, vector, tensor, etc.) are
defined in the same way as before, provided that the quantities are evaluated at the
same event point before and after a Lorentz transformation; namely,

Scalar field : ϕ′(x′) = ϕ(x)

Vector field : A′µ(x′) = Λµ
αA

α

Tensor field : T ′µν(x′) = Λµ
αΛ

ν
βT

αβ(x)

(1.68)

where x′ and x are related by
x′µ = Λµ

αx
α . (1.69)

For example, a vector field associates a set of 4 numbers Aµ(x) to an event point
x, say when an ant sneezes. In another frame, there are a set of 4 numbers A′µ(x′)
associated with the same event x′, namely, when the ant sneezes in that frame, and
they are related to the 4 numbers Aµ(x) in the original frame by the matrix Λ. The
functional shape of a primed field is in general different from that of the corresponding
unprimed field. Namely, if one plots ϕ(x) as a function of x and ϕ′(x′) as a function
of x′, they will look different.

When a quantity is a function of x, we naturally encounter space-time derivatives
of such quantity. Then a question arises as to how they transform under a Lorentz
transformation. Take a scalar field f(x), and form a set of 4 numbers (fields) by
taking space-time derivatives:

∂f

∂xµ
(x) =

(
∂f

∂x0
(x),

∂f

∂x1
(x),

∂f

∂x2
(x),

∂f

∂x3
(x)

)

=

(
∂f

∂t
(x),

∂f

∂x
(x),

∂f

∂y
(x),

∂f

∂z
(x)

)
.

(1.70)

Then pick two space-time points x1 and x2 which are close in space and in time. The
argument below is based on the observation that the difference between the values
of the scalar field at the two event points is the same in any frame. Since f(x) is
a scalar field, the values at a given event is the same before and after a Lorentz
transformation:

f ′(x′1) = f(x1), f ′(x′2) = f(x2) , (1.71)

which gives
f ′(x′1)− f ′(x′2) = f(x1)− f(x2) . (1.72)
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Since x1 and x2 are close, this can be written as

dx′µ
∂f ′

∂x′µ
(x′1) = dxµ

∂f

∂xµ
(x1) , (1.73)

where summation over µ is implied, and

dx′µ
def≡ x′µ1 − x

′µ
2 , dxµ

def≡ xµ1 − x
µ
2 . (1.74)

which tells us that the quantity dxµ(∂f/∂xµ) is Lorentz-invariant. Since dxµ = xµ1−x
µ
2

is a superscripted 4-vector, it follows that ∂f/∂xµ should transform as a subscripted
4-vector (which transforms as A′µ = Λµ

αAα):

∂f ′

∂x′µ
(x′) = Λµ

α ∂f

∂xα
(x) . (1.75)

In fact, together with dx′µ = Λµ
βdx

β, we have

dx′µ
∂f ′

∂x′µ
(x′) =

(
Λµ

βdx
β
)(

Λµ
α ∂f

∂xα
(x)

)

= Λµ
αΛµ

β︸ ︷︷ ︸
gαβ by (1.32)

dxβ
∂f

∂xα
(x)

= dxα
∂f

∂xα
(x) ,

(1.76)

showing that it is indeed Lorentz-invariant.
Thus, the index µ in the differential operator ∂/∂xµ acts as a subscript even

though it is a superscript on x. To make this point clear, ∂/∂xµ is often written using
a subscript as

∂µ
def≡ ∂

∂xµ
=

(
∂

∂t
,
∂

∂x
,
∂

∂y
,
∂

∂z

)
=

(
∂

∂t
, ∇⃗
)
. (1.77)

Once ∂µ is defined, the standard subscript/superscript rule applies; namely, ∂µ =
∂/∂xµ, etc. Symbolically, the operator ∂µ then transforms as a superscripted 4-vector:

∂′µ = Λµ
ν∂

ν , (1.78)

with ∂′µ ≡ ∂/∂x′µ.

1.7 Generators of the Lorentz group

In this section, we will focus on the proper and orthochronous Lorentz group. Other
elements of the Lorentz group can be obtained by multiplying T , P , and TP to the
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elements of this group. The goal is to show that any element Λ that is continuously
connected to the identity can be written as2

Λ = eξiKi+θiLi , (i = 1, 2, 3) (1.79)

where ξi and θi are real numbers and Ki and Li are 4×4 matrices. Such group whose
elements can be parametrized by a set of continuous real numbers (in our case they
are ξi and θi) is called a Lie group. The operators Ki and Li are called the generators
of the Lie group.

Any element of the proper and orthochronous Lorentz group is continuously con-
nected to the identity. Actually we have not proven this, but we will at least show
that all boosts, rotations and combinations thereof are continuously connected to the
identity (and vice versa).

1.7.1 Infinitesimal transformations

Let’s start by looking at a Lorentz transformation which is infinitesimally close to the
identity:

Λµ
ν = gµν + ωµ

ν (1.80)

where ωµ
ν is a set of small (real) numbers. Inserting this to the defining condition

(1.31) or equivalently ΛναΛ
ν
β = gαβ (1.32), we get

gαβ = ΛναΛ
ν
β

= (gνα + ωνα)(g
ν
β + ων

β)

= gναg
ν
β + ωναg

ν
β + gναω

ν
β + ωναω

ν
β

= gαβ + ωβα + ωαβ + ωναω
ν
β .

(1.81)

Keeping terms to the first order in ω, we then obtain

ωβα = −ωαβ . (1.82)

Namely, ωαβ is anti-symmetric (which is true when the indices are both subscript or
both superscript; in fact, ωα

β is not anti-symmetric under α↔ β), and thus it has 6
independent parameters:

{ωαβ} =

β −→

α

↓


0 ω01 ω02 ω03

−ω01 0 ω12 ω13

−ω02 −ω12 0 ω23

−ω03 −ω13 −ω23 0


(1.83)

2In the literature, it is often defined as exp i(ξiKi + θiLi), which would make the operators
hermitian if the transformation were unitary (e.g. representations of the Lorentz group in the
Hilbert space). The Lorentz transformation matrices in space-time are in general not unitary, and
for now, we will define without the ‘i’ so that the expressions become simpler.
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This can be conveniently parametrized using 6 anti-symmetric matrices as

{ωαβ} = ω01{(M01)αβ}+ ω02{(M02)αβ}+ ω03{(M03)αβ}
+ ω23{(M23)αβ}+ ω13{(M13)αβ}+ ω12{(M12)αβ} (1.84)

=
∑
µ<ν

ωµν{(Mµν)αβ}

with

{(M01)αβ} =


0 1 0 0

−1 0 0 0

0 0 0 0

0 0 0 0

 , {(M23)αβ} =


0 0 0 0

0 0 0 0

0 0 0 1

0 0 −1 0

 ,

{(M02)αβ} =


0 0 1 0

0 0 0 0

−1 0 0 0

0 0 0 0

 , {(M13)αβ} =


0 0 0 0

0 0 0 1

0 0 0 0

0 −1 0 0

 ,

{(M03)αβ} =


0 0 0 1

0 0 0 0

0 0 0 0

−1 0 0 0

 , {(M12)αβ} =


0 0 0 0

0 0 1 0

0 −1 0 0

0 0 0 0



(1.85)

Note that for a given pair of µ and ν, {(Mµν)αβ} is a 4× 4 matrix, while ωµν is a real
number. The elements (Mµν)αβ can be written in a concise form as follows: first, we
note that in the upper right half of each matrix (i.e. for α < β), the element with
(α, β) = (µ, ν) is 1 and all else are zero, which can be written as gµα g

ν
β. For the

lower half, all we have to do is to flip α and β and add a minus sign. Combining the
two halves, we get

(Mµν)αβ = gµα g
ν
β − gµβ gνα . (1.86)

This is defined only for µ < ν so far. For µ > ν, we will use this same expression
(1.86) as the definition; then, (Mµν)αβ is anti-symmetric with respect to (µ↔ ν):

(Mµν)αβ = −(Mνµ)αβ , (1.87)

which also means (Mµν)αβ = 0 if µ = ν. Together with ωµν = −ωνµ, (1.84) becomes

ωαβ =
∑
µ<ν

ωµν(M
µν)αβ =

∑
µ>ν

ωµν(M
µν)αβ =

1

2
ωµν(M

µν)αβ , (1.88)

where in the last expression, sum over all values of µ and ν is implied. The infinites-
imal transformation (1.80) can then be written as

Λα
β = gαβ +

1

2
ωµν(M

µν)αβ , (1.89)
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or in matrix form,

Λ = I +
1

2
ωµνM

µν . (1.90)

where the first indices of Mµν , which is a 4 × 4 matrix for given µ and ν, is taken
to be superscript and the second subscript; namely, in the same way as Lorentz
transformation. Namely, when no explicit indexes for elements are given, the 4 × 4
matrix Mµν is defined as

Mµν def≡ {(Mµν)αβ} . (1.91)

It is convenient to divide the six matrices to two groups as

Ki
def≡ M0i, Li

def≡ M jk (i, j, k : cyclic) . (1.92)

We always use subscripts for Ki and Li since only possible values are i = 1, 2, 3. The
elements of the matrices Ki’s and Li’s are defined by taking the first Lorentz index
to be superscript and the second subscript as is the case for Mµν :

Ki
def≡ {(Ki)

α
β} , Li

def≡ {(Li)
α
β} . (1.93)

Later, we will see that K’s generate boosts and L’s generate rotations. Explicitly,
they can be obtained by raising the index α in (1.85) (note also the the minus sign
in L2 = −M13):

K1 =


0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

 , K2 =


0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

 , K3 =


0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0

 (1.94)

L1 =


0 0 0 0

0 0 0 0

0 0 0 −1
0 0 1 0

 , L2 =


0 0 0 0

0 0 0 1

0 0 0 0

0 −1 0 0

 , L3 =


0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0

 (1.95)

By inspection, we see that the elements of K’s and L’s can be written as

(Ki)
j
k = 0 , (Ki)

0
µ = (Ki)

µ
0 = giµ ,

(Li)
j
k = −ϵijk , (Li)

0
µ = (Li)

µ
0 = 0 ,

(i, j, k = 1, 2, 3; µ = 0, 1, 2, 3) (1.96)

where ϵijk is a totally anti-symmetric quantity defined for i, j, k = 1, 2, 3:

ϵijk
def≡


=

{
+1

−1

}
if (i, j, k) is an

{
even

odd

}
permutation of (1, 2, 3),

= 0 if any of i, j, k are equal.

(1.97)
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An explicit calculation shows that K’s and L’s satisfy the following commutation
relations:

[Ki, Kj] = −ϵijkLk

[Li , Lj ] = ϵijkLk (1.98)

[Li , Kj] = ϵijkKk ,

where sum over k = 1, 2, 3 is implied, and the commutator of two operators A,B is
defined as

[A,B]
def≡ AB −BA . (1.99)

Note that the relation [Ki, Kj] = −ϵijkLk can also be written as [Ki, Kj] = −Lk

(i, j, k: cyclic), etc.

Exercise 1.3 Verify the commutation relations (1.98 ). You may numerically verify
them, or you may try proving generally by using the general formulas (1.86) and
(1.96) for the elements of the matrixes.

Exercise 1.4 Boost in a general direction.
Start from the formula for boost (1.9 ) where P∥ is the component of P⃗ parallel to β⃗,

and P⃗⊥ is the component perpendicular to β⃗; namely,

P∥ = P⃗ · n⃗, and P⃗⊥ = P⃗ − P∥n⃗

with n⃗ = β⃗/β (and similarly for P⃗ ′ ). Note that β⃗ is well-defined in the primed frame
also by the particular relative orientation of the two frames chosen.
(a) Show that the corresponding Lorentz transformation matrix is given by

Λ =


γ γβx γβy γβz
γβx 1 + ρβ2

x ρβxβy ρβxβz
γβy ρβxβy 1 + ρβ2

y ρβyβz
γβz ρβxβz ρβyβz 1 + ρβ2

z

 , with ρ ≡ γ − 1

β2
.

(b) Show that when β is small, the Lorentz transformation matrix for a boost is given
to the first order in β by

Λ = 1 + βiKi . (summed over i = 1, 2, 3)

(c) In the explicit expression of Λ given above, one notes that the top row [Λ0
µ (µ =

0, 1, 2, 3)] and the left-most column [Λµ
0 (µ = 0, 1, 2, 3)] are nothing but the velocity

4-vector ηµ = (γ, β⃗γ). Let’s see how it works for general Lorentz transformations
(proper and orthochronous). Suppose the relative orientation of the two frames K

and K ′ is not given by β⃗′K = −β⃗K′, where β⃗′K is the velocity of the origin of K
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measured in K ′, and β⃗K′ is the velocity of the origin of K ′ measured in K. Let Λ be
the corresponding Lorentz transformation. Express Λ0

µ and Λµ
0 in terms of β⃗′K and

β⃗K′. (hint: Place a mass m at the origin of K and view it from K ′, and place a mass

at the origin of K ′ and view it from K. Their 4-momenta are known in terms of β⃗′K
and β⃗K′ which can also be written using Λ. )

1.7.2 Finite transformations

Now we will show that any finite (namely, not infinitesimal) rotation can be written
as eθiLi , and any finite boost can be written as eξiKi , where θi and ξi (i = 1, 2, 3) are
some finite real numbers. First, however, let us review some relavant mathematics:

Matrix exponentiations
The exponential of a m×m matrix A is also a m×m matrix defined by

eA
def≡ lim

n→∞

(
I +

A

n

)n

, (1.100)

which can be expanded on the right hand side as

eA = lim
n→∞

n∑
k=0

n(n− 1) . . . (n− k + 1)

k !

Ak

nk
. (1.101)

Since the sum is a rapidly converging series, one can sum only the terms with k ≪ n
for which n(n− 1) . . . (n− k + 1) ≈ nk. It then leads to

eA =
∞∑
k=0

Ak

k !
, (1.102)

which can also be regarded as a definition of eA.
Using the definition (1.100) or (1.102), we see that

(
eA
)†

= eA
†
, (1.103)

where the hermitian conjugate of a matrix A is defined by (A†)ij ≡ A∗ji. The deter-
minant of eA can be written using (1.100) as

det eA = lim
n→∞

[
det

(
I +

A

n

)]n
= lim

n→∞

(
1 +

TrA

n
+ . . .+

ck
nk

+ . . .
)n

,

(1.104)
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where we have used (1.56). This does not depend on ck (k > 1) since the derivative
with respect to ck vanishes in the limit n → ∞ as can be readily verified. Thus,
ck (k > 1) can be set to zero and we have

det eA = eTrA . (1.105)

The derivative of exA (x is a number, while A is a constant matrix) with respect to x
can be obtained using (1.102),

d

dx
exA =

∞∑
k=1

(k xk−1)Ak

k !
= A

∞∑
k=1

xk−1Ak−1

(k − 1) !
; (1.106)

thus,

d

dx
exA = AexA . (1.107)

There is an important theorem that expresses a product of two exponentials in
terms of single exponential, called the Campbell-Baker-Hausdorff (CBH) theorem
(presented here without proof):

eAeB = eA+B+ 1
2
[A,B]+ ··· , (1.108)

where ‘· · ·’ denotes the higher-order commutators of A and B such as [A, [A,B]],
[A, [[A,B], B]] etc. with known coefficients. Note that the innermost commutator is
always [A,B] since otherwise it is zero ([A,A] = [B,B] = 0), and thus if [A,B] is a
commuting quantity (a c-number), then ‘· · ·’ is zero. Applying (1.108) to B = −A,
we get

eAe−A = eA−A = I , (1.109)

or
(eA)−1 = e−A . (1.110)

Rotation
An infinitesimal rotation around the z-axis by δθ [Figure 1.3(a)] can be written as(

x′

y′

)
=
(
x− δθ y
y + δθ x

)
=
(

1 −δθ
δθ 1

)(
x
y

)
= (I + δθLz)

(
x
y

)
, (1.111)

with

Lz =

(x y

x 0 −1
y 1 0

)
. (1.112)
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Then, a rotation by a finite angle θ is constructed as n consecutive rotations by θ/n
each and taking the limit n→∞. Using (1.111), it can be written as

(
x′

y′

)
= lim

n→∞

(
I +

θ

n
Lz

)n (
x
y

)

= eθLz

(
x
y

)
, (1.113)

where we have used the definition (1.100).
Now let us find out the exlicit form of eθLz . From the explicit expression of Lz

(1.112), we have L2
z = −I, L3

z = −Lz, L
4
z = I, etc. In general,

L4n
z = I, L4n+1

z = Lz, L4n+2
z = −I, L4n+3

z = −Lz, (1.114)

where n is an integer. Using the second definition of eA (1.102), the rotation matrix
eθLz can then be written in terms of the trigonometirc functions as

eθLz = I + θLz +
θ2

2 !
L2
z︸︷︷︸
−I

+
θ3

3 !
L3
z︸︷︷︸

−Lz

+ . . . (1.115)

=

(
1− θ2

2 !
+ . . .

)
︸ ︷︷ ︸

cos θ

I +

(
θ − θ3

3 !
+ . . .

)
︸ ︷︷ ︸

sin θ

Lz (1.116)

=
(
cos θ − sin θ
sin θ cos θ

)
, (1.117)

which is probably a more familiar form of a rotation around the z-axis by an angle θ.
Similarly, rotations around x and y axes are generated by Lx and Ly as obtained

by cyclic permutations of (x, y, z) in the derivation above. Switching to numerical

x

θ
θ
n

θ
n

xx

θ

δθ
(x,y)

(x',y')

x

y

δθ

δθ x

y

(a) (b)

Figure 1.3: Infinitesimal rotation around the z-axis by an angle δθ (a), and around a

general direction θ⃗ by an angle θ/n (b).
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indices [(Lx, Ly, Lz) ≡ (L1, L2, L3)],

L1 =

( 2 3

2 0 −1
3 1 0

)
, L2 =

( 3 1

3 0 −1
1 1 0

)
, L3 =

( 1 2

1 0 −1
2 1 0

)
. (1.118)

Are these identical to the definition (1.95) which was given in 4 × 4 matrix form,
or equivalently (1.96)? Since δθLi is the change of coordinates by the rotation, the
elements of a 4 × 4 matrix corresponding to unchanged coordinates should be zero.
We then see that the L’s given above are indeed identical to (1.95); namely, in 2× 2
form or in 4 × 4 form, (Li)

j
k = −1 and (Li)

k
j = 1 and all other elements are zero

where (ijk) are cyclic.
A general rotation would then be given by

eθiLi = eθ⃗·L⃗ , (1.119)

where

θ⃗
def≡ (θ1, θ2, θ3), L⃗

def≡ (L1, L2, L3) . (1.120)

As we will see below, this is a rotation around the direction θ⃗ by an angle θ ≡ |θ⃗|. To
see this, first we write eθiLi using the definition (1.100):

eθiLi = lim
n→∞

(
I +

θiLi

n

)n

, (1.121)

which shows that it is a series of small rotations each given by I + θiLi/n. The
action of such an infinitesimal transformation [Figure 1.3(b)] on x⃗ is (noting that
Ij0 = (Li)

j
0 = 0)

x′j =

(
I +

θiLi

n

)
j

µ
xµ =

(
I +

θiLi

n

)
j

k
xk

= gjkx
k +

1

n
θi (Li)

j
k︸ ︷︷ ︸

−ϵijk by (1.96)

xk

= xj − 1

n
ϵijk θix

k

= xj +
1

n
(θ⃗ × x⃗)j (1.122)

where we have used the definition of the three-dimensional cross product

(⃗a× b⃗)i = ϵijk ajbk . (1.123)
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Thus, I+θiLi/n is nothing but a small rotation around θ⃗ by an angle θ/n (Figure 1.3).
Then n such rotations applied successively will result in a rotation by an angle θ
around the same axis θ⃗.

Boosts
A boost in x direction by a velocity β is given by (1.26):

Λ =

( t x

t γ η
x η γ

)
,

(
γ =

1√
1− β2

, η = βγ

)
. (1.124)

When β is small (let’s call it δ), γ ≈ 1 and η ≈ δ to the first order in δ; then, the
infinitesimal boost can be written as

Λ =
(
1 δ
δ 1

)
= I + δKx , (1.125)

with

Kx =

( t x

t 0 1
x 1 0

)
. (1.126)

Suppose we apply n such boosts consecutively, where we take n to infinity while nδ
is fixed to a certain value ξ:

nδ = ξ . (1.127)

Then the resulting transformation is

Λ = lim
n→∞

(
I +

ξ

n
Kx

)n

= eξKx , (1.128)

where we have used the definition (1.100). Is ξ the velocity of this boost? The answer
is no, even though it is a function of the velocity. Let’s expand the exponential above
by the second definition (1.100) and use K2

x = I:

Λ = eξKx (1.129)

= I + ξKx +
ξ2

2 !
K2

x︸︷︷︸
I

+
ξ3

3 !
K3

x︸︷︷︸
Kx

+ . . .

=

(
1 +

ξ2

2 !
+ . . .

)
︸ ︷︷ ︸

cosh ξ

I +

(
ξ +

ξ3

3 !
+ . . .

)
︸ ︷︷ ︸

sinh ξ

Kx

=
(
cosh ξ sinh ξ
sinh ξ cosh ξ

)
. (1.130)
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Comparing with (1.125), we see that this is a boost of a velocity β given by

γ = cosh ξ, η = sinh ξ (1.131)

or

β =
η

γ
= tanh ξ . (1.132)

Note that the relation γ2 − η2 = 1 (1.6) is automatically satisfied since cosh ξ2 −
sinh ξ2 = 1.

Thus, n consecutive boosts by a velocity ξ/n each did not result in a boost of a
velocity ξ; rather, it was a boost of a velocity β = tanh ξ. This breakdown of the
simple addition rule of velocity is well known: the relativistic rule of velocity addition
states that two consecutive boosts, by β1 and by β2, do not result in a boost of β1+β2,
but in a boost of a velocity β0 given by

β0 =
β1 + β2
1 + β1β2

. (1.133)

Due to the identity tanh(ξ1+ ξ2) = (tanh ξ1+tanh ξ1)/(1+ tanh ξ1 tanh ξ2), however,
it becomes additive when velocities are transformed by βi = tanh ξi (i = 0, 1, 2);
namely, ξ0 = ξ1 + ξ2 holds.

The matrix Kx(≡ K1) given in (1.126) is identical to the 4×4 form given in (1.94)
when all other elements that correspond to unchanged coordinates are set to zero.
The boosts along y and z directions are obtained by simply replacing x with y or z
in the derivation above. Thus, we see that K2 and K3 given in (1.94) indeed generate
boosts in y and z directions, respectively.

A boost in a general direction would then be given by

Λ = eξiKi , (1.134)

where ξ⃗ ≡ (ξ1, ξ2, ξ3) are the parameters of the boost. In order to see what kind of
transformation this represents, let’s write it as a series of infinitesimal transformations
using (1.100):

eξiKi = lim
n→∞

(
I +

ξi
n
Ki

)n

. (1.135)

From the explicit forms of Ki (1.94), we can write the infinitesimal transformation as

I +
ξi
n
Ki = I +

1

n


0 ξ1 ξ2 ξ3
ξ1
ξ2
ξ3

0

 . (1.136)
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On the other hand, a boost in a general direction by a small velocity δ⃗ is given by
(1.9) with γ ≈ 1, η ≈ δ and δ ≡ |δ⃗|:(

E ′

P ′∥

)
=

(
1 δ

δ 1

)(
E

P∥

)
, P⃗ ′⊥ = P⃗⊥ , (1.137)

or 
E ′ = E + δP∥ → E ′ = E + δ⃗ · P⃗
P ′∥ = P∥ + δE

P⃗ ′⊥ = P⃗⊥

}
→ P⃗ ′ = P⃗ + E δ⃗

(1.138)

where we have used P⃗ (′) = P
(′)
∥ δ̂+ P⃗

(′)
⊥ (δ̂ ≡ δ⃗/δ). This can be written in 4× 4 matrix

form as 
E ′

P ′x
P ′y
P ′z

 =

I +


0 δ1 δ2 δ3
δ1
δ2
δ3

0




E
Px

Py

Pz

 . (1.139)

Comparing this with (1.136), we can identify that I+ξiKi/n as a boost in ξ⃗ direction

by a velocity parameter ξ/n (ξ ≡ |ξ⃗|). Then n consecutive such boosts will result in
a boost in the same direction. Since the rule of addition of velocity (1.133) is valid in
any direction as long as the boosts are in the same direction, the n boosts by velocity
ξ/n each will result in a single boost of velocity β = tanh ξ as before. Thus, eξiKi

represents a boost in ξ⃗ direction by a velocity β = tanh ξ.

Boost + rotation
First, we show that a rotation followed by a rotation is a rotation, but a boost followed
by a boost is in general not a boost. Consider a rotation eθiLi followed by another
rotation eϕiLi where θ⃗ and ϕ⃗ are arbitrary vectors. Using the CBH theorem (1.108),
we can write the product of the two transformations as

eϕiLieθjLj = eϕiLi+θjLj+
1
2
[ϕiLi,θjLj ] + ..., (1.140)

where ‘. . . ’ represents terms with higher-order commutators such as [ϕiLi, [ϕjLj, θkLk]]
etc. Now we can use the commutation relations (1.98) to remove all commutators in
the exponent on the right hand side. The result will be a linear combination of L’s
with well-defined coefficients (call them αi) since the coefficients in ‘. . . ’ in the CBH
theorem are known. Here, there will be no K’s appearing in the linear combination
because of the commutation relation [Li, Lj] = ϵijkLk. Thus, the product is written
as

eϕiLieθjLj = eαiLi (α⃗ : a function of ϕ⃗, θ⃗), (1.141)

which is just another rotation.
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Next, consider a boost eξiKi followed by another boost eξ
′
iKi :

eξ
′
iKieξjKj = eξ

′
iKi+ξjKj+

1
2
[ξ′iKi,ξjKj ] + ... . (1.142)

Again, the brackets can be removed by the commutation relations (1.98) reducing
the exponent to a linear combination of K’s and L’s. This time, there will be L’s
appearing through the relation [Ki, Kj] = −ϵijkLk which are in general not cancelled
among different terms. Thus, a boost followed by a boost is not in general another
boost; rather, it is a combination of boost and rotation:

eξ
′
iKieξjKj = eαiKi+βiLi (α⃗, β⃗ : functions of ξ⃗, ξ⃗′). (1.143)

It is easy to show, however, that if two boosts are in the same direction, then the
product is also a boost.

Any combinations of boosts and rotations can then be written as

Λ = eξiKi+θiLi = e
1
2
aµνMµν

, (1.144)

where we have defined the anti-symmetric tensor aµν by

a0i
def≡ ξi , aij

def≡ θk (i, j, k : cyclic), aµν = −aνµ , (1.145)

and the factor 1/2 arises since terms with µ > ν as well as µ < ν are included in
the sum. The expression of an infinitesimal transformation (1.90) is nothing but this
expression in the limit of small aµν . Since we now know that any product of such
transformations can also be written as (1.144) by the CBH theorem, we see that the
set of Lorentz transformations connected to the identity is saturated by boosts and
rotations.

We have seen that the generators K’s and L’s and their commutation relations
(called the Lie algebra) play critical roles in understanding the Lorentz group. In
fact, generators and their commutation relations completely determine the structure
of the Lie group, as described briefly below.

Structure constants
When the commutators of generators of a Lie group are expressed as linear com-
binations of the generators themselves, the coefficients of the linear expressions are
called the structure constants of the Lie group. For example, the coeffients ±ϵijk in
(1.98) are the structure constants of the Lorentz group. We will now show that the
structure constants completely define the structure of a Lie group. To see this, we
have to define what we mean by ‘same structure’. Two sets F(∋ f) and G(∋ g) are
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said to have the same structure if there is a mapping between F and G such that if
f1, f2 ∈ F and g1, g2 ∈ G are mapped to each other:

f1 ↔ g1, f2 ↔ g2 (1.146)

then, the products f1f2 and g1g1 are also mapped to each other by the same mapping:

f1f2 ↔ g1g2 ; (1.147)

namely, the mapping preserves the product rule.
Suppose the sets F and G are Lie groups with the same number of generators Fi

and Gi and that they have the same set of structure constants cijk

[Fi, Fj] = cijkFk, [Gi, Gj] = cijkGk . (1.148)

Since F and G are Lie groups, any element of F and G can be expressed in exponential
form using the corresponding generators and a set of real parameters. We define the
mapping between F and G by the same set of the real parameters:

f = eαiFi ↔ g = eαiGi . (1.149)

If f1 ↔ g1 and f2 ↔ g2, then they can be written as

f1 = eαiFi ↔ g1 = eαiGi (1.150)

f2 = eβiFi ↔ g2 = eβiGi , (1.151)

where αi and βi are certain sets of real parameters. Then the question is whether
the products f1f2 and g1g2 are mapped to each other by the same mapping. The
products f1f2 and g1g2 can be written using the CBH theorem as

f1f2 = eαiFieβjFj = eαiFi+βjFj+
1
2
[αiFi,βjFj ] + ... = eϕiFi , (1.152)

g1g2 = eαiGieβjGj = eαiGi+βjGj+
1
2
[αiGi,βjGj ] + ... = eγiGi , (1.153)

The numbers ϕi and γi are obtained by removing the commutators using the commu-
tation relations (1.148), and thus completely determined by αi, βi and cijk; namely,
ϕi = γi, and thus f1f2 and g1g2 are mapped to each other by (1.149). Thus, if two Lie
groups have the same set of structure constants, then they have the same structure.
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Problems

1.1 Boost and invariant mass.
A particle with energy E and momentum P is moving in the x-y plane at an angle θ
anti clockwise from the x axis.

y

x

(E,P)

θ

(a) Boost the particle in +x direction with velocity β (or look at this particle from a
Lorentz frame moving in −x direction with velocity β), and write down the resulting

4-momentum in terms of E, p ≡ |P⃗ |, θ and β.
(b) Calculate explicitly the invariant mass of the boosted 4-momentum and verify that
it is the same as in the original frame; i.e. E2 − P 2.
(c) Express the tan θ′ in terms of β, θ and β0, where θ′ is the angle of the direction
of the particle with respect to the x axis after the boost and β0 is the velocity of the
particle in the original frame.

1.2 Two-body decay.
Consider the decay of a particle of mass M to two particles of masses m1 and m2.
(a) Show that the momentum of the daughter particles in the rest frame of M is given
by

p =

√
λ(M2,m2

1,m
2
2)

2M

with
λ(x, y, z) ≡ x2 + y2 + z2 − 2xy − 2yz − 2zx .

(b) SupposeM is moving with velocity β in the lab frame, and it decays to two particles
uniformly in 4π steradian in its own rest frame (no spin polarization). What is the
maximum and minimum energies of daughter particle 1 in the lab frame? Find the
energy distribution f(E1)dE1 of daughter particle 1 in the lab frame. Normalize f(E1)
such that ∫ ∞

0
f(E1)dE1 = 1 .

(hint: The uniform decay means that cos θ is distributed uniformly from −1 to 1,
where θ is the polar angle of the particle with respect to some axis.)
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1.3 Show that a finite rotation by ξ⃗ and a finite boost by θ⃗ commute when ξ⃗ and θ⃗
are in a same direction, and that a finite boost by ξ⃗ and another boost by ξ⃗′ commute
if ξ⃗ and ξ⃗′ are in the same direction:[

eξiKi , eθjLj

]
= 0 if θ⃗ = c ξ⃗ ,

[
eξiKi , eξ

′
jKj

]
= 0 if ξ⃗′ = c ξ⃗ ,

where summations over i, j are implicit and c is a constant. (hint: use the CBH
theorem.)

1.4 Generators of SU(n) group.
The Lie group formed by a set of complex n× n matrices which are unitary:

U †U = I

and whose determinants are unity:

detU = 1

is called the special unitary group in n dimensions or SU(n). Show that the generators
Gk of a SU(n) group are traceless hermitian matrixes and that there are n2 − 1 of
those:

{Gk (k = 1, . . . n2 − 1)}, with G†k = Gk , TrGk = 0 .

Here, any element of the group is written in terms of the generators as

U = ei γkGk ,

where γk is a real number and the index k is summed over.





Chapter 2

Lorentz-invariant Wave Equations

In this chapter we introduce Lorentz-invariant wave equations which are defined as
follows: if a wave function satisfies a certain equation in one frame, then when the
wave function is transformed to another frame (i.e. ‘viewed’ in that frame), it satisfies
the same form of equation in terms of the coordinates in the latter frame. We then
attempt to construct such equation by applying the standard correspondence between
energy-momentum and the differential operators (i∂0,−i∇⃗) to the relativistic relation
E2− P⃗ 2 = m2, which leads us to the Klein-Gordon equation. The probability current
is constructed from the wave function such that it is conserved. We will then see that
if we adhere to the standard interpretations of energy and probability, it has solutions
with negative energy and negative probability. We start this chapter by examining
what is meant by energy and probability.

2.1 Energy and momentum

In non-relativistic quantum mechanics, the differential operators that correspond to
energy and momentum are given by

E : i
∂

∂t
, P⃗ : −i∇⃗ . (2.1)

Thus, in general, a wave function which is an eigenfunction of given values of energy-
momentum (E, P⃗ ) has the plane-wave form

ϕ(t, x⃗) = C(E, P⃗ )e−i(Et−P⃗ ·⃗x), (2.2)

where the constant coefficient C(E, P⃗ ) in general can have multiple components

[which will make ϕ(t, x⃗) multiple-component] and can depend on (E, P⃗ ). It clearly
gives the desired eigenvalues for energy-momentum:(

i
∂

∂t

)
ϕ = Eϕ ,

(
−i∇⃗

)
ϕ = P⃗ ϕ . (2.3)
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Namely, the wave length at a fixed time gives the momentum and the oscillation
frequency at a fixed position gives the energy. According to the definition (2.1), the
sense of the phase rotation with respect to time gives the sign of energy:

ϕ ∼ e−i|E|t : positive energy, ϕ ∼ e+i|E|t : negative energy . (2.4)

2.2 Conserved current and probability

The concept of conserved current is simple and natural. When there is anything that
‘exists’ and ‘moves around’ in space and if it is not created or destroyed, then there is
a conserved current. The electric charge and the classical density of gas flow are some
examples. In particular we expect that the probability density of a wave fucntion to
have such property at least when there is no interactions. Thus, our strategy is to
look for a conserved quantity for a given wave equation, and attempt to interpret it
as the probability current.

Let’s formulate the concept of conserved current more precisely. First, assume that
there is some density of some ‘material’ ρ(t, x⃗) measured in a given frame which we
call ‘the laboratory frame’ without loss of generaility. Then, one can form a 3-vector
‘flux’ defined by

j⃗(t, x⃗)
def≡ ρ(t, x⃗)β⃗(t, x⃗) (2.5)

where β(t, x⃗) is the velocity of this ‘material’ at (t, x⃗). Then the quantity per unit
time that flows across a small area da⃗, which is fixed in the laboratory frame, is given
by

����

����

����

da

j(t,x)
j⃗ · da⃗ (flow across da⃗) (2.6)

No net creation nor destruction of the material means that, if we fix a volume V
in space, the change in the total amount of the material in the volume,

∫
V ρdv, is

entirely accounted for by how much is flowing in across the boundary surface A of
the volume. Namely,

d

dt

∫
V
ρ(t, x⃗)dv = −

∫
A
j⃗ · da⃗ (2.7)

or moving the time derivative to the inside of the integral and using the Gauss’s
theorem (which is correct for any j⃗, conserved or not) on the right hand side,

∫
V

d

dt
ρ(t, x⃗)dv = −

∫
V
∇⃗ · j⃗dv . (2.8)
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Since this should hold for any volume V , the integrands should be equal point by
point:

dρ

dt
+ ∇⃗ · j⃗ = 0 . (2.9)

Note that ρ could in general have negative values such as in the case of the electric
charge.

If we define a 4-component quantity jµ ≡ (ρ, j⃗), then (2.9) above can be written
as ∂µj

µ = 0, which looks like Lorentz-invariant. This, however, is true only if jµ

transforms as a Lorentz 4-vector. As we will see now, this is the case for the electric
charge current or for any flow of some material such as gas flow.

Suppose the charge is carried by some medium, such as gas of ions, then pick a
space-time point x and let ρ0(x) be the charge density in the rest frame of the medium

and β⃗(x) be the velocity of the medium at that point. Then the charge density ρ in
the frame in question is larger than ρ0 by the factor γ = 1/

√
1− β2 due to Lorentz

contraction
ρ = ρ0γ . (2.10)

Since j⃗ = ρβ⃗, jµ can be written as

jµ = (ρ, j⃗) = (ρ0γ, ρ0γβ⃗) = ρ0(γ, η⃗) = ρ0η
µ , (2.11)

where we have defined the ‘4-velocity’ ηµ by

ηµ = (η0, η⃗)
def≡ (γ, γβ⃗) . (2.12)

On the other hand, the 4-momentum of a particle with mass m can be written as

P µ = (mγ,mγβ⃗) = mηµ (2.13)

which means that the 4-velocity ηµ is a Lorentz 4-vector, and therefore so is jµ. When
the charge is carried by more than one different media, unique rest frame of the media
where ρ0 is defined does not exist. The total jµ, however, is the sum of jµ for each
medium. Since jµ for each medium is a 4-vector, the sum is also a 4-vector. Thus,
∂µj

µ = 0 is a Lorentz-invariant equation; namely, if it is true in one frame, then it is
true in any frame. If charge is conserved in one frame, it is conserved in any other
frame.

2.3 The Schrödinger equation

Let’s briefly review how the Schrödinger equation was introduced and how the prob-
ability density was defined. In the classical mechanics, the energy of a particle in the
absence of interactions is given by

E =
P⃗ 2

2m
. (2.14)
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The Schrödinger equation is then obtained by replacing E by i∂/∂t and P⃗ by −i∇⃗
in the above and let them act on a complex scalar function ϕ(x) with xµ = (t, x⃗):

i
∂

∂t
ϕ(x) = − 1

2m
∇2ϕ(x) . (Schrödinger equation) (2.15)

When applied to the plane-wave form (2.2), the operator i∂/∂t ‘pulls down’ a factor

E from the exponent, and the operator −i∇⃗ ‘pulls down’ a factor P⃗ . Thus, if we
substitute the plane-wave form in the above, we recover the relation between energy
and momentum. The solution of the Schrödinger equation with given energy and
momentum is then

ϕ(x) = Ne−i(Et−P⃗ ·x⃗), with E =
P⃗ 2

2m
, (2.16)

whereN is a normalization constant. Namely, the plane-wave form becomes a solution
of the Schrödinger equation when the constants E and P⃗ in the exponent are related
by E = P⃗ 2/2m.

Next, a conserved quantity, which is interpreted as the probability density, can be
constructed as follows: Multiplying ϕ∗ to (2.15) from the left, we get

iϕ∗
( ∂
∂t
ϕ
)
= − 1

2m
ϕ∗(∇2ϕ) (2.17)

Taking the complex conjugate of (2.15) and multiplying ϕ from the right, we get

−i
( ∂
∂t
ϕ∗
)
ϕ = − 1

2m
(∇2ϕ∗)ϕ . (2.18)

Subtracting (2.18) from (2.17),

i

[
ϕ∗
( ∂
∂t
ϕ
)
+
( ∂
∂t
ϕ∗
)
ϕ

]
︸ ︷︷ ︸

∂

∂t
(ϕ∗ϕ)

= − 1

2m

[
ϕ∗(∇2ϕ)− (∇2ϕ∗)ϕ

]
︸ ︷︷ ︸
∇⃗ ·

[
ϕ∗(∇⃗ϕ)− (∇⃗ϕ∗)ϕ

] , (2.19)

where we have used on the right hand side ∇⃗ · (ϕA⃗) = ∇⃗ϕ · A⃗+ ϕ∇⃗ · A⃗:

∇⃗ ·
[
ϕ∗(∇⃗ϕ)− (∇⃗ϕ∗)ϕ

]
= ϕ∗(∇2ϕ) + ∇⃗ϕ∗ · ∇⃗ϕ− ∇⃗ϕ∗ · ∇⃗ϕ− (∇2ϕ∗)ϕ

= ϕ∗(∇2ϕ)− (∇2ϕ∗)ϕ . (2.20)

Then, (2.19) can be written as
∂

∂t
ρ = −∇⃗ · j⃗ (2.21)
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with

ρ = ϕ∗ϕ, j⃗ = − i

2m

[
ϕ∗(∇⃗ϕ)− (∇⃗ϕ∗)ϕ

]
. (2.22)

Thus, assuming that ϕ satisfies the Schrödinger equation, the quantities (ρ, j⃗) defined
this way satisfy the same equation of conservation (2.9) introduced for a flow of some

classical material. There, the density ρ and the current j⃗ were related by j⃗ = ρβ⃗.
What is β⃗ in the case of the Schrödinger equation? Using the plane-wave solution
(2.16) in the definition of ρ and j⃗ above, we get

ρ = |N |2, j⃗ = − i

2m
|N |2

[
(iP⃗ )− (−iP⃗ )

]
= |N2| P⃗

m
; (2.23)

thus,

j⃗ =
P⃗

m
ρ . (2.24)

Since β⃗ = P⃗ /m in classical mechanics, this indeed corresponds to j⃗ = ρβ⃗. Note also
that the density ρ = |N |2 is always positive. Thus, the conserved current defined for
the Schrödinger equation as (2.22) can be interpreted as the probability current.

The Schrödinger equation, however, is not Lorentz-invariant; namely, if we use
the 4-vector nature of the operator ∂µ and the scalar nature of the field ϕ [see (1.68)
and the discussion that immediately follows it]:

∂′µ = Λµ
ν∂ν , ϕ′(x′) = ϕ(x) (x′µ = Λµ

νx
ν), (2.25)

then, the Schrödinger equation in one frame does not lead to the same form of equation
in the Lorentz-transformed frame:

i
∂

∂t
ϕ(x) = − 1

2m
∇2ϕ(x) ̸→ i

∂

∂t′
ϕ′(x′) = − 1

2m
∇′2ϕ′(x′) ; (2.26)

where ∇⃗′ denotes the derivatives with respect to the primed coordinates. Rather, it
ends up in a terrible mess. Similarly, under the same transformation given by (2.25),
the 4-component quantity jµ = (ρ, j⃗), where ρ and j⃗ are defined as (2.22), does not
transform as a 4-vector:

j′µ(x′) ̸= Λµ
νj

ν(x), (2.27)

which can easily be seen by noting that ρ as defined here is a scalar quantity: using
ϕ′(x′) = ϕ(x),

ρ′(x′) ≡ ϕ′∗(x′)ϕ′(x′) = ϕ∗(x)ϕ(x) = ρ(x) . (2.28)

Thus, j0 = ρ cannot be the time component of a 4-vector which has to change its
value under general Lorentz transformation.



44 CHAPTER 2. LORENTZ-INVARIANT WAVE EQUATIONS

2.4 Klein-Gordon equation

In order to look for a Lorentz-invariant wave equation, we start from the relativistic
energy-momentum relation for a particle

E2 = P⃗ 2 +m2 , (2.29)

and apply the substitution (2.1) as in the case of the Schrödinger equation to get

− ∂2

∂t2
ϕ(x) = (−∇2 +m2)ϕ(x) , (2.30)

or
(∂µ∂

µ +m2)ϕ(x) = 0 , (2.31)

where

∂µ∂
µ = ∂0∂

0 + ∂1∂
1 + ∂2∂

2 + ∂3∂
3 =

∂2

∂t2
−∇2 . (2.32)

This equation (2.31) is called the Klein-Gordon equation. The operator ∂µ∂
µ is some-

times written in different ways:

∂µ∂
µ ≡ ∂2 ≡ 2 (2.33)

and called the D’Alembertian operator.
Now, the equation (2.31) looks Lorentz-invariant, and indeed it is. Using the

transformation (2.25),

∂′µ∂
′µϕ′(x′) = (Λµ

α∂α)(Λ
µ
β∂

β)ϕ(x)

= Λµ
αΛµ

β︸ ︷︷ ︸
gαβ

∂α∂
βϕ(x) = ∂α∂

αϕ(x) . (2.34)

Thus, if a wave function ϕ(x) satisfies the Klein-Gordon equation in one frame, then
the same form of equation is satified by the transformed wave function ϕ′(x′) provided
that ϕ(x) transforms as a scalar field [namely, ϕ′(x′) = ϕ(x)]:

(∂2 +m2)ϕ(x) = 0 → (∂′2 +m2)ϕ′(x′) = 0 . (2.35)

Thus, the Klein-Gordon equation is Lorentz-invariant.
Next, let’s examine the sign of the energy for solutions of the Klein-Gordon equa-

tion. To do so, we will again try the plane-wave form (2.2), this time expressed using
the energy-momentum 4-vector:

ϕ(x) = Ne−i(Et−P⃗ ·⃗x) = Ne−ip·x, [pµ ≡ (E, P⃗ )] (2.36)
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Noting that

∂µ(p ·x) =
∂

∂xµ
(pνx

ν) = pν
∂xν

∂xµ︸ ︷︷ ︸
δµν

= pµ , (2.37)

→ ∂µe
−ip·x = −ipµe−ip·x , (2.38)

we get

(∂µ∂
µ +m2)ϕ = ((−ipµ)(−ipµ)︸ ︷︷ ︸

−p2
+m2)ϕ = 0 → p2 = m2 , (2.39)

which is nothing but the relativistic energy-momentum relation (2.29). Namely, a
plane-wave (2.36) is a solution of the Klein-Gordon equation as long as the constants

E and P⃗ satisfy the relation E2 = P⃗ 2 +m2.
In contrast to the case of the Schrödinger equation where the condition E =

P⃗ 2/2m required that E be positive, in this case E can be positive or negative. One
way to get around the negative energies may be simply not to use the negative-energy
solutions. However, when interactions are included in the theory, it turns out that the
theory will predict that the positive energy states will eventually fall into the negative
energy states (by emitting photons, for example).

Leaving the negative-energy problem as it is, let’s turn to the conserved current
of the Klein-Gordon theory in order to study the sign of the probability. Multiplying
the Klein-Gordon equation (2.31) with ϕ∗ on the left, and multiplying the complex
conjugate of (2.31) with ϕ on the right, we get

ϕ∗(∂µ∂
µϕ) +m2ϕ∗ϕ = 0 (2.40)

(∂µ∂
µϕ∗)ϕ+m2ϕ∗ϕ = 0 . (2.41)

Taking the difference of the two, we have

0 = ϕ∗(∂µ∂
µϕ)− (∂µ∂

µϕ∗)ϕ

=
[
ϕ∗(∂µ∂

µϕ) + ∂µϕ
∗∂µϕ

]
−
[
∂µϕ

∗∂µϕ+ (∂µ∂
µϕ∗)ϕ

]
= ∂µ

[
ϕ∗(∂µϕ)− (∂µϕ∗)ϕ

]
. (2.42)

Thus, we have a conserved current

∂µj
µ = 0 , (2.43)

where the current jµ is defined by

jµ = i [ϕ∗(∂µϕ)− (∂µϕ∗)ϕ] , (2.44)
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which can be symbolically written as

jµ = i ϕ∗
↔
∂
µϕ , (2.45)

The symbol
↔
∂µ used above is defined by

a
↔
∂
µb

def≡ a(∂µb)− (∂µa)b ; (2.46)

namely, it operates on everything to the right and then everything to the left with a
minus sign. Note that the second term in (2.44) is the complex conjugate of the first
term. The factor ‘i’ in (2.44) is added to make jµ a real quantity.

Using the plane-wave form (2.36) in (2.44),

jµ = i|N |2[(−ipµ)− (ipµ)] = 2|N |2pµ . (2.47)

The time component is then supposed to be the probability density:

j0 = 2|N |2E (2.48)

which can be both positive or negative since E can be positive or negative as discussed
earlier.

Thus, in the Klein-Gordon theory, the problem of negative energy and that of
negative probability are related. For the probability current, a natural question is
whether one can construct a conserved current whose time component is always posi-
tive. People have tried, and were not successful. The true resolution of these problems
will be accomplished in the framework of the quantum field theory. There, the prob-
ability current defined above will be reinterpreted as the charge current which can
naturally be negative, and the energy becomes the eigenvalue of the Hamiltonian op-
erator, which turns out to be always positive. Then, what happens to the probability
density in the quantum field theory? In a nut shell, the concept of the probabil-
ity that a particle is found at a given position loses its usefulness since particle and
anti-particle can be pair-created out of vacuum for a short period of time, which
is a result of the multi-particle nature of the quantum field theory as opposed to
the single-particle nature of the quantum mechanical wave function which describes
a state of a only one particle. For now, we will stay within the framework of the
quantum mechanical wave function, and move on to the wave equation for a spin 1/2
particle - the Dirac equation.
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Problems

2.1 Conserved current.
(a) Suppose two different scaler fields ϕ1(x) and ϕ2(x) satisfy the Schrödinger equa-
tion:

i
∂

∂t
ϕi = −

1

2m
∇2ϕi (i = 1, 2) .

Show that the current jµ = (j0, j⃗) given by

j0 = ϕ∗1ϕ2 , j⃗ = − i

2m

(
ϕ∗1(∇⃗ϕ2)− (∇⃗ϕ∗1)ϕ2

)
is conserved; namely, ∂µj

µ = 0. Is this a Lorentz invariant equation? In other words,
if it happens to be conserved in one inertial frame, does the same form hold in any
other frame?
(b) Suppose two different scaler fields ϕ1(x) and ϕ2(x) satisfy the Klein-Gordon equa-
tion:

(∂2 +m2)ϕi = 0 (i = 1, 2)

Show that the current defined by

jµ = i [ϕ∗1(∂
µϕ2)− (∂µϕ∗1)ϕ2]

is conserved; i.e. ∂µj
µ = 0, then show that this equation of conservation is Lorentz

invariant. (comment: What is this quantity that looks like the probability current
but formed with different fields? It is a measure of overlap of the two fields. Such
quantity is needed when another field is created out of the overlap of the two. And
such quantity can be formed in a Lorentz invariant way as seen above. In a sense,
the probability current is considered to be an overlap of a field with itself.)

2.2 Conserved currents with potential.
The Klein-Gordon equation with the electromagnetic 4-potential

Aµ(x) = (Φ(x), A⃗(x)) (real) (2.49)

can be obtained by the so-called minimal substitution

i∂µ → i∂µ − eAµ (2.50)

where e is the electric charge. Namely, the Klein-Gordon equation (∂2 + m2)ϕ = 0
becomes [

(∂µ + ieAµ)(∂
µ + ieAµ) +m2

]
ϕ = 0 (2.51)

Here, the differential operator ∂µ operates on everything to its right up to ϕ(x) in each
term when the expression is expanded. Show that the current defined by

jµ = i
[
ϕ∗1(∂

µϕ2)− (∂µϕ∗1)ϕ2

]
− 2eAµϕ∗1ϕ2 (2.52)

is conserved, i.e. ∂µj
µ = 0, where ϕ1 and ϕ2 both satisfy the modified Klein-Gordon

equation (2.51).





Chapter 3

The Dirac Theory

In this chapter, we will study the Dirac equation which describes spin-1/2 particles
such as quarks and leptons. We start from the observation that the apparent reason
why the Klein-Gordon equation gave solutions with negative energies and negative
probabilities was that the energy appeared as E2 in the relation E2 = P⃗ 2 + m2,
allowing negative as well as positive value of E. Thus, we will proceed by trying to
construct a wave equation which is linear in the time derivative, hoping that it will
give us solutions with only positive energies and positive probabilities.

It is not clear exactly what kind of thought process was followed by Dirac when
he set out to construct a relativistic theory of electron in late 1920’s, even though it
seems that he was particularly disturbed by the negative probability. As we will see,
he actually succeeded in solving the problem of negative probability, but not that
of negative energy. In fact, even if one constructs a wave equation that is linear in
time derivative, there is no guarantee that the energy will always be positive. When
one applies a differential equation linear in i∂0 to a plane-wave form, one obtains a
relation between E and P⃗ in the form E = f(P⃗ ,m) as opposed to E2 = f(P⃗ ,m).

The function f(P⃗ ,m), however, may in general be positive or negative, which is
actually what happens in the case of the Dirac equation. Dirac partially ‘solved’ the
negative-energy problem by the so-called hole theory in which the vacuum is assumed
to be the state where all the negative energy-states are filled up thereby preventing
positive energy states to fall into the negative-energy states by the exclusion principle.
However, such a scenario cannot work for particles with integer spin for which the
exclusion principle does not apply. As in the case of the Klein-Gordon theory, the
problem of negative energy in the Dirac theory will be satisfactorily solved in the
framework of the quantum field theory.

In retrospect, the importance of the Dirac equation does not have much to do
with negative energy or negative probability. Its importance lies in the fact that, in
trying to solve these ‘problems’, Dirac stumbled upon a quantity called a spinor which
describes a particle with spin 1/2, and led to a correct description of the magnetic

49
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moment of the electron. Here, we will use the linearity in the time derivative simply
as a convenient guide to introduce the Dirac equation. In this section and later, we
will generically refer to the particle represented by the Dirac equation as an ‘electron’,
but the discussions apply to any point-like spin-1/2 particle which is not antiparticle
of itself. 1

3.1 The Dirac equation

We now search for a wave equation that is linear in time derivative and consistent
with the relativistic energy-momentum relation E2 = P⃗ 2 +m2. Let’s start from the
following Schrödinger form of equation:

i
∂

∂t
ψ = Hψ , (3.1)

where ψ is some wave function representing the state of the electron. The operator
H is assumed to be some function of the momentum operator −i∇⃗ and the mass m,
presumably representing the energy of the electron. Since we are now interested in
a free electron, we assume that H does not depend on time. We then want this to
give the relativistic relation E2 = P⃗ 2 +m2 when acting upon a plane wave solution
ψ ∝ e−ip·x. This can be accomplished if (3.1) somehow leads to(

i
∂

∂t

)2

ψ = [(−i∇⃗)2 +m2]ψ . (3.2)

We first take the time derivative i∂/∂t of (3.1) to get(
i
∂

∂t

)2

ψ = H i
∂

∂t
ψ︸ ︷︷ ︸

Hψ

= H2ψ

(which we would like to become)

= [(−i∇⃗)2 +m2]ψ , (3.3)

or
H2 = (−i∇⃗)2 +m2 . (3.4)

Note that the equation (3.2) is nothing but the Klein-Gordon equation. Yes, if a wave
function satisfies the Dirac equation, then it will satisfy the Klein-Gordon equation.
In fact, any relativistic wave function would satisfy the Klein-Gordon equation as
long as it is consistent with E2 = P⃗ 2 +m2.

1A spin-1/2 particle that is antiparticle of itself is called a Majorana particle. So far, no such
particles have been found in nature.
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Since H2 should become a quadratic function of −i∇⃗ and m, it seems reasonable
(though not mandatory) to look for H which is linear in −i∇⃗ and m:

H = α⃗ · (−i∇⃗) + βm , (3.5)

where α⃗ ≡ (α1, α2, α3) and β are some constants which turn out to be matrices.
Keeping track of the ordering of the (matrix) products of αi and β while noting that
m is just a real number, the condition (3.4) then becomes

H2 = [αi(−i∇i) + βm] [αj(−i∇j) + βm]

=
∑
i,j

αiαj(−i∇i)(−i∇j) →


∑
i

α2
i (−i∇i)

2

+
∑
i>j

(αiαj + αjαi)(−i∇i)(−i∇j)

+
∑
i

αiβ(−i∇i)m

+
∑
j

βαj(−i∇j)m

 →
∑
i

(αiβ + βαi)(−i∇i)m

+ β2m2

(which should be equal to)

= (−i∇⃗)2 +m2 , (3.6)

which is satisfied if

α2
i = β2 = 1,

(
αiαj + αjαi = 0 (i ̸= j)

αiβ + βαi = 0

)
, (i, j = 1, 2, 3) . (3.7)

Using the anticommutator symbol,

{A,B} def≡ AB +BA , (3.8)

this condition can be written as

{αi , αj} = 0 (i ̸= j),

{αi , β} = 0,
α2
i = β2 = 1, (i, j = 1, 2, 3) . (3.9)

Note that this condition is symmetric among the four quantities α1, α2, α3 and β;
namely, the square of each is unity and each anticommutes with another. They
cannot be ordinary numbers since they do not commute. They can be matrices,
however, and we will now show that they are traceless hermitian matrixes of rank
greater than or equal to four:
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1. αi and β are hermitian. Since H represents the energy, we want it to have real
eigenvalues; thus, H is hermitian. Since the operator −i∇⃗ acts as a hermitian
operator, then αi and β should also be hermitian (for a proof, see Exercise 3.4):

α†i = αi, β† = β . (3.10)

2. The traces of αi and β are zero. From (3.9), we have

αiβ = −βαi
×β from right−→ αi β

2︸︷︷︸
1

= −βαiβ . (3.11)

Taking trace of both sides,

Trαi = −Tr(βαiβ)︸ ︷︷ ︸
Tr(β2αi)

= −Trαi , → Trαi = 0 , (3.12)

where we have used

Tr(AB) = Tr(BA) , (3.13)

where A and B are two arbitrary square matrices of same rank. Similarly,
multiplying αi instead of β in (3.11), we get Trβ = 0.

3. The eigenvalues of αi and β are ±1. Suppose u is an eigenvector of β with an
eigenvalue c ; namely, βu = cu. Applying β from the left again, we get

β2u = c βu → u = c2u → c2 = 1. (3.14)

Thus, the eigenvalues of β should be ±1. Similarly, the eigenvalues of αi should
also be ±1.

4. The rank of αi and β is even. Since β is hermitian, it can be diagonalized by
some matrix S:

SβS−1 =


c1

. . .

cn

 , (3.15)

where ci are the eigenvalues of β. Taking the trace, and using (3.13),

Tr(SβS−1) = Tr(S−1Sβ) = Trβ =
∑
i

ci . (3.16)

Since Trβ = 0 and ci = ±1, n should be even. The proof is the same for αi.
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5. αi and β are linearly independent. Suppose β can be written as a linear com-
bination of αi: β = biαi where bi are some c-numbers. Then, using {β , αj} = 0
(3.9),

0 = {β , αj} = {biαi , αj} = bi{αi , αj} = 2bj . (3.17)

where we have used the linearity of the anticommutator

{cA,B} = {A, cB} = c{A,B} (c : c-number; A,B : matrices). (3.18)

We thus have bj = 0 (j = 1, 2, 3); namely, β cannot be written as a linear
combination of αi’s. Similarly, αi cannot be written as a linear combination of
the rest.

An n × n complex matrix A has 2n2 degrees of freedom, and out of which n2

are taken away by the hermitian condition A† = A.2 Together with the traceless
requirement which takes away one degree of freedom, we are left with 2n2−n2− 1 =
n2 − 1 degrees of freedom. Thus, n should be larger than 2 to have at least four
independent such matrices (α⃗ and β). Since n should be even, αi and β are then
independent, traceless, hermitian anticommuting matrices of rank 4 or more.

Now we will explicitly construct the 4 × 4 matrices αi and β. A well-known set
of linearly independent anticommuting matrices is the Pauli matrices σi (i = 1, 2, 3)
given by

σ1 =
(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (3.19)

which are also hermitian and traceless

σ†i = σi, Trσi = 0 (i = 1, 2, 3) (3.20)

and satisfy

σ2
i = 1 (i = 1, 2, 3) , σiσj = −σjσi = iσk (i, j, k : cyclic), (3.21)

or equivalently,

{σi, σj} = 2 δij
[σi, σj] = 2 i ϵijkσk

(i, j, k = 1, 2, 3) . (3.22)

In (3.21), ‘1’ is actually a 2× 2 identity matrix, and in (3.22) the identity matrix on
the right hand side is omitted. Hereafter, the n × n identity matrix is often written
as the number ‘1’ for simplicity.

2The hermiticity condition of an n× n matrix A is given by A∗
ij = Aji. It contains n equations

for the diagonal elements A∗
ii = Aii each of which removes one degree of freedom, and n(n − 1)/2

equations of the form A∗
ij = Aji (i ̸= j) for off-diagonal elements each of which removes two degrees

of freedom. Thus, the total degrees of freedom removed is n+ 2× n(n− 1)/2 = n2.
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Exercise 3.1 Explicitly verify the relations (3.22 ).

Exercise 3.2 Use the properties of the Pauli matrixes (3.22 ) to prove

(⃗a · σ⃗)(⃗b · σ⃗) = a⃗ · b⃗+ iσ⃗ · (⃗a× b⃗) (3.23)

and

ei⃗a·⃗σ = cos a+ iâ · σ⃗ sin a (3.24)

where a⃗ and b⃗ are 3-component vectors, and

a = |a|, â = a⃗/a, σ⃗ = (σ1, σ2, σ3) . (3.25)

One important feature of the Pauli matrices is that σi/2 act as the spin-1/2 angular
momentum operators. Indeed, from (3.22), we see that σi/2 satisfy the commutation
relation of angular momentum [Ji , Jj] = i ϵijkJk:[

σi
2
,
σj
2

]
= i ϵijk

σk
2
. (3.26)

The Pauli matrices are independent, hermitian, traceless, anticommuting, and thier
squares are unity. The problem of course is that there are only three of them while
we need four. It is, however, a good place to start. So we try the following:

αi =
(
0 σi
σi 0

)
, β =

(
I 0
0 −I

)
(3.27)

where I is the 2× 2 identity matrix. These are clearly hermitian and traceless. It is
also straightforward to see that they satisfy the relations (3.9). For example,

{αi , αj} = αiαj + αjαi

=
(
0 σi
σi 0

)(
0 σj
σj 0

)
+
(
0 σj
σj 0

)(
0 σi
σi 0

)
=

(
σiσj 0
0 σiσj

)
+
(
σjσi 0
0 σjσi

)
=

( {σi, σj} 0
0 {σi, σj}

)
= 2δij , etc. (3.28)

Thus, we now have an equation which is linear in time derivative and consistent with
the relativistic relation E2 = P⃗ 2 +m2. Namely, combining (3.1) and (3.5),

i
∂

∂t
ψ(x) = [α⃗ · (−i∇⃗) + βm]ψ(x) , (3.29)
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where αi and β are 4×4 matrices defined by the relations (3.9) and explicitly given by
(3.27). Since αi and β are 4×4 matrices, the wave function ψ has to be a 4-component
quantity (called a Dirac spinor, a 4-component spinor, or simply a spinor):

ψ(x) =


ψ1(x)
ψ2(x)
ψ3(x)
ψ4(x)

 , ψn (n = 1, 2, 3, 4) : complex (3.30)

The indexes of the four components have nothing to do with the space-time. The
multiple components were introduced to satisfy the required relations among αi and
β. We will see later that they represent the degrees of freedom corresponding to spin
up and down as well as those corresponding to electron and its antiparticle positron.
We will call this four-dimensional space the ‘spinor space’.

The equation (3.29) can be written in a way that treats the time and space com-
ponent more symmetrically. This can be done by multiplying β from the left:

iβ
∂

∂t
ψ = [βαi(−i∇i) +m]ψ , (3.31)

and defining four ‘gamma’ matrices out of αi and β:

γ0 ≡ β, γi ≡ βαi (i = 1, 2, 3) , (3.32)

where we will adopt the standard superscript/subscript rule for the index of the
gamma matrices. Then, together with ∂0 = ∂/∂t,∇i = ∂i , it can be written as[

i(γ0∂0 + γi∂i)−m
]
ψ = 0 (3.33)

or
(iγµ∂µ −m)ψ = 0 . (3.34)

This equation is called the Dirac equation. It is often written as

(i∂/ −m)ψ = 0 . (3.35)

where we have defined the notation

a/
def≡ γµaµ (3.36)

with aµ being any 4-component quantity.
From the properties (3.9) of αi and β, it can be easily shown that the four ma-

trices introduced in (3.32) satisfy the following anticommutation relations of utmost
importance:

{γµ, γν} = 2 gµν , (3.37)

or equivalently, γ0
2
= 1, γi

2
= −1, and all four matrices anticommute among them-

selves. This relation (3.37) is sometimes called the Clifford algebra, and is entirely
equivalent to (3.9).



56 CHAPTER 3. THE DIRAC THEORY

Exercise 3.3 Gamma matrices.
Use the definition of the γ matrices γ0 = β, γi = βαi (i = 1, 2, 3), and the relations
among β and αi (3.9 ) to verify the anticommutation relations (3.37 ).

The matrix γ0 is hermitian while γi are anti-hermitian (i.e. its hermitian conjugate
is the negative of itself): since αi and β are hermitian,

γ0
†
= γ0, (since γ0 = β)

γi
†
= (βαi)

† = α†iβ
† = αiβ = −βαi = −γi . (3.38)

The following, however, is true for all µ:

γ0γµ†γ0 = γµ . (3.39)

Using the explicit representation (3.27) of αi and β, the gamma matrices can be
written as

γ0 =
(
I 0
0 −I

)
, γi =

(
0 σi
−σi 0

)
. (3.40)

This is not the only explicit expression of the 4× 4 matrices that satisfy (3.37). This
particular representation is called the Dirac representation, and is the standard one
we will use in this book. The anticommutation relation {γµ, γν} = 2 gµν and the
hermiticity relation γ0γµ†γ0 = γµ, however, are independent of representation since
they are direct consequences of the anticommutation relation (3.9) and hermiticity of
αi and β.

Just to make sure that we know what is going on, let’s completely expand the
Dirac equation (i∂/ −m)ψ = 0, or iγµ∂µψ = mψ, using the Dirac representation:

i



1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


︸ ︷︷ ︸

γ0

∂0 +


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0


︸ ︷︷ ︸

γ1

∂1 +


0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0


︸ ︷︷ ︸

γ2

∂2

+


0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0


︸ ︷︷ ︸

γ3

∂3



ψ1

ψ2

ψ3

ψ4

 = m


ψ1

ψ2

ψ3

ψ4

 , (3.41)

which is a set of four equations given by

i [∂0ψ1 + (∂1 − i∂2)ψ4 + ∂3ψ3] = mψ1 ,
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i [∂0ψ2 + (∂1 + i∂2)ψ3 − ∂3ψ4] = mψ2 ,

i [− ∂0ψ3 − (∂1 − i∂2)ψ2 − ∂3ψ1] = mψ3 ,

i [− ∂0ψ4 − (∂1 + i∂2)ψ1 + ∂3ψ2] = mψ4 . (3.42)

This looks complicated, but what matters is the structure of the gamma matrices,
and it is almost all contained in the relation {γµ, γν} = 2 gµν . It is actually as simple
as indicated by the concise expression (i∂/ −m)ψ = 0.

Exercise 3.4 Hermiticity of H = α⃗ · (−i∇⃗) +mβ.
Suppose a 4-component spinor ψ is an eigenvector of H with an eigenvalue c :

Hψ(x) = cψ(x), ψ(x) =


ψ1(x)
ψ2(x)
ψ3(x)
ψ4(x)

 (3.43)

with
H = αi(−i∇i) +mβ , (3.44)

or more explicitly,
−iαi(∇iψ) +mβψ = cψ . (3.45)

The parameter m is real, and αi, β are constant hermitian matrixes:

α†i = αi, β† = β . (3.46)

Show that the eigenvalue c is real. Assume that the wave function ψ(x) vanishes at
infinite distance from the origin. (hint: Multiply the row vector ψ† to (3.45) from the
left and integrate over d3x, Then take hermitian conjugate of (3.45), multiply ψ from
the right, and integrate over d3x. Compare the two using a partial integration.)

3.2 Conserved current

Now, let’s see if we can construct a conserved current out of solutions of the Dirac
equation. If we can somehow find a conserved current, then it is naturally inter-
preted as the probability current. The basic procedure is similar to the cases of
the Schrödinger equation or the Klein-Gordon equation. Multiplying the hermitian
conjugate of a spinor ψ

ψ†
def≡ (ψ∗1, ψ

∗
2, ψ

∗
3, ψ

∗
4) (a row vector) (3.47)

to the Dirac equation iγµ∂µψ = mψ on the left,

i ψ†γµ∂µψ = mψ†ψ , (3.48)
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which has the form

iψ†︷ ︸︸ ︷
( · · · · )

γµ︷ ︸︸ ︷
· · · ·
· · · ·
· · · ·
· · · ·



∂µψ︷ ︸︸ ︷
·
·
·
·

 =

mψ†︷ ︸︸ ︷
( · · · · )

ψ︷ ︸︸ ︷
·
·
·
·

 . (3.49)

Next, we take the hermitian conjugate of the Dirac equation iγµ∂µψ = mψ to obtain

−i (∂µψ)†γµ† = mψ† . (3.50)

Multiplying ψ from the right,

−i (∂µψ)†γµ†ψ = mψ†ψ . (3.51)

Subtracting (3.51) from (3.48),

i [ψ†γµ(∂µψ) + (∂µψ)
† γµ†︸︷︷︸
γµ?

ψ] = 0 (3.52)

Now, only if γµ† = γµ were true, then this would become i ∂µ(ψ
†γµψ) = 0, and thus

we would identify ψ†γµψ as the conserved current. However, γi (i = 1, 2, 3) are not
hermitian as we have seen in (3.38). Instead, what we have is γ0γµ†γ0 = γµ (3.39).
As we will see below, we can take advantage of this relation if we define a new kind
of inner product of two spinors ψ1 and ψ2 by

ψ†1γ
0ψ2

def≡ ψ̄1ψ2 , (3.53)

where we have defined a new kind of adjoint by

ψ̄
def≡ ψ†γ0 , (3.54)

which we will call ‘spinor adjoint’. Similarly, we define the spinor adjoint of a 4 × 4
matrix by

M̄
def≡ γ0M †γ0 . (3.55)

Using this definition, the relation γ0γµ†γ0 = γµ can be written as

γµ = γµ , (3.56)

which is equivalent to γ0
†
= γ0 and γi

†
= −γi. Before moving on, let’s become

familiar with operations of the spinor adjoints.
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Spinor adjoints
For two spinors a, b, and 4 × 4 matrices Mi (i = 1, . . . , n) the quantity b̄M1 . . .Mna
is a complex number, and its complex conjugate is

(b̄M1 . . .Mna)
∗ = (b†γ0M1 . . .Mna)

∗

= a†M †
n . . .M

†
1 γ

0†︸︷︷︸
γ0

b

(inserting γ0
2
= 1 almost everywhere)

= a†γ0︸ ︷︷ ︸
ā

γ0M †
nγ

0︸ ︷︷ ︸
M̄n

γ0 . . . γ0 γ0M †
1γ

0︸ ︷︷ ︸
M̄1

b (3.57)

Thus, we have

(b̄M1 . . .Mna)
∗ = ā M̄n . . . M̄1b . (3.58)

Similarly, the adjoint of a column vector M1 . . .Mna is by the definition (3.54),

M1 . . .Mna ≡ (M1 . . .Mna)
†γ0

= a†M †
n . . .M

†
1γ

0

= a†γ0
2
M †

nγ
02 . . . γ0

2
M †

1γ
0

= ā M̄n . . . M̄1 . (3.59)

Namely,

M1 . . .Mna = āM̄n . . . M̄1 . (3.60)

The general rule is thus similar to the case of hermitian conjugate; namely, one simply
takes spinor adjoint of each, or take it away if it already has the adjoint symbol, and
reverse the order. This applies also to products of matrices. Furthermore, a complex
number becomes its complex conjugate when the spinor adjoint is taken:

ηa = η∗ā (η : complex number) (3.61)

In passing, we note that (3.60) and (3.61) are valid when each component of the
spinor a is an operator which is relevant when we quantize the fields later. The
relation (3.62) is also valid when a and b are operators; only difference being that the
product b̄M1 . . .Mna is now an operator and the complex conjugation needs to be
replaced with hermitian conjugation:

(b̄M1 . . .Mna)
† = ā M̄n . . . M̄1b (a, b: operators) . (3.62)
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Now we will repeat the failed attempt to construct a conserved current, this time
replacing the hermitian conjugation with the spinor adjoint. Multiplying ψ̄ to the
Dirac equation iγµ∂µψ = mψ from the left,

i ψ̄γµ∂µψ = mψ̄ψ . (3.63)

Noting that ∂µψ = ∂µψ̄, we take the spinor adjoint of the Dirac equation,

−i (∂µψ̄) γµ︸︷︷︸
γµ

= mψ̄ , (3.64)

where we have used γµ = γµ which is the critical step, then multiply ψ from the right
to get

−i (∂µψ̄)γµψ = mψ̄ψ . (3.65)

Subtracting (3.65) from (3.63), we then have a conserved current:

i [ψ̄γµ(∂µψ) + (∂µψ̄)γ
µψ] = i ∂µ(ψ̄γ

µψ) = 0 (3.66)

or
∂µj

µ = 0, with jµ ≡ ψ̄γµψ . (3.67)

Is this a Lorentz-invariant equation? Actually, we do not know how jµ transforms
under Lorentz transformation since we do not know how the spinor ψ transforms; it
is not any one of the quantities we know so far: scalar, vector, tensor, etc. The spinor
ψ is a 4-component quantity, but it cannot be a Lorentz 4-vector since the indexes
have nothing to do with the space-time. Since we do not know how ψ transforms
under Lorentz transformation, we do not even know if the Dirac equation is Lorentz-
invariant or not at this point. Shortly, we will find how a spinor transforms under
a Lorentz transformation by requiring that the Dirac equation becomes Lorentz-
invariant. For now, however, let’s examine the time component of the conserved
current we just found, which is supposed to be the probability density: using ψ̄ ≡
ψ†γ0,

j0 = ψ̄γ0ψ = (ψ† γ0)γ0︸ ︷︷ ︸
1

ψ = ψ†ψ

= |ψ1|2 + |ψ2|2 + |ψ3|2 + |ψ4|2 ≥ 0 . (3.68)

Thus, the probability density is always positive, and Dirac seems to have fixed the
problem of negative probability. As mentioned earlier, however, this quantity will be
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reinterpreted as the charge current in the framework of the quantum field theory, and
will acquire both positive and negative values.

Incidentally, (3.64) gives the equation that has to be satisfied by the adjoint spinor
ψ̄ in order for the original wave function ψ to be a solution of the Dirac equation:

−i (∂µψ̄)γµ = mψ̄ (3.69)

which is often written as
ψ̄ (iγµ

←
∂µ +m) = 0 , (3.70)

or
ψ̄ (i

←
∂/ +m) = 0 , (3.71)

where the symbol
←
∂µ is defined to operate on everything to its left:

a
←
∂µb

def≡ (∂µa)b . (3.72)

This funny notation is a result of a compromise between the desire to put γµ and

∂µ next to each other so that it can be combined as
←
∂/ and the necessity to put the

matrix γµ to the right of ψ̄ which is a row vector.

3.3 Lorentz invariance of the Dirac equation

We have seen that the Klein-Gordon equation is Lorentz-invariant, which meant the
following: if a function of space-time ϕ(x) satisfies the equation (∂2 +m2)ϕ(x) = 0,
then a new function defined by

ϕ′(x′) = ϕ(x), x′ = Λx (3.73)

satisfies (∂′2 +m2)ϕ′(x′) = 0. Note that the function ϕ′(x′) is uniquely defined once
the original function ϕ(x) and the Lorentz transformation Λ are given. In particular, a
critical condition in defining ϕ′(x′) uniquely was the definition of scalar field ϕ′(x′) =
ϕ(x), which means that the value at an event point x in the original frame is the
same in the transformed frame if measured at the same event point (now given by
the coordinate x′ = Λx in that frame). The value of ϕ′ at a given event point is
completely defined by the value of ϕ at the same event point, and does not depend
on the values of any other event points. Also, note that the functional shape of ϕ′ is
in general different from that of ϕ; namely, if we give the same argument to ϕ′ and
ϕ, then in general ϕ′(x) ̸= ϕ(x).

Similarly, the electromagnetic wave equation

∂2Aµ(x) = jµ(x) (µ = 0, 1, 2, 3) , (3.74)
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where the electromagnetic 4-potential Aµ and the charge current jµ are both Lorentz
4-vectors, is Lorentz-invariant. 3 Namely, if Aµ(x) and jµ(x) satisfy the above equa-
tion, then a new set of fields defined by the vector field condition

A′µ(x′) = Λµ
αA

α(x), j′µ(x′) = Λµ
β j

β(x), x′ = Λx , (3.75)

satisfy ∂′2A′µ(x′) = j′µ(x′) as can be readily verified. The function Aµ(x) [or A′µ(x′)]
assigns a set of four numbers to each event point, and the four values in the trans-
formed frame A′µ(x′) at an event point are completely determined by the four values
in the original frame at the same event point, they are simply mixed up by the matrix
Λ. Note that the new values A′µ(x′) do not depend on the values of Aµ(x) at other
event points.

Then, how does a Dirac spinor field ψ(x) transform? We do not know at this
point, except that as in the case of scalar and vector fields, the four values ψ′(x′) in
a transformed frame will depend only on the four values in the original frame ψ(x)
associated with the same event point, presumably mixed up by some 4× 4 matrix S:

ψ′(x′) = S(Λ)ψ(x) , x′ = Λx . (3.76)

Also, just like the mixing matrix (Λ) for the vector field depended only on the Lorentz
transformation and did not depend on event point x, we expect that S also depends
only on the Lorentz transformation Λ.

Our strategy is to derive the condition for S that makes the Dirac equation
Lorentz-invariant, then explicitly construct such a matrix, out of which we will obtain
explicit solutions of the Dirac equation. We will then find that the solutions contain
the spin-1/2 structure and the particle-antiparticle degrees of freedom.

Thus, we require that if ψ′(x′) satisfy (i∂/ ′ −m)ψ′(x′) = 0 then it leads to (i∂/ −
m)ψ(x) = 0 when ψ′(x′) and ψ(x) are related by (3.76). Specifically, we require
that the numerical values of γµ will be the same in any frame; namely, for the Dirac
representation, the form of the four equations is given by (3.42) and is the same in
any frame. Using ψ′(x′) = Sψ(x), (i∂/ ′ −m)ψ′(x′) = 0 becomes

0 = (iγµ∂′µ︸︷︷︸
Λµ

α∂α

−m) ψ′(x′)︸ ︷︷ ︸
Sψ(x)

= i γµ Λµ
α∂αSψ(x)︸ ︷︷ ︸

SΛµ
α∂αψ(x)

−mSψ(x)

(×S−1) 0 = i S−1γµSΛµ
α∂αψ(x)−mψ(x) , (3.77)

3If one uses a gauge which is not Lorentz-invariant, such as the Coulomb gauge, then the correct
statement is that the equation is Lorentz-invariant up to gauge transformation. This complication
comes about due to the masslessness of photon. We will discuss this point in detail later.
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where in the second line, S can come out of ∂α since S is a constant matrix, and
S can move past Λµ

α because Λµ
α is just a number for given α and µ. Note that

we have consistently suppressed the spinor indexes while all space-time indexes have
been explicitly written out. The necessary condition for this to become i γα∂αψ(x)−
mψ(x) = 0 for any ψ(x) is then

S−1γµSΛµ
α = γα (3.78)

or multiplying Λν
α and summing over α,

S−1γµS Λµ
αΛν

α︸ ︷︷ ︸
gµ

ν

= Λν
αγ

α ; (3.79)

namely,

S−1γνS = Λν
αγ

α . (3.80)

By tracing back the derivation, one sees that this is also a sufficient condition; namely,
if a spinor field transforms under a Lorentz transformation Λ by ψ′(x′) = Sψ(x)
where S is a matrix that satisfies S−1γνS = Λν

αγ
α, then the Dirac equation be-

comes Lorentz-invariant. Note that we did not restrict ourselves to proper and
orthochronous Lorentz transformations; thus, the condition (3.80) applies to any
Lorentz transformations including T and P .

The left hand side of (3.80) indicates a certain transformation of γµ, and the
right hand side is exactly like the transformation of a vector. Does that mean that
the gamma matrices that appear in the Dirac equation transform as a vector? The
answer is no. In fact, the condition (3.80) was obtained by requiring that the gamma
matrices in the Dirac equation do not change under a Lorentz transformation. It will
turn out, however, that one can use (3.80) to construct quantities that transform as
a vector. One example is the conserved current jµ = ψ̄γµψ as will be discussed in
detail shortly.

Let’s move on to actually constructing S(Λ). Our starting point is that the map-
ping between S and Λ preserves the product rule, which can be seen as follows.
Suppose S(Λ1), S(Λ2), and S(Λ1Λ2) correspond to Λ1, Λ2, and Λ1Λ2, respectively:

S(Λ1) ↔ Λ1 ,

S(Λ2) ↔ Λ2 , (3.81)

S(Λ1Λ2) ↔ Λ1Λ2 .

Under the Lorentz transformation Λ1, a spinor ψ will be transformed to S(Λ1)ψ. If
we perform an additional transformation Λ2, which makes the total transformation
Λ2Λ1, then this spinor will transform to S(Λ2)[S(Λ1)ψ] = [S(Λ2)S(Λ1)]ψ. Since this
should hold for any spinor ψ, we have S(Λ2Λ1) = S(Λ2)S(Λ1), or

S(Λ2)S(Λ1) ↔ Λ2Λ1 , (3.82)



64 CHAPTER 3. THE DIRAC THEORY

which means that S’s and Λ’s have exactly the same group structure [see (1.146)
through (1.153)]; in fact, S is said to be the representation of the Lorentz group in the
spinor-space. If we restrict ourselves to Lorentz transformations that are continuously
connected to the identity, then S and Λ can be written in exponential forms using
generators, and the generators for S and those for Λ should have the same structure
constants. The problem then reduces to finding the set of generators for S that
satisfy the same commutation relations as Mµν (or Ki and Li) and are consistent
with S−1γνS = Λν

αγ
α.

Suppose Bµν be the generators for S corresponding to the generators Mµν for Λ.
Namely, the mapping between S and Λ is given by the same real parameters aµν :

S = e
1
2
aµνBµν ↔ Λ = e

1
2
aµνMµν

. (3.83)

Let’s first find the condition for Bµν that satisfy S−1γνS = Λν
αγ

α. Assume that aµν
are small and expand both sides of S−1γµS = Λµ

νγ
ν : using (eA)−1 = e−A (1.109),

S−1γµS = e−
1
2
aαβB

αβ

γµe
1
2
aα′β′B

α′β′

=
(
1− 1

2
aαβB

αβ
)
γµ
(
1 +

1

2
aαβB

αβ
)
+ · · ·

= γµ +
1

2

(
γµaαβB

αβ − aαβBαβγµ
)

︸ ︷︷ ︸
aαβ[γ

µ, Bαβ]

+ · · · , (3.84)

and the right hand side is

Λµ
νγ

ν =
(
e

1
2
aαβM

αβ
)µ

νγ
ν

=
(
1 +

1

2
aαβM

αβ
)µ

νγ
ν + · · ·

=
[
gµν +

1

2
aαβ(M

αβ)µν

]
γν + · · ·

= γµ +
1

2
aαβ(M

αβ)µνγ
ν + · · · . (3.85)

Requiring that (3.84) is equal to (3.85) for any aαβ, we obtain

[γµ, Bαβ] = (Mαβ)µνγ
ν , (3.86)

which is the condition that the generators of S (Bµν ’s) have to satisfy in order for
the Dirac equation to be Lorentz-invariant under the (infinitesimal) transformation
ψ′(x′) = Sψ(x). Note that γµ and Bµν are 4×4 matrices (for given µ, ν) that operate
in the spinor space while (Mαβ)µν is just a number. Again, we are suppressing the
spinor indexes while writing out space-time indexes.
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We will now show that the solution to (3.86) is given by

Bαβ =
1

4
[γα, γβ] (3.87)

or equivalently (using {γα, γβ} = 2gαβ),

Bαβ =


1

2
γαγβ (α ̸= β)

0 (α = β)
. (3.88)

For α = β, the condition (3.86) is clearly satisfied since in that case Mαβ = 0 and
Bαβ = 0. For α ̸= β, we have to work out the commutator [γµ, γαγβ]. Using the
identity

[A,BC] = ABC︷ ︸︸ ︷
+BAC −BAC

−BCA = {A,B}C −B{A,C} , (3.89)

we have

[γµ, γαγβ] = {γµ, γα}︸ ︷︷ ︸
2gµα

γβ − γα {γµ, γβ}︸ ︷︷ ︸
2gµβ

= 2 gαµγβ − 2 gβµγα

= 2(gαµgβν − gβµgαν︸ ︷︷ ︸
(Mαβ)µν

)γν , (3.90)

where we have used the explicit expression (Mαβ)µν = gαµ g
β
ν − gβµ gαν (1.86). Di-

viding by 2 on both sides, we have

[
γµ,

1

2
γαγβ

]
= (Mαβ)µνγ

ν (α ̸= β) . (3.91)

Namely, the condition (3.86) is satisfied for Bµν given by (3.88) [or (3.87)] for all α
and β.

We have shown that for an infinitesimal Lorentz transformation given by param-
eters aαβ, the matrix S = 1+ (aαβ/2)B

αβ satisfies S−1γνS = Λν
αγ

α to the first order
in aαβ if Bαβ is given by Bαβ = [γα, γβ]/4. Does it hold for a finite Lorentz trans-
formation? Namely, if Λ and S are finite transformations mapped as (3.83) with the
same set of parameters aαβ, then do they satisfy S−1γνS = Λν

αγ
α? This can be easily

proven by dividing Λ and S into n consecutive small transformations:

Λ = λn =
(
1 +

1

2

aαβ
n
Mαβ

)n

, S = sn =
(
1 +

1

2

aαβ
n
Bαβ

)n

. (3.92)
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Since s and λ are infinitesimal transformations mapped by the same set of parameters,
we have already proven that

s−1γµs = λµνγ
ν . (3.93)

Multiplying s−1 from the left and s from the right, we get

(s−1)2γµs2 = λµν s
−1γνs︸ ︷︷ ︸
λναγ

α

= (λµνλ
ν
α)γ

α = (λ2)µαγ
α . (3.94)

Repeating the process n times, we obtain

(s−1)n︸ ︷︷ ︸
(sn)−1

γµsn = (λn)µν︸ ︷︷ ︸
Λµ

ν

γν

→ S−1γµS = Λµ
νγ

ν . (3.95)

Thus, we have shown that for any proper and orthochronous Lorentz transforma-
tion Λ given by

Λ = e
1
2
aαβM

αβ

, (3.96)

one can construct a transformation in the spinor space by

S = e
1
2
aαβB

αβ

with Bαβ =
1

4
[γα, γβ] , (3.97)

such that S−1γµS = Λµ
νγ

ν holds, or equivalently, the Dirac equation becomes in-
variant under the transformation ψ′(x′) = Sψ(x). It is straightforward to show that
the generators Bαβ satisfy the same commutation relations as those of Mαβ, and the
proof is left as an exercise.

Exercise 3.5 Representation of Lorentz group in the spinor space.
Define the generators of boost and rotation in the 4-component spinor space by

boost : Ki ↔ Bb
i ≡ B0i , rotation : Li ↔ Br

i ≡ Bjk (ijk : cyclic) . (3.98)

Show explicitly that the Bb’s and Br’s satisfy the same commutation relations as
satisfied by the K’s and L’s; namely

[Bb
i , B

b
j ] = −ϵijkBr

k

[Br
i , B

r
j ] = ϵijkB

r
k (3.99)

[Br
i , B

b
j ] = ϵijkB

b
k ,

(It is also possible to prove generally. In any case, all you need is Bαβ = 1/2γαγβ (α ̸=
β) and the relation {γµ, γν} = 2 gµν; do not use any explicit representation of the γ
matrixes).
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An important property of S is that its spinor adjoint is the inverse:

S̄ = S−1, or S̄S = 1 , (3.100)

which can be seen by noting that for α ̸= β,

Bαβ =
1

2
γαγβ =

1

2
γβ γα =

1

2
γβγα = −1

2
γαγβ = −Bαβ (3.101)

(for α = β, Bαβ = −Bαβ holds trivially since Bαβ = 0) and thus,

S̄ = e
1
2
aαβBαβ

=
∞∑
k=0

1

k !
(1
2
aαβ Bαβ︸︷︷︸
−Bαβ

)k

= e−
1
2
aαβB

αβ

= S−1 , (3.102)

where we have used Mk = (M̄)k and e−A = (eA)−1.
Using (3.100), we can easily see that the inner product āb of two spinors a and b

is invariant under Lorentz transformation in the spinor space:

a′ = Sa , b′ = Sb , (3.103)

ā′b′ = Sa︸︷︷︸
āS̄

Sb = ā S̄S︸︷︷︸
1

b = āb . (3.104)

The relation S̄ = S−1 or γ0S†γ0 = S−1 can also be written as (by multiplying γ0 from
the left and S from the right)

S†γ0S = γ0 . (3.105)

Note the parallel between the space-time and the spinor space: in the space-time, the
Lorentz transformation of a 4-vector A is given by A′ = ΛA which keeps the inner
product A ·B = ATGB (1.23) invariant, and the metric G is unchanged under the
transformation: ΛTGΛ = G. In the spinor space, the Lorentz transformation of a
spinor a is given by a′ = Sa which keeps the inner product āb = a†γ0b invariant,
and the ‘metric’ γ0 is invariant under the transformation: S†γ0S = γ0. Table 3.1
summarizes the parallelism.

Now it is trivial to show that the conserved current we derived earlier jµ(x) (3.67)
is indeed a 4-vector: using ψ′(x′) = Sψ(x),

j′µ(x′) = ψ̄′(x′)γµψ′(x′)

= ψ̄(x) S̄ γµ S︸ ︷︷ ︸
S−1γµS = Λµ

νγ
ν by (3.80)

ψ(x)

= Λµ
νψ̄(x)γ

νψ(x)

→ j′µ(x′) = Λµ
νj

ν(x) . (3.106)
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space Lorentz transformation inner product metric invariance

space-time A′ = ΛA A ·B ≡ ATGB ΛTGΛ = G

spinor a′ = Sa āb ≡ a†γ0b S†γ0S = γ0

Table 3.1: Correspondence between the space-time and the spinor space. A and B
are 4-vectors and a and b are 4-component spinors.

Note that the current jµ is a 4-vector even if ψ(x) does not satisfy the Dirac equation.
If ψ(x) does satisfy the Dirac equation, then jµ is conserved: ∂µj

µ = 0, and this, we
now know, is a Lorentz-invariant statement; namely, if the current is conserved in one
frame, then it is conserved in any other frame. Similarly, a current consisting of two
spinor fields ψ1(x) and ψ2(x)

jµ12(x) = ψ̄1(x)γ
µψ2(x) (3.107)

is also a 4-vector; namely,
j′µ12(x

′) = Λµ
νj

ν
12(x) , (3.108)

which can be easily shown to be conserved if ψ1 and ψ2 are solutions of the Dirac
equation (with the same mass).

Thus, we have constructed a scalar quantity and a vector quantity out of two
spinors ψ1 and ψ2. These are not the only quantities one can form out of two spinors
that transforms in a well-defined manner under Lorentz transformation. Such quan-
tities are called the bilinear covariants which we will study systematically in the next
section.

3.4 Bilinear covariants

Let’s consider a complex number of the form

f = āΓb (3.109)

where Γ is a constant 4 × 4 complex matrix, and a and b are spinors; namely they
transform under a Lorentz transformation Λ as

a′ = S(Λ)a , b′ = S(Λ)b . (3.110)

Or a and b may be spinor fields:

a′(x′) = S(Λ)a(x) , b′(x′) = S(Λ)b(x) (x′ = Λx) . (3.111)
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The following discussion applies to both cases.
A complex 4 × 4 matrix has 16 complex elements, and thus any such matrix

can be written as a linear combination of 16 independent matrices with complex
coefficients. As we will see below, the 16 independent matrices can be chosen such
that the quantities

āΓib (i = 1, . . . , 16) (3.112)

are grouped into five sets each of which transform in a well-defined manner under
proper and orthochronous transformations (scalar, vector and tensor) and the space
inversion P (how it changes sign). Such quantities are called the bilinear covariants.
To study them, let’s first find the spinor representation of the space inversion P .

Space inversion in the spinor space
Recall that the condition for the invariance of the Dirac equation, S−1γµS = Λµ

νγ
ν ,

holds for Λ = P also, where P is the space inversion:

P =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 , (3.113)

which is also called the parity transformation. Namely, SP ≡ S(P ) should satisfy

S−1P γ0SP = P 0
νγ

ν = γ0 or γ0SP = SPγ
0 (3.114)

S−1P γiSP = P i
νγ

ν = −γi or γiSP = −SPγ
i . (3.115)

Namely, SP commutes with γ0 and anticommutes with γ i. This is accomplished by
taking

SP = ηγ0 , (3.116)

where η is an arbitrary complex constant. We then require that SP also satisfies the
property S̄S = 1 (3.100):

S̄PSP = ηγ0 ηγ0 = η∗η γ0
2
= |η|2 = 1 . (3.117)

We will now arbitrarily choose η to be +1:

SP = γ0 (η = +1) . (3.118)

Here we are requiring that the Dirac equation be invariant under space inversion,
but should it be? Experiments tell us that electromagnetic and strong interactions
are invariant under space inversion, but weak interaction is not. Since there are some
interactions that are invariant under space inversion, the free field part should better
be invariant also. In fact, the rule of the game is to build in as many symmetries as
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possible into the theory as long as they do not contradict with experimental facts;
such theory will have more predictive power than otherwise. Later, we will deal with
the question of discrete symmetries in more detail in the context of quantized field.
Now, in the Dirac representation the space inversion in the spinor space amounts to
changing the sign of the bottom two components: noting that x′ = Px,

ψ′(x′) = SPψ(x) =
(
I 0
0 −I

)
ψ1(x)
ψ2(x)
ψ3(x)
ψ4(x)

 =


ψ1(P

−1x′)
ψ2(P

−1x′)
−ψ3(P

−1x′)
−ψ4(P

−1x′)

 . (3.119)

Namely, if ψ(x) satisfies the Dirac equation (i∂/ − m)ψ(x) = 0, then ψ′(x′) defined
above satisfies the Dirac equation (i∂/ ′ −m)ψ′(x′) = 0.

Five types of bilinear covariants
Now we will write down five types of bilinear covariants and check the transforma-
tion properties under proper and orthochronous transformations and under the parity
transformation SP . In this section, we will denote a proper and orthochronous trans-
formation by S for simplicity.

All we use in the following is

S̄γµS = Λµ
νγ

ν , SP = γ0 ,

S̄S = 1 , S̄PSP = 1 .
(3.120)

Transformed quantities, either by a proper and orthochronous transformation S or
by the parity transformation SP , are denoted with a prime.

1. Scalar

f = āb : transforms as f ′ = f (S) , f ′ = f (SP ) . (3.121)

We have already seen that f ′ = f under a proper and orthochronous transfor-
mation S (3.104). Under the parity transformation, we have

f ′ = a′b′ = SPaSP b = ā S̄PSP︸ ︷︷ ︸
1

b = āb = f (3.122)

2. Vector

fµ = āγµb : transforms as f ′µ = Λµ
νf

ν (S) , f ′µ = fµ (SP ) (3.123)

Again, we have already seen in (3.108) that the set of four quantities, āγµb (µ =
0, 1, 2, 3), as a group transforms as a 4-vector (thereby the name ‘bilinear co-
variants’). Under SP , it transforms as

f ′µ = a′γµb′ = SPaγ
µSP b = ā γ0γµγ0︸ ︷︷ ︸

γµ

b = fµ . (3.124)
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Note that the superscript µ changed to a subscript; namely, the sign of the
time component is unchanged while that of space components flipped, which
is the same as the transformation of the familiar energy-momentum 4-vector
P µ = (E, P⃗ ) under space inversion. This use of the Lorentz index is a bit
sloppy, since it is mixing up the metric gµν and the Lorentz transformation P
which happen to have the same matrix value. The correct expression would be
f ′µ = P µ

νf
ν . Still, it makes expressions compact that we will use it with this

point in mind.

3. Tensor

fµν = āσµνb : transforms as f ′µν = Λµ
αΛ

ν
βf

αβ (S) , f ′µν = fµν (SP ) (3.125)

where

σµν def≡ i

2
[γµ, γν ] =

{
i γµγν (µ ̸= ν)

0 (µ = ν)
(3.126)

Even though Γ = γµγν would do just fine, defining σµν this way makes it
explicitly antisymmetric with respect to the µ and ν indexes, and also the
addition of i makes it hermitian for µ, ν = 1, 2, 3. Note that we have σµν =
2iBµν . Since σµν = −σνµ, fµν is an antisymmetric tensor, and there are six
independent quantities that transform as a set.

The transformation properties can be verified straightforwardly: using the lin-
earity of the commutator and

S̄ [γµ, γν ]S = S̄(γµ︷︸︸︷
SS̄

γν − γν︷︸︸︷
SS̄

γµ)S = [S̄γµS, S̄γνS] , (3.127)

the transformation under S is

f ′µν = ā′σµνb′ = āS̄
i

2
[γµ, γν ]Sb

= ā
i

2
[S̄γµS, S̄γνS]b

= ā
i

2
[Λµ

αγ
α,Λν

βγ
β]b

= Λµ
αΛ

ν
β ā

i

2
[γα, γβ]b = Λµ

αΛ
ν
βf

αβ (3.128)

For SP (= S̄P = γ0), it suffices to check only the non-zero components (namely,
for µ ̸= ν):

f ′µν = ā′σµνb′ = āS̄P σ
µνSP b
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= āγ0(i γµγν)γ0︸ ︷︷ ︸
γ0γµγν

b

= ā (iγµγν)b = fµν , (3.129)

where the indexes µ and ν became subscripts when γ0 was moved over γµγν

because γ0 commutes with γ0 but anticommutes with γi (i = 1, 2, 3).

4. Pseudoscalar

f = āγ5b : transforms as f ′ = f (S) , f ′ = −f (SP ) (3.130)

Namely, a pseudoscalar transforms under proper and orthochronous transfor-
mation just like a scalar (i.e. it does not change its value), but changes sign
under space inversion. The γ5 matrix in the expression above is defined as

γ5
def≡ i γ0γ1γ2γ3 , (3.131)

which, in the Dirac representation, is

γ5 =
(
0 I
I 0

)
. (3.132)

The index ‘5’ is not a Lorentz index and thus there is no distinction between
superscript and subscript. It is designed to anticommute with any one of
γµ (µ = 0, 1, 2, 3):

γµγ5 = γµ(i γ0γ1γ2γ3) = −(i γ0γ1γ2γ3)γµ = −γ5γµ (3.133)

where the minus sign arises because, when γµ moves over the four gamma
matrices γ0γ1γ2γ3, one is γµ itself and three others will anticommute with γµ.
It is also easy to see that γ5 is hermitian and the square is 1. Namely,

{γµ, γ5} = 0 (µ = 0, 1, 2, 3)

γ†5 = γ5 , γ5
2 = 1

. (3.134)

It follows that γ5 commutes with Bµν = 1
4
[γµ, γν ] and thus with any proper and

orthochronous transformation S:

γ5B
µν = γ5

1

4
(γµγν − γνγµ) = 1

4
(γµγν − γνγµ)γ5 = Bµνγ5 (3.135)

γ5S = γ5 e
1
2
aµνBµν

= γ5
∑
k

(
1
2
aµνB

µν
)k

k !
= Sγ5 . (3.136)
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Namely,

[S, γ5] = 0 . (3.137)

The transformation properties can now be verified easily. Under a proper and
orthochronous transformation, we have

f ′ = (āS̄) γ5(S︸ ︷︷ ︸
Sγ5

b) = ā S̄S︸︷︷︸
1

γ5b = f , (3.138)

and under SP , it transforms as

f ′ = (āS̄P )γ5(SP b) = (āγ0)γ5(γ
0︸ ︷︷ ︸

−γ0γ5

b) = −āγ5b = −f . (3.139)

5. Pseudovector (or ‘axial vector’)

fµ = āγµγ5b : transforms as f ′µ = Λµ
νf

ν (S) , f ′µ = −fµ (SP ) (3.140)

Namely, a pseudovector transforms just like a vector under proper and or-
thochronous transformations, and under space inversion it transforms with signs
opposite to those of a vector; i.e. the time component changes sign and the space
components stay the same.

Under a proper and orthochronous transformation S, we have indeed

f ′µ = (āS̄)γµ γ5(S︸ ︷︷ ︸
Sγ5

b) = ā S̄γµS︸ ︷︷ ︸
Λµ

νγ
ν

γ5b

= Λµ
ν(āγ

νγ5b) = Λµ
νf

ν , (3.141)

as stated above, and under the space inversion SP ,

f ′ = (āS̄P )γ
µγ5(SP b) = (āγ0) γµγ5(γ

0︸ ︷︷ ︸
−γ0γµγ5

b) = −āγµγ5b = −fµ , (3.142)

where the index µ has changed from a superscript to a subscript when γ0 is
moved over γµ. The key points are that γ5 commutes with a proper and or-
thochronous transformation S, thus the transformation under S is the same as
a vector, and since γ5 anticommutes with SP = γ0, the changes of sign under
SP are opposite to those of a vector.

And this is all. The five types of bilinear covariants are summarized in Table 3.2.
For a given pair of spinors a and b, here are 16 such quantities formed by 16 matrices
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Type Γi # of Γi under S under SP

(S) Scalar I 1 f ′ = f f ′ = f

(V) Vector γµ 4 f ′µ = Λµ
νf

ν f ′µ = fµ

(T) Tensor σµν 6 f ′µν = Λµ
αΛ

ν
βf

αβ f ′µν = fµν

(A) Axial vector γµγ5 4 f ′µ = Λµ
νf

ν f ′µ = −fµ

(P) Pseudoscalar γ5 1 f ′ = f f ′ = −f

Table 3.2: Bilinear covariants āΓib. S is a proper and orthochronous transformation,
and SP is the space inversion.

Γi (i = 1, . . . , 16). It is straightforward to show that these matrices are independent
and complete; namely, a bilinear quantity formed by an arbitrary complex 4 × 4
matrix āMb can be written uniquely in terms of these bilinear covariants with a set
of complex coefficients ci:

āMb =
16∑
i=1

ci āΓib , (3.143)

and thus we know exactly how it transforms under Lorentz transformations (or more
precisely, under proper and orthochronous transformations and space inversion).

You may be wondering what happened to the pseudotensor which would be fµν =
āσµνγ5b. It actually has the ‘desired’ transformation properties: f ′µν = Λµ

αΛ
ν
βf

αβ

and f ′µν = −fµν as can be readily verified, but we have already exhausted all 16
independent Γ′s, and σµνγ5 is already covered by the ones we have listed: it is easily
shown that

σ0iγ5 = i σjk, σijγ5 = i σk0, (i, j, k : cyclic) . (3.144)

Namely, a pseudotensor quantity can be constructed out of a pair of spinors, but it
is just a rearrangement of the components of the tensor bilinear covariants. In fact,
any product of γ matrixes can be uniquely reduced to the following form by moving
the same γ matrices next to each other and using γµ2 = 1 or −1:

cγµ1 · · · γµn (0 ≤ n ≤ 4, µ1 < . . . < µn) (3.145)

where c is a constant and all γµi are different. Apart from the constant, n = 0 means
it is the identity, n = 1 means it is one of the 4 vectors γµ, n = 2 means it is one
of the 6 tensors iγµγν , n = 3 means it is one of the 4 axial vectors γµγ5, and n = 4
means it is the pseudoscalar γ5. Thus, any product of γ matrixes is one of the 16
matrices listed in the table up to a constant.
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Exercise 3.6 Linear independence of bilinear covariants.

Follow the steps below to prove that the 16 4× 4 matrixes Γi of Table 3.2 are linearly
independent. Use only representation-independent relations. All you need should be
{γµ, γν} = 2 gµν and {γµ, γ5} = 0.

(a) Show that (Γi)
2 = +1 or −1 for i = 1 . . . 16.

(b) Verify that for any Γi (i ̸= 1) there is at least one Γk that anticommutes with it:

ΓiΓk = −ΓkΓi . (3.146)

Using this, show that for i ̸= 1, TrΓi = 0. (hint: express Tr(ΓkΓiΓk) in two ways, one
using Tr(AB) = Tr(BA), and the other using the above anticommutation relation.)

(c) Show that, for any pair i ̸= j, the product of the two Γ’s is just another Γk (k ̸= 1)
times a constant:

ΓiΓj = cΓk (i ̸= j, k ̸= 1) (3.147)

(d) Suppose a set of constants ai (i = 1 . . . 16) exists to satisfy

16∑
i=1

aiΓi = 0 . (3.148)

Take the trace of this equation to show a1 = 0. Multiply by Γk (k ̸= 1) and then take
the trace to show that ak = 0. Thus all a’s are zero. This completes the proof of
independence.

What is the importance of the bilinear covariants? We have already encountered
the conserved current jµ = ψ̄γµψ which is a bilinear covariant; the usefulness of the
bilinear covariants, however, goes far beyond the probability current. In general, when
we study an interaction of two spin-1/2 particles 1 and 2 creating another particle
3, we consider the overlap of the waves ψ1(x) and ψ2(x) of particles 1 and 2 acting
as a source of the wave of particle 3. The stronger the overlap, the more intense
the source is. But what do we mean by the overlap of ψ1 and ψ2 which have four
components each? The classification of the bilinear covariants tells us that there are
only five ways to define the overlap. And the transformation properties of the overlap
should be consistent with the transformation properties of the particle created; for
example, if a particle is created by a vector bilinear covariant, then the particle has
to be represented by a vector field, etc.

Later on when we form Lagrangians of particles and interactions, we will see that
spin-1/2 fields always appear in pairs as bilinear covariants. This is because in order
to form a Lagrangian, which is a Lorentz scalar, 4-component spinors have to be first
combined into bilinear covariants which have definite transformation properties which
can then be combined to form a scalar quantity.
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3.5 Representations of the γ matrices

We mentioned earlier that the Dirac representation of the γ matrices is not the only
explicit expression that satisfies the Clifford algebra {γµ, γν} = 2 gµν . An important
theorem in this regard is the Pauli’s fundamental theorem which states:

If two sets of 4× 4 matrices γµ and γ′µ satisfy

{γµ, γν} = 2 gµν , {γ′µ, γ′ν} = 2 gµν , (3.149)

then there exists a matrix V such that

γ′µ = V γµV −1 (3.150)

and V is unique up to a multiplicative constant.

Furthermore, if γµ and γ′µ are to satisfy the property γµ = γµ and γ′µ = γ′µ in
addition to the Clifford algebra, then the matrix V can be taken to be unitary. This
is seen as follows. First, according to the above theorem, there exists a matrix V that
satisfies γ′µ = V γµV −1. Noting that γµ = γµ means γµ† = γµ (and similarly for γ′µ),

γ′µ† = γ′µ can be written as

V −1 × (V γµV −1)† = V γµV
−1 × V

→ V −1(V −1)†γµ†V †V = γµ

→ (V †V )−1γµ(V
†V ) = γµ , (3.151)

where we have used γµ† = γµ and (V −1)† = (V †)−1. Since Γi (i = 1, · · · , 16) that we
have seen in Table 3.2 are products of γµ’s, they also satisfy

(V †V )−1Γi(V
†V ) = Γi → [Γi, V

†V ] = 0 (i = 1, · · · , 16) . (3.152)

Since Γi (i = 1, · · · , 16) form a complete set, V †V commutes with any 4 × 4 matrix,
and thus V †V should be proportional to the identity matrix. By rescaling, V can be
taken to be unitary:

V †V = a (const), V ′
def≡ a1/2V → V ′†V ′ = 1 . (3.153)

Such unitary matrix V ′ is unique up to an overall phase.
Suppose a spinor wave function ψ(x) satisfies the Dirac equation (i ∂/ −m)ψ = 0,

then

︷︸︸︷
V

(iγµ∂µ −m)︷ ︸︸ ︷
V −1V

ψ = 0
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→ (i V γµV −1︸ ︷︷ ︸
γ′µ

∂µ −m)V ψ = 0

→ (iγ′µ∂µ −m)ψ′ = 0 with ψ′ = V ψ ; (3.154)

namely, the new wave function V ψ(x) satisfies the Dirac equation with the new
gamma matrices given by γ′µ = V γµV −1. Note that the two wave functions ψ(x) and

V ψ(x) represent exactly the same physical state (same E, P⃗ , spin etc.), but simply
given in different representation where the meaning of the spinor indexes are modified
(which indexes correspond to spin-up, down etc.). This is in contrast to the Lorentz

transformation where the physical parameters of the particle such as E, P⃗ and spin
are transformed to different values.

Other representations often used are the Weyl representation or the ‘chiral repre-
sentation’:

γ0 =
(
0 I
I 0

)
, γi =

(
0 σi
−σi 0

)
, γ5 =

(
I 0
0 −I

)
, (3.155)

which decouples two spin states (left and right handed spins) for massless particles
as the top two and the bottom two components of ψ(x), and the Majorana represen-
tation, which is entirely imaginary:

γ0 =
(

0 σ2
σ2 0

)
, γ1 =

(
iσ1 0
0 iσ1

)
, γ2 =

(
0 −σ2
σ2 0

)
, γ3 =

(
iσ3 0
0 iσ3

)
,

γ5 =
(
σ2 0
0 −σ2

)
. (3.156)

The matrix γ5 is always defined as γ5 ≡ i γ0γ1γ2γ3.

Exercise 3.7 Verify that γ matrixes in Weyl and Majorana representations indeed
satisfy the anticommutation relations (3.37). Check for all combinations of (µ, ν),
but do so systematically.

3.6 Spin of the electron

Review of spin-1/2 formalism
Let’s review the spin-1/2 formalism in non-relativistic quantum mechanics. We define
|↑⟩ to be the state with spin in the +z direction, and |↓⟩ to be the state with spin in
the −z direction. In terms of two-component column vectors, they can be written as

|↑⟩ =
(
1
0

)
, |↓⟩ =

(
0
1

)
. (3.157)
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In the space spanned by |↑⟩ and |↓⟩, the angular momentum operator J⃗ is represented
by the Pauli matrices:

Ji =
σi
2

(i = 1, 2, 3 or x, y, z) (3.158)

and they satisfy the commutation relations of angular momentum operators [Ji, Jj] =
i ϵijkJk as shown earlier in (3.26). In the space spanned by states with a given angular

momentum j, the square of the angular momentum operator J⃗2 is given by

J⃗2 ≡ J2
1 + J2

2 + J2
3 = j(j + 1) . (3.159)

Using σ2
i = 1 (3.21), we have

(
σ⃗

2

)2

=
(
σ1
2

)2

+
(
σ2
2

)2

+
(
σ3
2

)2

=
3

4
=

1

2

(
1

2
+ 1

)
(3.160)

which shows that σ⃗/2 is indeed a spin-1/2 representation of angular momentum.
The eigenstates with spin polarized along an arbitrary unit vector s⃗ can be ob-

tained by applying a rotation to the states | ↑⟩ and | ↓⟩ of (3.157). In general, the

rotation operator R(θ⃗) by an angle θ ≡ |θ⃗| around the axis θ̂ ≡ θ⃗/θ is generated by
the angular momentum operators as

R(θ⃗) = e−i θ⃗·J⃗ . (3.161)

For rotations in the 3-dimensional space, the generators Li (i = 1, 2, 3) we have
obtained in (1.95) can be redefined to be consistent with this form:

Ji
def≡ iLi (i = 1, 2, 3) → eθiLi = e−iθiJi , (3.162)

then the commutation relation (1.98) of Li’s indeed leads to that of angular momen-
tum:

[Li , Lj ] = ϵijkLk → [Ji , Jj ] = i ϵijkJk . (3.163)

In the spin-1/2 space, the corresponding rotation u(θ⃗) is a 2× 2 matrix obtained

by the replacement J⃗ → σ⃗/2 in (3.161):

u(θ⃗) = e−i
θ⃗
2
·⃗σ = cos

θ

2
− i (θ̂ · σ⃗) sin θ

2
(3.164)

where we have used the identity

ei a⃗·⃗σ = cos a+ i (â · σ⃗) sin a
(
a ≡ |⃗a|, â ≡ a⃗

a

)
. (3.165)
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Figure 3.1: The rotation to take the z-axis to a general direction s⃗.

The rotation matrix (3.164) tells us that a rotation around any axis by 2π changes
sign of the state (u = −1), and it takes two complete rotations to recover the original
state, which is a general feature of half-integer spin states.

The z-axis can be rotated to the direction of s⃗ by first rotating around the y-axis
by θ and then around the original z-axis (not the rotated one) by ϕ, where (θ, ϕ) are
the polar angles of the direction s⃗ (Figure 3.1):

s⃗ = (sx, sy, sz) = (sin θ cosϕ, sin θ sinϕ, cos θ) . (3.166)

The rotation matrix is then

R(θ, ϕ) = e−iϕJze−iθJy → u(θ, ϕ) = e−i
ϕ
2
σze−i

θ
2
σy , (3.167)

and the resulting eigenvectors are (up to a common overall phase)

χ+ = u(θ, ϕ)
(
1
0

)
=

1√
2(1 + sz)

(
1 + sz
s+

)

χ− = u(θ, ϕ)
(
0
1

)
=

1√
2(1− sz)

(
sz − 1
s+

)
, (3.168)

where
s±

def≡ sx ± isy (3.169)

and the orthonormality is given by

χ†+χ+ = χ†−χ− = 1 , χ†+χ− = χ†−χ+ = 0 . (3.170)

On the other hand, the spin component in an arbitrary direction s⃗ is represented
by the operator (in the unit of the absolute value of the spin which is 1/2)

s⃗ · σ⃗ = sx

(
0 1
1 0

)
+ sy

(
0 −i
i 0

)
+ sz

(
1 0
0 −1

)
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=
(

sz sx − isy
sx + isy −sz

)
=

(
sz s−
s+ −sz

)
. (3.171)

Using the formula
(⃗a · σ⃗)(⃗b · σ⃗) = a⃗ · b⃗+ i σ⃗ · (⃗a× b⃗) (3.172)

we have
(s⃗ · σ⃗)2 = s⃗ 2 + i σ⃗ · (s⃗× s⃗︸ ︷︷ ︸

0

) = 1 , (3.173)

which means that the eigenvalues of s⃗ · σ⃗ is ±1. In fact, it is easily verified that the
states obtained in (3.168) are indeed eigenvectors of s⃗ · σ⃗:

(s⃗ · σ⃗)χ± = ±χ± . (3.174)

Using the fact that s⃗ ·σ⃗ has the eigenvalues ±1, we can construct projection operators
which project out χ± from any vector. Define the operators P± by

P±
def≡ 1± s⃗ · σ⃗

2
. (3.175)

Then using (s⃗ · σ⃗)χ± = ±χ±

P±χ± =
1± s⃗ · σ⃗

2
χ± =

1± (±1)
2

χ± = χ±

P±χ∓ =
1± s⃗ · σ⃗

2
χ∓ =

1± (∓1)
2

χ∓ = 0 . (3.176)

Writing any vector v as a linear combination of χ±

v = c+χ+ + c−χ− (c± : complex constants) (3.177)

we see that P± indeed projects out χ± out of v:

P+v = c+χ+, P−v = c−χ− . (3.178)

One can also easily verify that the operators P± satisfy the properties of projection
operators:

P 2
± = P±, P+P− = P−P+ = 0 . (3.179)

Exercise 3.8 Non-relativistic spin-1/2 states.
(a) Show that u(θ, ϕ) can be written as

u(θ, ϕ) = e−i
ϕ
2

(
cos θ

2
− sin θ

2

sin θ
2
eiϕ cos θ

2
eiϕ

)
, (3.180)
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and verify (3.168). (hint: Use ei a⃗·⃗σ = cos a+ i (â · σ⃗) sin a.)
(b) For any 2-component vector v, P±(s⃗)v are eigenvectors of s⃗ ·σ⃗ with eigenvalues ±1
assuming that they are not zero. One can use this feature to construct the eigenvectors
of s⃗ · σ⃗. Take any state, say the state with spin in +z direction, as the vector v to
obtain the same result for χ± as above.

Electron spin
From the spinor-space representation of the proper and orthochronous Lorentz group
(3.97), a pure rotation by θ⃗, U(θ⃗), is obtained by extracting the terms that correspond
to the generators of rotation M ij = Lk (i, j, k: cyclic):

U(θ⃗) = exp

1

2

∑
i,j

aijB
ij

 = exp

∑
i<j

aijB
ij

 = e−iθi
Σi
2 (3.181)

with
Σi

def≡ 2iBjk , θi = ajk (i, j, k : cyclic) , (3.182)

or using the definition of σµν (3.126),

Σi
def≡ σjk = iγjγk (i, j, k : cyclic) . (3.183)

Comparing (3.181) with the general form of a rotation (3.161), we identify a set
of operators that is acting as angular momentum operators:

Ji =
Σi

2
. (3.184)

Since Bjk and M jk satisfy the same commutation relations, iLi = iM jk and Σi/2 =
iBjk should satisfy the same commutation relations. On the other hand, we have
seen in (3.163) that iLi (i = 1, 2, 3) satisfy the commutation relations of angular

momentum, and thus so do Σi

2
(i = 1, 2, 3). In fact, we will show below that Σ⃗i

satisfies exactly the same commutation and anticommutation relations as the Pauli
matrices σ⃗. First, the square of Σi is unity:

(Σi)
2 = (iγjγk)2 = −γj γkγj︸ ︷︷ ︸

−γjγk since j ̸= k

γk

= (γj)2(γk)2 = 1 (3.185)

where i, j, k are cyclic and no summation over repeated indexes is implied. For cyclic
i, j, k, we have Σi = iγjγk and Σj = iγkγi. Then,

ΣiΣj = (iγj γk)(iγk︸ ︷︷ ︸
−i

γi) = γjγi = i(iγiγj) ; (3.186)
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thus,

ΣiΣj = iΣk (i, j, k : cyclic) . (3.187)

Now, we note that Σi is hermitian:

Σ†i = (iγjγk)† = −i γk†︸︷︷︸
−γk

γj†︸︷︷︸
−γj

= iγjγk = Σi .

Then, taking the hermitian conjugate of (3.187), we obtain

Σ†jΣ
†
i = −iΣ

†
k → ΣjΣi = −iΣk .

Comparing this with (3.187), we see that Σi and Σj anticommute. These relations
are summarized as

{Σi ,Σj} = 2 δij , [Σi ,Σj] = 2iϵijkΣk , (3.188)

leading, in particular, to

[
Σi

2
,
Σj

2

]
= iϵijk

Σk

2
,

Σ⃗

2

2

=
1

2

(
1

2
+ 1

)
(3.189)

which shows that Σ⃗/2 acts as an angular momentum operator with j = 1/2.

In the Dirac representation Σi is explicitly written as

Σi = i γjγk = i
(

0 σj
−σj 0

)(
0 σk
−σk 0

)
= i

(−σjσk 0
0 −σjσk

)
= i

(−iσi 0
0 −iσi

)
=
(
σi 0
0 σi

)
, (3.190)

which explicitly shows that Σi’s satisfy the same relations among themselves as do
σi’s. This is, however, independent of representation as we have seen.

To see the spin structure more clearly, apply the rotation operator U (3.181) to a
plane wave

ψ(x) = ψ0e
−i p·x (3.191)

where ψ0 is a constant spinor and pµ = (E, P⃗ ) represents the energy and momentum
of the state. We carefully follow ψ′(x′) = Uψ(x) and make sure that we write the
result in terms of x′. Using x = Λ−1x′, or

xµ = (Λ−1)µ
ν
x′ν = Λν

µx
′
ν , (3.192)
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where Λ is the 4 × 4 Lorentz transformation matrix corresponding to the rotation,
the transformed wave function ψ′(x′) can be written as

ψ′(x′) = Uψ0 exp(−i pµxµ) = (Uψ0) exp(−i
p′ν︷ ︸︸ ︷

pµΛν
µ x
′
ν)

= (Uψ0)e
−ip′·x′

, (3.193)

where
p′ν = Λν

µp
µ (3.194)

is nothing but the rotated energy-momentum 4-vector. If it were a scalar field, then
this rotation of the energy-momentum 4-vector (actually, the energy stays the same)
would have been the only change. For a spinor field, however, we have additional
‘rotation’ (Uψ0) associated with some internal structure of the particle, and we know
that this internal rotation is exactly like that of a spin-1/2 particle because of the
equivalence of Σi and σi. Thus, we suspect that a particle represented by a spinor
field carries an intrinsic spin 1/2.

To obtain a more physical understanding, however, we will now show that the
angular momentum is conserved only when the spin is added to the orbital angular
momentum. We start from the Dirac equation written as (3.29):

i
∂

∂t
ψ = Hψ , H = α⃗ · p⃗+ βm (3.195)

with
β = γ0, αi = γ0γi (← γi ≡ βαi), p⃗ ≡ −i∇⃗ . (3.196)

Recall that if an operator O commutes with the Hamiltonian H, then it is a constant
of motion. Does it apply to the operator H we have here? Actually it does: suppose
states |a⟩ and |b⟩ are solutions of a Schrödinger-form equation i ∂

∂t
| ⟩ = H| ⟩. Then

we have
i|ȧ⟩ = H|a⟩ → −i⟨ȧ| = ⟨a|H† = ⟨a|H, (3.197)

The time derivative of the matrix element ⟨a|O|b⟩ is then

∂

∂t
⟨a|O|b⟩ = ⟨ȧ|︸︷︷︸

i⟨a|H

O|b⟩+ ⟨a|O|ḃ⟩︸︷︷︸
−iH|b⟩

= i⟨a|HO|b⟩ − i⟨a|OH|b⟩
= i⟨a|[H,O]|b⟩ ; (3.198)

namely, the matrix element ⟨a|O|b⟩ is a constant of motion if [H,O] = 0. This holds
as long as the equation is in the Schrödinger form and the ‘Hamiltonian’ is hermitian.
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We first evaluate the commutator of the orbital angular momentum and the Hamil-
tonian, [Li, H], with

Li = (x⃗× p⃗)i = ϵijk x
jpk (3.199)

H = αi︸︷︷︸
γ0γi

pi + β︸︷︷︸
γ0

m = γ0(γipi +m) , (3.200)

where sum over repeated space indexes are implicit regardless of superscript or sub-
script, and we are consistently using the definition xµ = (x0, x⃗) and pµ = (p0, p⃗).
Useful relations are

[AB,C] = A[B,C] + [A,C]B , [C,AB] = A[C,B] + [C,A]B . (3.201)

It follows that, in either of the formulas, if A commutes with C, A can simply come
out of the commutator to the left, and if B commutes with C, B can simply come
out to the right.

Noting that γµ commutes with xi and pi, and that [xi , pj] = iδij, we have

[Li, H] = [ϵijk x
jpk , γ0(γlpl +m)]

= ϵijkγ
0[xjpk , γlpl +

/\
m ]

= ϵijkγ
0γl [xjpk , pl]︸ ︷︷ ︸

[xj, pl]︸ ︷︷ ︸
iδjl

pk

= i ϵijk γ
0γj︸ ︷︷ ︸
αj

pk

= i(α⃗× p⃗)i (3.202)

This looks non-zero and cannot be simplified further, indicating that the orbital
angular momentum is not a constant of motion by itself.

We now evaluate [Σi , H] using Σi = iγjγk, (i, j, k: cyclic):

[Σi , H] = [iγjγk, γ0(γlpl +m)]

= iγ0 [γjγk, γlpl +
/\
m ]︸ ︷︷ ︸

[γjγk, γl]︸ ︷︷ ︸
(3.90)→ − 2(gjlgkν − gklgjν)γν= 2(δjlδkν − δklδjν)γν

pl

= 2iγ0(γkpj − γjpk) = −2i(αjp
k − αkp

j)

= −2i (α⃗× p⃗)i (3.203)

Combining (3.202) and (3.203), we have a conserved quantity:

[J⃗ , H] = 0 , with J⃗ = L⃗+
Σ⃗

2
, (3.204)
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which shows that when the spin operator Σ⃗/2 is added to the orbital angular momen-
tum, the total angular momentum is conserved, indicating that electron does carry
an intrinsic spin angular momentum whose absolute value is 1/2. Note also that the
above equation clearly identifies Σi to be the i-th component of the spin which has
to be added to the i-th component of L⃗; for example, Σ3 = iγ1γ2 always represents
the z-component of the spin regardless of the representation of the γ matrices.

Let’s reflect upon how this descritpion of electron spin has come about. We set
out to solve the problems of the Klein-Gordon equation, in particular its negative
probability, and in making the equation linear in time and space derivatives in hope
of solving it, the equation became 4-component, and it introduced the possibility that
the particle has some internal structure. The spin of the electron, or more correctly
the magnetic moment of electron, had been ‘discovered’ by G. Uhlenbeck and S.
Goudsmit three years earlier in 1925 in order to explain the anomalous Zeeman effect
(splitting of energy levels in alkali atoms in presence of magnetic fields). The electron
spin was now beautifully explained by a theory which was consistent with the special
relativity and the quantum mechanics. Actually, we have not shown that electron
has a magnetic moment yet, which involves interactions with the electromagnetic
field Aµ(x). This will be done later, and it will be shown that the value of the
electron magnetic moment is twice as large as the natural value classically expected
from its charge and spin. Now, let’s move on to finding explicit plane-wave solutions
of the Dirac equation.

3.7 Plane-wave solutions of the Dirac equation

In this section, we will construct plane-wave solutions of the Dirac equation. Even
though we will use the Dirac representation for explicit expressions, many of the
essential relations are independent of the representation as will be shown. Let’s start
from the solutions for a particle at rest.

Electron at rest (p⃗ = 0)

From the correspondence p⃗ ↔ −i∇⃗, the solution for p⃗ = 0 should have no space
dependence, or ∂iψ = 0, (i = 1, 2, 3). Then the Dirac equation iγµ∂µψ = mψ
becomes

iγ0∂0ψ = mψ , or i


1

1
−1

−1



ψ̇1

ψ̇2

ψ̇3

ψ̇4

 = m


ψ1

ψ2

ψ3

ψ4

 . (3.205)
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The four equations are 
iψ̇1 = mψ1

iψ̇2 = mψ2

iψ̇3 = −mψ3

iψ̇4 = −mψ4

(3.206)

There are thus four independent solutions:

ψ(1) = ω(1)e−imt, ψ(2) = ω(2)e−imt, ψ(3) = ω(3)e+imt, ψ(4) = ω(4)e+imt,

ω(1) ≡


1
0
0
0

 , ω(2) ≡


0
1
0
0

 , ω(3) ≡


0
0
1
0

 , ω(4) ≡


0
0
0
1

 .
(3.207)

Since we define the eigenvalue of the operator i∂/∂t to be the energy, ψ(1) and ψ(2)

are positive energy solutions and ψ(3) and ψ(4) are negative energy solutions.
That this is a complete set of solutions for p⃗ = 0 can be seen as follows. At a given

time, say t = 0, the most general form of ψ is ψi(x)|t=0 = ai where ai (i = 1, 2, 3, 4) are
some complex constants (there is no space dependence since p⃗ = 0). Then, in order
for this wave function to be a solution of the Dirac equation, the time dependence of
each component in the past and future is uniquely determined by (3.206); namely, the
first and second components has to vary as e−imt and the third and fourth as e+imt:

ψ(x)|t=0 =


a1
a2
a3
a4

 → ψ(x) =


a1e
−imt

a2e
−imt

a3e
+imt

a4e
+imt

 , (3.208)

which is thus a completely general p⃗ = 0 solution of the Dirac equation. This can of
course be written as a linear combination of the four solutions (3.207) which are thus
complete:

ψ(x) = aiψ
(i)(x) , (3.209)

where the spinor index i is summed over 1 through 4.
Leaving the discussion of the negative energy states to a later time when we

describe the hole theory, let’s look at how ψ(i)’s respond to the spin z-component
operator Σ3, which, in the Dirac representation, is written as [see (3.190)]

Σ3 =
(
σ3

σ3

)
=


1
−1

1
−1

 . (3.210)

Clearly, ψ(i)’s are eigenvectors of the spin z-component with eigenvalues given by

ψ(1) : Σ3 = +1, ψ(2) : Σ3 = −1, ψ(3) : Σ3 = +1, ψ(4) : Σ3 = −1 . (3.211)
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Eigenstates of spin component in any arbitrary direction s⃗ can be obtained by
rotating these solutions, and we know exactly how to rotate spinors. The operator
to rotate the z-axis to an arbitrary direction s⃗ can be taken as in (3.167): R(θ, ϕ) =
e−iϕJze−iθJy where (θ, ϕ) are the polar angles of the direction s⃗. The corresponding

rotation in the spinor space is given by the replacement J⃗ → Σ⃗/2 (3.184):

U(θ, ϕ) = e−i
ϕ
2
Σze−i

θ
2
Σy , (3.212)

which can be rewritten as follows: First, due to the block-diagonal form of (3.190),
we have

Σi =
(
σi

σi

)
→ (cΣi)

k =
(
(c σi)

k

(c σi)
k

)
, (3.213)

where c is any constant number. Then, the exponential can go inside the block-
diagonal subsections:

ecΣi =
∑
k

1

k!
(cΣi)

k =
∑
k

1

k!

(
(c σi)

k

(c σi)
k

)

=
(
ec σi

ec σi

)
(3.214)

Thus, the spinor operator U(θ, ϕ) can be written as

U(θ, ϕ) = e−i
ϕ
2
Σze−i

θ
2
Σy =

(
e−i

ϕ
2
σz

e−i
ϕ
2
σz

)(
e−i

θ
2
σy

e−i
θ
2
σy

)

=

(
e−i

ϕ
2
σze−i

θ
2
σy

e−i
ϕ
2
σze−i

θ
2
σy

)

=
(
u(θ, ϕ)

u(θ, ϕ)

)
(3.215)

where u(θ, ϕ) is the 2× 2 matrix defined in (3.167). Applying this rotation to ψ(1),

ψ′(1) = U(θ, ϕ)ψ(1) =

u(θ, ϕ)
(
1
0

)
(
0
0

)
 e−imt =

(
χ+

0

)
e−imt , (3.216)

where χ+ is defined by (3.168). Similarly, applying the rotation U(θ, ϕ) to ψ(i) (i =
2, 3, 4), we obtain a set of four states polarized along a general direction s⃗ (and p⃗ = 0):

ψ
(1)
s⃗ = N

(
χ+

0

)
e−imt (spin +s⃗), ψ

(2)
s⃗ = N

(
χ−
0

)
e−imt (spin −s⃗),

ψ
(3)
s⃗ = N

(
0
χ+

)
e+imt (spin +s⃗), ψ

(4)
s⃗ = N

(
0
χ−

)
e+imt (spin −s⃗) , (3.217)
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where we have omitted the primes on ψ’s, and N is a normalization factor to be chosen
later. It can be easily checked that these are indeed eigenvectors of the operator s⃗ ·Σ⃗,
which should represent the component of spin along the direction s⃗, and that they
have the stated eigenvalues: Using (3.190), we have

s⃗ · Σ⃗ =
(
s⃗ · σ⃗

s⃗ · σ⃗

)
. (3.218)

Applying this to ψ
(1)
s⃗ of (3.217), for example,

(s⃗ · Σ⃗)ψ(1)
s⃗ =

(
(s⃗ · σ⃗)χ+

0

)
e−imt =

(
χ+

0

)
e−imt = +ψ

(1)
s⃗ , (3.219)

where we have used (3.174). Similarly, other states can be shown to be eigenvectors

of s⃗ · Σ⃗ ; thus, we have

(s⃗ · Σ⃗)ψ(1,3)
s⃗ = +ψ

(1,3)
s⃗ , (s⃗ · Σ⃗)ψ(2,4)

s⃗ = −ψ(2,4)
s⃗ . (3.220)

Electron in motion
Now that we have a set of solutions for an electron at rest with its spin polarized in an
arbitrary direction, the next step is to construct solutions for an electron in motion.
One could solve the Dirac equation explicitly without dropping the space derivatives,
but we are now well equipped to deal with it more systematically: we know solutions
at rest and we know exactly how to boost them.

The matrix S in the spinor space corresponding to a Lorentz transformation in
space-time Λ which is a boost in a direction ξ̂ by velocity β = tanh |ξ⃗| is

Λ = eξiKi = eξiM
0i → S = eξiB

0i

, (3.221)

with

B0i =
1

2
γ0γi =

1

2
αi . (3.222)

Writing ξ⃗ = ξξ̂ (ξ ≡ |ξ⃗|, ξ̂ = ξ⃗/ξ),

(ξ̂ · α⃗)2 = ξ̂iαiξ̂jαj = ξ̂iξ̂jαiαj

=
1

2
(ξ̂iξ̂j

(i↔ j)︷ ︸︸ ︷
αiαj + ξ̂j ξ̂i αjαi)

=
1

2
ξ̂iξ̂j(αiαj + αjαi︸ ︷︷ ︸

2δij

) = |ξ̂|2 = 1 . (3.223)



3.7. PLANE-WAVE SOLUTIONS OF THE DIRAC EQUATION 89

The matrix S can then be written as

S = e
1
2
ξ⃗· α⃗ = e

ξ
2
(ξ̂· α⃗)

= 1 +

(
ξ

2

)
(ξ̂ · α⃗) + 1

2!

(
ξ

2

)2

(ξ̂ · α⃗)2︸ ︷︷ ︸
1

+
1

3!

(
ξ

2

)3

(ξ̂ · α⃗)3︸ ︷︷ ︸
(ξ̂ · α⃗)

+ · · ·

=

1 + 1

2!

(
ξ

2

)2

+ · · ·

+
(ξ

2

)
+

1

3!

(
ξ

2

)3

+ · · ·

 (ξ̂ · α⃗)
= cosh

ξ

2
+ (ξ̂ · α⃗) sinh ξ

2
. (3.224)

Using

α⃗ =
(
0 σ⃗
σ⃗ 0

)
→ ξ̂ · α⃗ =

(
0 ξ̂ · σ⃗
ξ̂ · σ⃗ 0

)
(3.225)

we have

S = e
1
2
ξ⃗· α⃗ =

(
cosh ξ

2
(ξ̂ · σ⃗) sinh ξ

2

(ξ̂ · σ⃗) sinh ξ
2

cosh ξ
2

)

= cosh
ξ

2

(
1 (ξ̂ · σ⃗) tanh ξ

2

(ξ̂ · σ⃗) tanh ξ
2

1

)
. (3.226)

It is more convenient to express it in terms of the energy and momentum of the
particle. Recall that the boost parameter ξ is related to γ and η of the boost by

γ = cosh ξ , η = sinh ξ , (3.227)

then using the hyperbolic half-angle formulas,

cosh
ξ

2
=

√
cosh ξ + 1

2
=

√
γ + 1

2
(3.228)

tanh
ξ

2
=

sinh ξ

cosh ξ + 1
=

η

γ + 1
. (3.229)

The energy-momentum 4-vector pµ ≡ (E, p⃗) acquired by a rest massm after the boost
is

pµ = mηµ with ηµ
def≡ (γ, η⃗) . (3.230)

where η⃗ is the vector with length η pointing to the direction of the boost. We then
have E = mγ and p ≡ |p⃗| = mη, and thus we can write

cosh
ξ

2
=

√
γ + 1

2
=

√
E +m

2m
, tanh

ξ

2
=

η

γ + 1
=

p

E +m
. (3.231)
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Since ξ⃗ is in the direction of the boost as discussed just below (1.139), we have p⃗ = ξ̂p,
and thus

(ξ̂ · σ⃗) tanh ξ
2
= (ξ̂ · σ⃗) p

E +m
=

p⃗ · σ⃗
E +m

, (3.232)

The boost matrix in the spinor space (3.226) can now be written as

S =

√
E +m

2m

 1
p⃗ · σ⃗
E +m

p⃗ · σ⃗
E +m

1

 , (3.233)

which is a boost under which a rest mass m (> 0) acquires an energy-momentum
pµ = (E, p⃗). Note that p0 ≡ E as defined is always positive. Using [ see (3.171) ]

p⃗ · σ⃗ =
(
pz p−
p+ −pz

)
(p± = px ± ipy) , (3.234)

it could be written in a fully 4× 4 form:

S =

√
E +m

2m


1 0 pz

E+m
p−

E+m

0 1 p+
E+m

−pz
E+m

pz
E+m

p−
E+m

1 0
p+

E+m
−pz
E+m

0 1

 . (3.235)

All we need now is to apply S to the solutions at rest ψ
(i)
s⃗ , and strictly follow the

definition
ψ′(x′) = Sψ(x), x′ = Λx , (3.236)

to write it as a function of x′. In doing so, we need to write the exponent imt in
terms of x′. This can easily done by noting that

mt = p · x, p = (m, 0⃗). (3.237)

Then we have the Lorentz invariance relation

p · x = p′ · x′ , (x′ = Λx , p′ = Λx′) . (3.238)

Applying S to the solution ψ(x) = ψ
(1)
s⃗ (x) with p⃗ = 0 and spin +s⃗ (3.217), the

boosted wave function, which we will denote as ψ
(1)
s⃗,p⃗(x

′), is then

ψ′(x′) = Sψ
(1)
s⃗ (x) = N

√
E +m

2m

 1
p⃗ · σ⃗
E +m

p⃗ · σ⃗
E +m

1


χ+

0

 e−im t

= N

√
E +m

2m

 χ+

p⃗ · σ⃗
E +m

χ+

 e−i p′·x′ def≡ ψ
(1)
s⃗,p⃗(x

′) . (3.239)
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At this point, we choose the normalization by N =
√
2m, which will avoid the di-

vergence in the limit m→ 0. Similarly applying the same boost S to the rest of the
states, we obtain (omitting the primes)

ψ
(1)
s⃗,p⃗(x) = ωp,s⃗ e

−ip·x , ψ
(2)
s⃗,p⃗(x) = ωp,−s⃗ e

−ip·x ,

ωp,s⃗ =
√
E +m

 χ+

p⃗ · σ⃗
E +m

χ+

 , ωp,−s⃗ =
√
E +m

 χ−

p⃗ · σ⃗
E +m

χ−

 ,

ψ
(3)
s⃗,p⃗(x) = ω−p,s⃗ e

ip·x , ψ
(4)
s⃗,p⃗(x) = ω−p,−s⃗ e

ip·x ,

ω−p,s⃗ =
√
E +m

 p⃗ · σ⃗
E +m

χ+

χ+

 , ω−p,−s⃗ =
√
E +m

 p⃗ · σ⃗
E +m

χ−

χ−

 ,

(3.240)

with
pµ ≡ (E, p⃗) ≡ mηµ , in particular, p0 ≡ E ≥ 0 , (3.241)

where we have labeled the constant spinors ω by the spin direction and the eigenvalue
of the operator i∂µ (p ≡ pµ). Thus, we have here a set of four solutions corresponding
to a moving electron. The rule is that the constant spinor ωp,±s⃗ has to be attached to
the space-time dependence e−ip·x in order for the wave function to become a solution
of the Dirac equation, where the parameters pµ appearing in ω and the exponent
have to be the same, and ω−p,±s⃗ has to be attached to eip·x to be a solution of the
Dirac equation. Again, we emphasize that the 4-vector pµ above is simply m times
the boost 4-vector ηµ, and p0 ≡ E is always positive by definition. Thus, as long as
the energy is defined by i∂0, the solutions ψ

(1,2)
s⃗,p⃗ have a positive energy and ψ

(3,4)
s⃗,p⃗ have

a negative energy.

Conserved current of the plane wave solutions
Let’s evaluate the conserved current jµ = ψ̄γµψ for the rest frame solutions (3.217)
with N =

√
2m. The time component, which should be the probability density, for

the solution ψ
(1)
s⃗ is

j0 = ψ̄
(1)
s⃗ γ0ψ

(1)
s⃗ = ψ

(1)†
s⃗ ψ

(1)
s⃗

= 2mχ†+χ+ = 2m, (3.242)

and the result is the same for all other solutions. The space component vanishes as
expected for a particle at rest:

jk = ψ
(1)
s⃗ γkψ

(1)
s⃗ = ψ

(1)†
s⃗ γ0γk︸ ︷︷ ︸

αk

ψ
(1)
s⃗

=
2m (χ†+ 0 )

(
0 σk

σk 0

)(
χ+

0

)
= 0 , (3.243)
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which also vanishes for other solutions. Thus, we have for all the four solutions with
p⃗ = 0,

jµ = (2m, 0⃗) for ψ
(i)
s⃗ (i = 1, 2, 3, 4) . (3.244)

Since we know that jµ transforms as a vector, we should have for the boosted solutions,

jµ = 2mηµ = 2pµ (3.245)

where ηµ is the boost 4-velocity as before, and thus p0 is positive by definition. This
can be explicitly verified from jµ = ψ̄γµψ and (3.240).

Our normalization of the wave function is such that for the solutions at rest, there
are 2m particles per unit volume. When the states are boosted, we see that the
probability density becomes denser by the contraction factor γ to become 2mγ = 2E.
These are all things we already know from general analysis. Here, however, we have
verified them using explicit plane-wave solutions.

Negative energy solutions - the hole theory
We have defined the energy as the eigenvalue of the time derivative operator i∂0, and
according to this definition, two of our plane-wave solutions (3.240) have negative en-
ergy. One cannot simply ignore the negative energy solutions, since when interactions
are included in the theory, it becomes unavoidable to have transitions to negative en-
ergy states. As it turns out, such transitions cannot be excluded without violating the
conservation of probability, and the true solution lies in the Quantum Field Theory.
For now we will follow Dirac’s argument to wiggle out of the problem. The main aim
of this exercise is to assign proper quantum numbers to the negative energy solutions
which happen to represent the antiparticle of the electron - the positron.

Consider an atom in its ground state with many electrons. Due to the Pauli’s ex-
clusion principle, another electron cannot fill the low-energy states which are already
occupied. If one of the electrons is kicked out of the atom (‘ionization’), it will leave a
positively charged atom. Now imagine the vacuum as something like a gigantic atom
where all the negative energy states are filled up. Then a positive energy electron
cannot drop into one of the negative energy states since it is already filled up.

If a negative energy electron is ‘excited’ to a positive energy state, it will leave a
‘hole’. If the original negative energy electron had 4-momentum −pµ defined as the
eigenvalues of i∂µ (with p0 ≥ 0) and spin −s⃗, then the hole would look like it has
a 4-momentum pµ and spin s⃗ relative to the vacuum. Also, the charge of the hole
would look like the opposite of that of the electron. The mass of the hole then should
be the same as that of the electron since p2 = (−p)2 = m2. Thus, the hole has the
same mass, same absolute spin, and opposite charge to those of the electron. Such
particle is called the antiparticle of the electron, or ‘positron’ denoted as e+, while
electron is denoted as e−. The correspondence between the missing negative energy
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electron and the resulting positron is summarized as

When missing e− of
energy −E

momentum −p⃗
spin −s⃗ ,

⇐⇒
all signs flipped

it is equivalent to e+ of
energy E

momentum p⃗

spin s⃗ .

(3.246)

Since in reality we deal with positrons with positive energies rather than electrons with
negative energy, it is convenient to label the spinors in (3.240) by physical quantities.
Using u for electron spinors and v for positron spinors, we define

up⃗,s⃗ ≡ ωp,s⃗ , up⃗,−s⃗ ≡ ωp,−s⃗ ,

vp⃗,−s⃗ ≡ ω−p,s⃗ , vp⃗,s⃗ ≡ ω−p,−s⃗ .
(3.247)

Now for both u and v spinors, the labeling corresponds to physical quantities of
electron and positron, respectively. Of course, in order to be a solution of the Dirac
equation, the up⃗,±s⃗ spinor has to be attached to e−ip·x and the vp⃗,±s⃗ spinor has to be
attached to eip·x, where p0 is given by p0 =

√
p⃗2 +m2 which is always positive. Since

p0 is uniquely defined for a given p⃗, we have chosen to label the u, v spinors by p⃗
rather than by pµ. The four plane-wave solutions are now

up⃗,±s⃗ e
−ip·x , vp⃗,±s⃗ e

ip·x ,(
e− with spin ±s⃗
4-momentum pµ

) (
e+ with spin ±s⃗
4-momentum pµ

) (3.248)

where the u, v spinors are defined by (3.247) and (3.240); namely,

up⃗,±s⃗ =
√
E +m

 χ±

p⃗ · σ⃗
E +m

χ±

 , vp⃗,±s⃗ =
√
E +m

 p⃗ · σ⃗
E +m

χ∓

χ∓

 . (3.249)

3.8 Energy and spin projection operators

In the previous section we have used the Dirac representation. Almost all discussions
in this section and the next, at least all the boxed formulas, are independent of
representation.

Dirac equation in momentum space
Since up⃗,±s⃗ e

−ip·x and vp⃗,±s⃗ e
ip·x satisfy the Dirac equation, we can extract the matrix

equations for the u and v spinors:

0 = (iγµ∂µ −m)up⃗,±s⃗ e
−ip·x = (γµpµ −m)up⃗,±s⃗ e

−ip·x
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0 = (iγµ∂µ −m)vp⃗,±s⃗ e
ip·x = (−γµpµ −m)vp⃗,±s⃗ e

ip·x

→ (p/ −m)up⃗,±s⃗ = 0 , (p/ +m)vp⃗,±s⃗ = 0 . (3.250)

These equations hold for any p⃗ and s⃗ as long as the u, v spinors are constructed as
defined by (3.249) and pµ that appears in p/ is given by pµ = (p0, p⃗) where p⃗ is the

same p⃗ that appears in (3.249) and p0
def≡
√
p⃗2 +m2 ≥ 0. These equations for the

u, v spinors are sometimes referred to as the Dirac equations in momentum space.
Corresponding equations for the adjoint spinors ū and v̄ can be obtained by simply
taking the spinor adjoint of (3.250). Noting that for any real 4-vector aµ, we have

a/ = γµaµ = γµ︸︷︷︸
γµ

aµ = a/ , (a : real ) (3.251)

the adjoint of (3.250) is

(p/ −m)up⃗,±s⃗ = up⃗,±s⃗ (p/︸︷︷︸
p/

−m) = 0 , (p/ +m)vp⃗,±s⃗ = vp⃗,±s⃗ (p/︸︷︷︸
p/

+m) = 0 ,

→ up⃗,±s⃗ (p/ −m) = 0 , vp⃗,±s⃗ (p/ +m) = 0 . (3.252)

Now note that the equations (3.250) can be written as

p/

m
up⃗,±s⃗ = up⃗,±s⃗ ,

p/

m
vp⃗,±s⃗ = −vp⃗,±s⃗ , (3.253)

which means that the u and v spinors are eigenvectors of the matrix p//m with eigen-
values +1 and −1, respectively. Namely, the operator p//m represents the sign of
the energy, or equivalently, whether the spinor is an electron solution or a positron
solution. Using this, one can construct an energy projection operator that projects
out a spinor of a given 4-momentum and a given energy sign:

Λ±(p)
def≡ 1

2

(
1± p/

m

)
. (3.254)

Then, it is easy to verify that (for a given p⃗)

Λ+(p)up⃗,±s⃗ = up⃗,±s⃗ , Λ−(p)up⃗,±s⃗ = 0 ,

Λ−(p) vp⃗,±s⃗ = vp⃗,±s⃗ , Λ+(p) vp⃗,±s⃗ = 0 ,
(3.255)

Thus, applying Λ+(p) to any 4-component quantity a projects out an electron solution
with 4-momentum pµ, and applying Λ−(p) projects out a positron solution with the



3.8. ENERGY AND SPIN PROJECTION OPERATORS 95

same 4-momentum. It is also straightforward to show that they satisfy the property
of projection operators:

Λ2
±(p) = Λ±(p) , Λ+(p) + Λ−(p) = 1 ,

Λ+(p)Λ−(p) = Λ−(p)Λ+(p) = 0 .
(3.256)

In proving the above, it is useful to note

a/b/ + b/a/ = aµγ
µbνγ

ν + bνγ
νaµγ

µ = aµbν(γ
µγν + γνγµ︸ ︷︷ ︸

2 gµν
) = 2a · b . (3.257)

where a and b are c-number 4-vectors. Applying this to a = b = p, we get

p/2 = p2 = m2 . (3.258)

Then, we have for example,

Λ+(p)
2 =

1

4

(
1 +

p/

m

)2

=
1

4

(
1 + 2

p/

m
+
p/2

m2︸︷︷︸
1

)
=

1

2

(
1 +

p/

m

)
= Λ+(p) , (3.259)

and other relations of (3.256) can be shown similarly.

Spin projection operators
We have just seen that the matrix p//m acts as an energy sign operator for a given
4-momentum pµ. We now look for an operator that represents the physical spin in a
given direction s⃗, where by ‘physical spin’ we mean the spin we measure experimen-
tally, in particular, for a positron we want a projection operator that projects out a
given spin of the positron and not that of the missing electron in the sea of negative
energy. In doing so, there are two problems we have to deal with: one is that for a
positron, we want to make sure that it is the physical spin that is measured and not
the eigenvalue of s⃗ · Σ⃗, and the other is that we want the spin measured in the rest
frame of the particle even for a solution with a finite momentum.

For the first problem all we have to do is to somehow flip the sign of the spin for a
positron. The second problem needs some care, since when an eigenspinor of s⃗ · Σ⃗ is
boosted, it is in general no longer an eigenspinor of s⃗ · Σ⃗. Take for example the p⃗ = 0
solution u0⃗,+s⃗ which is an eigenspinor of s⃗ · Σ⃗ with eigenvalue +1. If we apply the

operator s⃗ · Σ⃗ to the boosted spinor up⃗,+s⃗, we get (dropping the normalization factor√
E +m for simplicity)

(s⃗ · Σ⃗)up⃗,+s⃗ =

 s⃗ · σ⃗ 0

0 s⃗ · σ⃗


 χ+

p⃗ · σ⃗
E +m

χ+

 =


(s⃗ · σ⃗)χ+

(s⃗ · σ⃗)(p⃗ · σ⃗)
E +m

χ+

 . (3.260)
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Since (s⃗ · σ⃗)χ+ = χ+, if s⃗ · σ⃗ and p⃗ · σ⃗ commute, then up⃗,+s⃗ becomes an eigenvector of

s⃗ · Σ⃗ . However, we have

[s⃗ · σ⃗, p⃗ · σ⃗] = [siσi , p
jσj] = sipj [σi , σj]︸ ︷︷ ︸

2iϵijkσk

= 2i(s⃗× p⃗) · σ⃗ (3.261)

which is in general not zero; thus, up⃗,+s⃗ is in general not an eigenspinor of s⃗ ·Σ⃗ (unless
s⃗× p⃗ = 0). Our strategy then is to go to the rest frame of the particle, construct an
operator that reflects the physical spin there, express it in a Lorentz-invariant form,
and then carefully ‘boost’ it.

Let’s start with constructing the eigenstates of s⃗ · Σ⃗ in the rest frame in a way
that is independent of representation. In the Dirac representation, the p⃗ = 0 solutions
u0⃗,±s⃗ and v0⃗,±s⃗ look like

u0⃗,±s⃗ ∝
(
χ±
0

)
, v0⃗,±s⃗ ∝

(
0
χ∓

)
, (3.262)

and they are eigenstates of s⃗ · Σ⃗ :

(s⃗ · Σ⃗)u0⃗,±s⃗ = ±u0⃗,±s⃗ , (s⃗ · Σ⃗) v0⃗,±s⃗ = ∓v0⃗,±s⃗ . (3.263)

These relations are independent of representation. In fact, if we change the represen-
tation by a unitary matrix V , then by (3.150) and (3.154), the spinor and Σi in the
new representation are given by

u′
0⃗,±s⃗ = V u0⃗,±s⃗ ,

Σ′i = iγ′jγ′k = i(V γj V †)(V︸ ︷︷ ︸
1

γkV †) = V i γjγkV † = V ΣiV
† . (3.264)

If (s⃗ ·Σ⃗)u0⃗,±s⃗ = ±u0⃗,±s⃗ holds in one representation, then multiplying V from the left,

︷︸︸︷
V

(s⃗ · Σ⃗)︷ ︸︸ ︷
V †V

u0⃗,±s⃗ = ±︷︸︸︷
V

u0⃗,±s⃗

→ (s⃗ · Σ⃗′)u′
0⃗,±s⃗ = ±u′

0⃗,±s⃗ , (3.265)

demonstrating that the same form holds in the new representation.
Note that for the v spinors in (3.263), the sign on the subscript s⃗ is opposite to

the sign of the eigenvalue. We thus want an operator whose eigenvalues for v spinors
are sign-flipped with respect to s⃗ ·Σ⃗ . This can be accomplished by (3.253) which can
be written in the rest frame as

γ0u0⃗,±s⃗ = u0⃗,±s⃗ , γ0v0⃗,±s⃗ = −v0⃗,±s⃗ , (3.266)



3.8. ENERGY AND SPIN PROJECTION OPERATORS 97

where we have used p/ = mγ0 [since pµ = (m, 0⃗) in the rest frame]. It will thus flip
the sign for the v spinors only. Together with (3.263), we have

(s⃗ · Σ⃗ γ0)u0⃗,±s⃗︸ ︷︷ ︸
u0⃗,±s⃗

= ±u0⃗,±s⃗ , (s⃗ · Σ⃗ γ0) v0⃗,±s⃗︸ ︷︷ ︸
−v0⃗,±s⃗

= ±v0⃗,±s⃗ , (3.267)

which is exactly what we wanted. This, however, works only for the rest frame
solutions. In order to extend it to the boosted states, we first show that the operator
s⃗ · Σ⃗γ0 can be written in the rest frame as

s⃗ · Σ⃗γ0 = γ5s/ (rest frame), (3.268)

where the real quantity sµ is defined in the rest frame by

sµ
def≡ (0, s⃗) (rest frame), (3.269)

and assumed to transform as a Lorentz 4-vector. Since s/ = siγi in the rest frame,
and

Σi ≡ iγjγk = −iγ1γ2γ3γi (i, j, k : cyclic) (3.270)

which can be verified for k = 1, 2, 3 explicitly, we have

γ5s/ = (i γ0
−−−−−−−−−→
γ1γ2γ3)(siγi) = si iγ1γ2γ3γi︸ ︷︷ ︸

−iγ1γ2γ3γi= Σi

γ0

= siΣiγ
0 = s⃗ · Σ⃗γ0 . (3.271)

Thus, (3.267) can be written as

γ5s/ w0⃗,±s⃗ = ±w0⃗,±s⃗ (w : u or v) . (3.272)

The above equation is for spinors representing a particle at rest. A spinor with
momentum p⃗ was defined by

wp⃗,±s⃗
def≡ S(Λ)w0⃗,±s⃗ , (3.273)

where as before w represents u or v, and Λ is the boost that makes the rest mass m
acquire a momentum p⃗. First, we set Λ→ Λ−1 in S−1(Λ)γµS(Λ) = Λµ

αγ
α (3.80) and

use S(Λ−1) = S−1(Λ), and thus S−1(Λ−1) = S(Λ), to get

S−1(Λ−1)γµS(Λ−1)︸ ︷︷ ︸
S(Λ)γµS−1(Λ)

= (Λ−1)µα︸ ︷︷ ︸
Λα

µ

γα . (3.274)
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Multiplying (3.272) by S(Λ) on the left, we obtain

S(Λ)× γ5s/︷ ︸︸ ︷
S−1(Λ)S(Λ)

w0⃗,±s⃗ = S(Λ)× ±w0⃗,±s⃗ (3.275)

Together with [γ5, S] = 0 [see (3.137)], this becomes

γ5 sµ S(Λ)γ
µS−1(Λ)︸ ︷︷ ︸

(3.274) → Λα
µγα︸ ︷︷ ︸

s′αγ
α = s/ ′

S(Λ)w0⃗,±s⃗︸ ︷︷ ︸
wp⃗,±s⃗

= ±S(Λ)w0⃗,±s⃗︸ ︷︷ ︸
wp⃗,±s⃗

. (3.276)

where we have defined the boosted spin 4-vector

s′µ
def≡ Λµ

νs
ν . (3.277)

Thus, we have

γ5s/ wp⃗,±s⃗ = ±wp⃗,±s⃗ (w : u or v) , (3.278)

where we have dropped the prime on s with the understanding that sµ is always
the transformed 4-vector of (0, s⃗) by the same boost under which the rest mass m
acquires the momentum p⃗. Thus, we see that the operator γ5s/ has eigenvalues ±1,
and properly represents the component of the physical spin along the direction s⃗ in
the rest frame (times two, to be precise), where it is understood that the rest frame is
reached by a pure boost. And it works for a positron as well as for an electron. Also,
note that our derivation was independent of the representation of the γ matrices.

Just like we constructed the energy projection operator from the energy-sign op-
erator p//m, we can construct spin projection operators as

Σ±(s)
def≡ 1± γ5s/

2
, (3.279)

which project out the eigenstates of the spin operator γ5s/ for the given direction s⃗ and
the given boost represented by p⃗. Again, it can be readily verified that the operators
Σ±(s) satisfy the properties of projection operators:

Σ2
±(s) = Σ±(s) , Σ+(s) + Σ−(s) = 1 ,

Σ+(s)Σ−(s) = Σ−(s)Σ+(s) = 0 .
(3.280)

Orthonormalities of the u, v spinors
In the rest frame, we have sµ = (0, s⃗) and pµ = (m, 0⃗). Thus,

s2 = −1 , s · p = 0 , (3.281)
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p//m

+1 −1
+1 up⃗,s⃗ vp⃗,s⃗

γ5s/ −1 up⃗,−s⃗ vp⃗,−s⃗

Table 3.3: The u and v spinors for a given momentum p⃗ and a spin quantization axis
s⃗ shown with the eigenvalues of the operators p//m and γ5s/ .

which are in Lorentz-invariant form and thus true in any frame. Then from (3.257),
we see that s/ and p/ anticommute:

s/p/ + p/s/ = 2s · p = 0 . (3.282)

For any given set of s⃗ and p⃗, the energy-sign operator p//m and the spin operator γ5s/
then commute:

p/ (γ5︸ ︷︷ ︸
−γ5p/

s/) = −γ5 p/s/︸︷︷︸
−s/p/

= (γ5s/)p/

→
[
p/

m
, γ5s/

]
= 0 . (3.283)

We have seen that the two commuting operators γ5s/ and p//m both have eigenvalues
±1. Thus, there should be a set of four spinors that are simultaneous eigenspinors of
the two operators. In fact, they are nothing but up⃗,±s⃗ and vp⃗,±s⃗. Table 3.3 summarizes
their eigenvalues. Now we will show that they are also orthonormal.

First, the operators p//m and γ5s/ are self-adjoint: using a/ = a/ (3.251),

p/

m
=

p/

m
, γ5s/ = s/ γ5︸︷︷︸

−γ5
= −s/γ5 = γ5s/ , (3.284)

where we have used

γ5 ≡ γ0 γ†5︸︷︷︸
γ5 by (3.134)

γ0 = γ0γ5γ
0 = −γ5 . (3.285)

This indicates that the eigenspinors are orthogonal in terms of the inner product
defined by the spinor adjoint. In fact, using (3.253),

p/

m
up⃗,±s⃗ = up⃗,±s⃗

vp⃗,±s⃗ ×→ vp⃗,±s⃗
p/

m
up⃗,±s⃗ = vp⃗,±s⃗ up⃗,±s⃗ . (3.286)
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On the other hand, taking adjoint of (p//m)vp⃗,±s⃗ = −vp⃗,±s⃗, and using p//m = p//m,

vp⃗,±s⃗
p/

m
= −vp⃗,±s⃗

× up⃗,±s⃗→ vp⃗,±s⃗
p/

m
up⃗,±s⃗ = −vp⃗,±s⃗ up⃗,±s⃗ . (3.287)

Subtracting (3.287) from (3.286), we obtain

vp⃗,±s⃗ up⃗,±s⃗ = 0 , (3.288)

which holds for all spin combinations. Note that it was critical that p//m was self-
adjoint in order to make the left-hand sides of (3.287) and (3.286) identical.

Similarly, two spinors are orthogonal if they have different eigenvalues of γ5s/ as
can be shown by simply replacing p//m by γ5s/ in the above derivation (3.286) through
(3.288). For example, we have

γ5s/ up⃗,s⃗ = up⃗,s⃗ , γ5s/ up⃗,−s⃗ = −up⃗,−s⃗ . (3.289)

Multiplying the first with up⃗,−s⃗ from the left, and multiplying the spinor adjoint of
the second with up⃗,s⃗ from the right, we obtain

up⃗,−s⃗ γ5s/ up⃗,s⃗ = up⃗,−s⃗ up⃗,s⃗ , up⃗,−s⃗ γ5s/ up⃗,s⃗ = −up⃗,−s⃗ up⃗,s⃗ , (3.290)

where we have used γ5s/ = γ5s/ (3.284). Taking the difference, we get

up⃗,−s⃗ up⃗,s⃗ = 0 . (3.291)

Similarly for v spinors, we obtain

vp⃗,−s⃗ vp⃗,s⃗ = 0 . (3.292)

Thus, all four spinors in Table 3.3 are orthogonal to each other.
There is another set of four spinors that are orthogonal to each other where the

orthogonality is defined by the ordinary inner product a†b. First, replace p⃗ by −p⃗ in
(p//m)vp⃗,±s⃗ = −vp⃗,±s⃗ to get

p/ ′

m
v−p⃗,±s⃗ = −v−p⃗,±s⃗ with p′µ ≡ (p0,−p⃗) = pµ , (3.293)

where the time component of p′ did not change since p′0
def≡
√
(−p⃗)2 +m2 = p0. We

note

(p/ ′)† = (γµp
′µ)† = γ†µ︸︷︷︸

γµ

p′µ︸︷︷︸
pµ

= p/ . (3.294)
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Then, taking the hermitian conjugate of (3.293), we have

v†−p⃗,±s⃗

p/︷ ︸︸ ︷
(p/ ′)†

m
= −v†−p⃗,±s⃗ , (3.295)

to which we multiply up⃗,±s⃗ from the right to get

v†−p⃗,±s⃗
p/

m
up⃗,±s⃗ = −v†−p⃗,±s⃗ up⃗,±s⃗ . (3.296)

On the other hand, multiplying v†−p⃗,±s⃗ to (p//m)up⃗,±s⃗ = up⃗,±s⃗,

v†−p⃗,±s⃗
p/

m
up⃗,±s⃗ = v†−p⃗,±s⃗ up⃗,±s⃗ . (3.297)

Taking the difference of (3.296) and (3.297), we see that

v†−p⃗,±s⃗ up⃗,±s⃗ = 0 , (3.298)

which holds for any spin combinations.
Now, let’s look at the orthogonality of spinors with different spin eigenvalues.

First, we can see that u†p⃗,+s⃗ up⃗,−s⃗ = 0 explicitly in the Dirac representation as follows.

Recalling up⃗,±s⃗ = eξ⃗·α⃗/2 u0⃗,±s⃗ and, since αi is hermitian,

(e
1
2
ξ⃗·α⃗)† = e

1
2
ξ⃗·α⃗†

= e
1
2
ξ⃗·α⃗ , (3.299)

we have

u†p⃗,+s⃗ up⃗,−s⃗ = u†
0⃗,+s⃗

(e
1
2
ξ⃗·α⃗)†︸ ︷︷ ︸

e
1
2
ξ⃗·α⃗

e
1
2
ξ⃗·α⃗u0⃗,−s⃗ = u†

0⃗,+s⃗
eξ⃗·α⃗ u0⃗,−s⃗

=
2m (χ†+ 0 )

(
cosh ξ (ξ̂ · σ⃗) sinh ξ

(ξ̂ · σ⃗) sinh ξ cosh ξ

)(
χ−

0

)
= 2m cosh ξ (χ†+χ−) = 0 , (3.300)

where we have used the expression of eξ⃗·α⃗/2 given in (3.226) with ξ⃗/2 replaced by ξ⃗.
This is representation-independent, since if we move to a different representation by
a unitary matrix V , then the orthogonality remains valid:

u′†p⃗,+s⃗ u
′
p⃗,−s⃗ = (V up⃗,+s⃗)

†(V up⃗,−s⃗) = u†p⃗,+s⃗ V
†V︸ ︷︷ ︸
1

up⃗,−s⃗ = 0 . (3.301)
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Similarly, we can show that v†p⃗,+s⃗ vp⃗,−s⃗ = 0 which is also representation-independent.
Thus, for given p⃗ and s⃗, we have two sets of orthogonal spinors; one defined by the
inner product āb : (up⃗,±s⃗ , vp⃗,±s⃗), and the other by a†b : (up⃗,±s⃗ , v−p⃗,±s⃗).

How about the normalization? We have seen in (3.245) that the probability density
is j0 = ψ†ψ = 2E which is always positive. Using the plane wave form (3.248) for ψ,
the normalization of u, v spinors are then

u†p⃗,±s⃗ up⃗,±s⃗ = v†p⃗,±s⃗ vp⃗,±s⃗ = 2E (3.302)

Once this is given, the values of up⃗,±s⃗ up⃗,±s⃗ and vp⃗,±s⃗ vp⃗,±s⃗ are already fixed as follows:
For the solution ψ = up⃗e

−ip·x, the current is jµ = ūp⃗γ
µup⃗ (we have dropped the spin

indexes for simplicity). Using (p//m)up⃗ = up⃗ (3.253) and its adjoint ūp⃗(p//m) = ūp⃗
this can be written as

jµ = ūp⃗γ
µup⃗ = ūp⃗γ

µ
( p/
m
up⃗
)
=
(
ūp⃗
p/

m

)
γµup⃗

=
1

2
ūp⃗
(
γµ

p/

m
+
p/

m
γµ
)
up⃗

=
1

2m
ūp⃗ [γ

µ(pνγ
ν) + (pνγ

ν)γµ]up⃗

=
pν
2m

ūp⃗ (γ
µγν + γνγµ︸ ︷︷ ︸

2gµν
)up⃗

= ηµūp⃗up⃗ . (3.303)

It is instructive to compare this with the current jµ = ρ0ηµ we encountered in (2.11).
We see that the scalar quantity ūp⃗up⃗ is acting as ρ0: the density in the rest frame of
the flow. For the v spinors, the only difference is the minus sign in (p//m)vp⃗ = −vp⃗
which leads to

v̄p⃗γ
µvp⃗ = −ηµv̄p⃗vp⃗ . (3.304)

The time components of (3.303) and (3.304) give

u†p⃗up⃗ = γ ūp⃗up⃗ , v†p⃗vp⃗ = −γ v̄p⃗vp⃗ , (3.305)

where γ ≡ η0 = E/m. Together with (3.302) this leads to

ūp⃗up⃗ = 2m, v̄p⃗vp⃗ = −2m. (3.306)

Thus, for given p⃗ and s⃗, we have two orthonormality relations for u, v spinors :

up⃗,s⃗1 up⃗,s⃗2 = 2mδs⃗1,s⃗2 , vp⃗,s⃗1 vp⃗,s⃗2 = −2mδs⃗1,s⃗2 ,

vp⃗,s⃗1 up⃗,s⃗2 = 0 (s⃗1, s⃗2 : ±s⃗)
(3.307)
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as defined by the inner product āb, and

u†p⃗,s⃗1 up⃗,s⃗2 = v†−p⃗,s⃗1 v−p⃗,s⃗2 = 2E δs⃗1,s⃗2 ,

v†−p⃗,s⃗1 up⃗,s⃗2 = 0 (s⃗1, s⃗2 : ±s⃗)
(3.308)

as defined by the inner product a†b. Any spinor, or any set of four complex numbers,
can be written uniquely as a linear combination of either of the above orthonormal
sets. Note that one can construct such orthonormal sets for any given p⃗ and s⃗; thus,
there are an infinite number of orthonormal sets since there are infinite ways to take
p⃗ and s⃗.

Exercise 3.9 Orthonormality of u, v spinors (by the product rule a†b).
Use the Dirac representation of the u, v spinors to explicitly verify the orthonormality
relations (3.308).

Note that the normalization (3.308) tells us that the norm ψ†ψ of a Dirac spinor
is in general not invariant under a boost since E changes its value. In fact, as we

have seen in (3.299), a boost S = eξ⃗·α⃗/2 is hermitian but not unitary. On the other

hand, a rotation in the spinor space U = e−iθ⃗·Σ⃗/2 is unitary:

U † =
(
e−i

θ⃗
2
·Σ⃗
)†

= ei
θ⃗
2
·Σ⃗†

= ei
θ⃗
2
·Σ⃗ = U−1 (3.309)

and thus the norm ψ†ψ is invariant under a rotation:

ψ†ψ
U→ (Uψ)†(Uψ) = ψ† U †U︸ ︷︷ ︸

1

ψ = ψ†ψ . (3.310)

There exist useful relations between the u, v spinors and the energy and spin
projection operators that will be used later in actual calculations of transition rates
(the proof is left as an exercise):

up⃗,±s⃗ up⃗,±s⃗ = 2mΛ+(p)Σ±(s) = (p/ +m)
1± γ5s/

2

vp⃗,±s⃗ vp⃗,±s⃗ = −2mΛ−(p)Σ±(s) = (p/ −m)
1± γ5s/

2

(3.311)

where for any spinors a and b, which are column vectors, a 4×4 matrix abT is defined
by

(abT )ij
def≡ ai bj . (3.312)

By this definition, the multiplications of matrices and vectors become ‘associative’;
for example, if a, b, and c are column vectors, we have

[(abT )c]i = (abT )ijcj = aibjcj = ai(b
T c) → (abT )c = a(bT c) , (3.313)
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which has the form
(abT )︷ ︸︸ ︷
· · · ·
· · · ·
· · · ·
· · · ·



c︷ ︸︸ ︷
·
·
·
·

 =

a︷ ︸︸ ︷
·
·
·
·



(bT c)︷︸︸︷(
·
)
. (3.314)

Exercise 3.10 u, v spinors and energy-spin projection operators.
Prove the identities (3.311). (hint: Since, for a given set of p⃗ and s⃗, the spinor space
is spanned by up⃗,±s⃗ and vp⃗,±s⃗, all that is needed is to show that the LHS and the RHS
of the identities behave the same for these 4 spinors.)

Similarly,

cT (abT ) = (cTa)bT . (3.315)

In terms of the spinor adjoint, we have

(ab̄)c = a(b̄c) c̄(ab̄) = (c̄a)b̄ . (3.316)

Summing over the sign of spins in (3.311), we obtain

∑
±s⃗
up⃗,s⃗ up⃗,s⃗ = (p/ +m)

∑
±s⃗
vp⃗,s⃗ vp⃗,s⃗ = (p/ −m)

, (3.317)

which will be used extensively when we calculate transition rates averaged over spins.
Taking the difference of these two equations, we obtain a relation which expresses the
completeness of the first orthonormal set:

1

2m

∑
±s⃗

(
up⃗,s⃗ up⃗,s⃗ − vp⃗,s⃗ vp⃗,s⃗

)
= 1 , (3.318)

where the right hand side is actually the 4× 4 identity matrix. This can be used to
write any spinor a as a linear combination of the orthonormal basis (up⃗,±s⃗ , vp⃗,±s⃗):

a =
1

2m

∑
±s⃗

(
up⃗,s⃗ up⃗,s⃗ − vp⃗,s⃗ vp⃗,s⃗

)
a =

1

2m

∑
±s⃗

[
up⃗,s⃗ (up⃗,s⃗ a)− vp⃗,s⃗ (vp⃗,s⃗ a)

]
, (3.319)

where we have used the associativity (3.313). Namely, the coefficient of up⃗,s⃗ is
up⃗,s⃗ a/2m, and that of vp⃗,s⃗ is −vp⃗,s⃗ a/2m. This could have been directly obtained
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from the orthonormality relations (3.307) as follows: if an arbitrary spinor a is ex-
panded as

a =
∑
±s⃗

(c±s⃗ up⃗,s⃗ + d±s⃗ vp⃗,s⃗) , (3.320)

where c±s⃗ and d±s⃗ are complex coefficients, then, multiplying up⃗,s⃗ or vp⃗,s⃗ from the left
and using the orthonormality realtions gives

c±s⃗ =
up⃗,s⃗ a

2m
, d±s⃗ = −

vp⃗,s⃗ a

2m
, (3.321)

which recovers the expansion (3.319).
Similarly, we can use the second orthonormal basis (up⃗,±s⃗ , v−p⃗,±s⃗) to expand an

arbitrary spinor a as

a =
∑
±s⃗

(c′±s⃗ up⃗,s⃗ + d′±s⃗ v−p⃗,s⃗) . (3.322)

Left-multiplying u†p⃗,s⃗ or v
†
p⃗,s⃗ gives

c′±s⃗ =
u†p⃗,s⃗ a

2E
, d′±s⃗ =

v†−p⃗,s⃗ a

2E
.

This suggests the completeness relation

1

2E

∑
±s⃗

(
up⃗,s⃗ u

†
p⃗,s⃗ + v−p⃗,s⃗ v

†
−p⃗,s⃗

)
= 1 . (3.323)

In fact, by applying this identity to a, we obtain

1

2E

∑
±s⃗

(
up⃗,s⃗ (u

†
p⃗,s⃗a) + v−p⃗,s⃗ (v

†
−p⃗,s⃗a)

)
= a , (3.324)

which reproduces the correct coefficients.

3.9 Low energy limit - electron magnetic moment

In order to find out the value of the electron magnetic moment predicted by the
Dirac equation, we have to somehow introduce the coupling to the electromagnetic
field Aµ = (Φ, A⃗) and then look for a term in the potential which looks like µB where
B is the magnetic field and µ is the magnetic moment. For now, we accept that the
interaction is introduced by the so-called minimal substitution

∂µ → Dµ
def≡ ∂µ + ieAµ with Aµ(x) = (Φ(x), A⃗(x)) , (3.325)
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where e is the charge of electron (e < 0). The operator Dµ is sometimes called the
covariant derivative. Starting from the Schrödinger form of the Dirac equation (3.29):

i∂0ψ = (−iα⃗ · ∇⃗+ βm)ψ, (3.326)

the minimal substitution

∂µ = (∂0, ∇⃗) → Dµ = (∂0 + ieΦ, D⃗) (3.327)

with
Di

def≡ ∇i + ie Ai︸︷︷︸
−Ai

= ∇i − ieAi , or D⃗
def≡ ∇⃗ − ieA⃗ (3.328)

yields

(i∂0 − eΦ)ψ =
(
− iα⃗ · D⃗ + βm

)
ψ

→ iψ̇ =
(
− iα⃗ · D⃗ + βm+ eΦ

)
ψ . (3.329)

We are interested in a low energy electron; namely, |p⃗| ≪ m and E ∼ m, or equiva-
lently, i∂iψ ≪ mψ and i∂0ψ ∼ mψ. Thus, if we write ψ(x) as

ψ(x) = ψs(x)e
−imt , ψs(x) =

(
ϕ(x)
η(x)

)
(3.330)

where ϕ and η are 2-component functions, then the space-time derivatives of ϕ and
η are small: 4

i∂µϕ≪ mϕ , i∂µη ≪ mη . (3.331)

Also, since the potential energies are assumed to be small compared to the rest mass,

eΦ≪ m, eAi ≪ m (i = 1, 2, 3) . (3.332)

Furthermore, the solution in the Dirac representation for an electron at rest, u0⃗,±s⃗ e
−imt,

has only upper two components being non-zero. Since we are considering small per-
turbations to this state, we should have

η ≪ ϕ . (3.333)

Substituting (3.330) in (3.329), and using the Dirac representations of α⃗ and β,

(
mψs + iψ̇s

)
e−imt =

[
− i

(
σ⃗ · D⃗

σ⃗ · D⃗

)
+m

(
I
−I

)
+ eΦ

]
ψse

−imt (3.334)

4In the order-of-magnitude relations shown, absolute values are implicit.
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or in terms of ϕ and η,{
mϕ+ i ϕ̇ = −i σ⃗ · D⃗ η + ( m+ eΦ)ϕ

mη + i η̇ = −i σ⃗ · D⃗ ϕ+ (−m+ eΦ)η
,

→

{
i ϕ̇ = −i σ⃗ · D⃗ η + eΦϕ

i η̇︸︷︷︸
small2

= − i σ⃗ · D⃗︸ ︷︷ ︸
small

ϕ− 2m η︸︷︷︸
small

+ eΦη︸︷︷︸
small2

. (3.335)

In the second equation, the dominant terms are i σ⃗ · D⃗ ϕ and 2mη; thus, we have

η = −i σ⃗ · D⃗
2m

ϕ . (3.336)

Substituting this in the first equation of (3.335),

i ϕ̇ =

−(σ⃗ · D⃗)2

2m
+ eΦ

ϕ . (3.337)

Now, can we set (σ⃗ · D⃗)2 = D⃗2? That would be correct if Di and Dj commute; in
this case, however, they do not commute since Di contains ∂i and A

i(x) in it. Since
Di is not a matrix, it does commute with σi. Noting that

{σi, σj} = 2 δij , [σi, σj] = 2 i ϵijkσk → σiσj = δij + i ϵijkσk , (3.338)

we can write (σ⃗ · D⃗)2 as

(σ⃗ · D⃗)2 = (σiDi)(σjDj) = σiσjDiDi = (δij + i ϵijkσk)DiDj

= D⃗2 + i σk ϵijkDiDj . (3.339)

Note that ∂i applies to everything on its right all the way to ϕ. Using angle brackets
as in ⟨∂iAj⟩ to indicate the limit of the detivative, we have

∂iA
jϕ = Aj∂iϕ+ ⟨∂iAj⟩ϕ → ∂iA

j = Aj∂i + ⟨∂iAj⟩ , (3.340)

then,

ϵijkDiDj = ϵijk (∂i − ieAi)(∂j − ieAj)︸ ︷︷ ︸
∂i∂j − e2AiAj︸ ︷︷ ︸

0 (i↔ j symmetric)

−ie(Ai∂j + ∂iA
j︸ ︷︷ ︸

Aj∂i+⟨∂iAj⟩

)

= − ie ϵijk[Ai∂j + Aj∂i︸ ︷︷ ︸
0 (i↔ j symmetric)

+⟨∂iAj⟩]

= −ie ϵijk⟨∂iAj⟩ = −ie ⟨∇⃗ × A⃗⟩k = −ieBk (3.341)
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where we have used the ordinary definition of the magnetic field B⃗:

B⃗ = ∇⃗ × A⃗ . (3.342)

Thus, we have

(σ⃗ · D⃗)2 = D⃗2 + eσ⃗ · B⃗ , (3.343)

and (3.337) becomes

i ϕ̇ =

−(∇⃗ − ieA⃗)2

2m
− e

2m
σ⃗ · B⃗ + eΦ

ϕ . (3.344)

The first term is the coupling of orbital motion to the photon field, the last term is the
potential energy due to the Φ field, and these are familiar terms from non-relativistic
extension of the Schrödinger equation to include electromagnetic interaction. The
second term, however, is a new term and it represents the potential energy of the
electron magnetic moment in a magnetic field B⃗. This can be seen as follows: suppose
that B⃗ = (0, 0, B) and that ϕ represents a state with the spin in z-direction; namely,
σzϕ = ϕ. Then,

− e

2m
σ⃗ · B⃗ = − e

2m
σzB → − e

2m
B (3.345)

Comparing this to the potential energy of a magnetic moment parallel to the magnetic
field −µB, we identify the magnetic moment to be

µ =
e

2m
. (3.346)

The gyro-magnetic ratio g is defined by

µ = gsµo , µ0 ≡
e

2m
: Bohr magneton (3.347)

where s is the absolute spin of the particle and the Bohr magneton µ0 is the magnetic
moment of a classical particle with charge e and one unit (h̄) of orbital angular
momentum for which the distributions of charge and mass are such that charge to
mass ratio is the same everywhere. Since s = 1/2 for an electron, we have

g = 2 . (3.348)

The current experimental value is

g = 2× 1.001159652193 (10
↑

uncertainty

) , (3.349)
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which is quite close to the value we have just obtained. The theoretical calculation
including higher-order effects has a comparable accuracy and is consistent with the
experiment as we will see in a later chapter (7.222).

Does the derivation above mean that all spin-1/2 particles should have g ∼ 2.0?
Apparently not, since we know that the magnetic moment of proton is g = 2.79 and
that of neutron is g = −1.91 (even though the above derivation indicates that a
neutral particle should not have a magnetic moment since it does not couple to Aµ to
begin with). The key assumption in the derivation above was the minimal substitution
(3.325) which does not in general work for particles which are not pointlike, and proton
and neutron are known to be made of quarks and have size of order 1 fm (femto meter
= 10−15 m, also called ‘fermi’).

3.10 High energy limit - massless case

We now examine the behavior of free Dirac fields at high energy, or equivalently, in
the massless limit. We will see that the helicity + and the helicity − components
decouple in such cases, satisfying separate equations of motion, where the helicity is
defined to be the spin component in the direction of the momentum.

Define the ‘right-handed’ and ‘left-handed’ components by

ψR
def≡ PRψ , ψL

def≡ PLψ , (3.350)

with

PR
def≡ 1 + γ5

2
, PL

def≡ 1− γ5
2

. (3.351)

One can readily verify that they satisfy the properties of projection operators:

P 2
R,L = PR,L , PR + PL = 1 ,

PRPL = PLPR = 0 .
(3.352)

In particular, PR + PL = 1, gives

ψ = ψR + ψL . (3.353)

Also, note that {γµ, γ5} = 0 (3.134) and γ5 = −γ5 (3.285) lead to

PRγ
µ = γµPL , PLγ

µ = γµPR , (3.354)

PR = PL , PL = PR . (3.355)

Now, set the mass to zero in the Dirac equation to get

i γµ∂µψ = 0 (m = 0) . (3.356)
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Then, we see that ψR also satisfies the massless Dirac equation:

iγµ ∂µψR︸ ︷︷ ︸
PR∂µψ

= i γµPR︸ ︷︷ ︸
PLγ

µ

∂µψ = PL iγ
µ∂µψ︸ ︷︷ ︸
0

= 0 . (3.357)

Simply exchanging L and R everywhere in the above, we also obtain iγµ∂µψL = 0.
Thus, we see that ψR and ψL separately satisfy the massless Dirac equation:

i∂/ψR = 0 , i∂/ψL = 0 (m = 0) . (3.358)

If the mass is non-zero, then they cannot be separated:

(iγµ∂µ −m)ψR = iγµ∂µψR︸ ︷︷ ︸
PLiγ

µ∂µψ

−m ψR︸︷︷︸
PRψ

̸= 0 . (3.359)

One important property of ψR,L is that they do not mix under a proper and
orthochronous transformation S. In fact, since [γ5, S] = 0 (3.137), we have

[PR,L, S] =
[1± γ5

2
, S
]
= 0 . (3.360)

Then, using ψ′(x′) = Sψ(x), we find

ψ′R(x
′) ≡ PRψ

′(x′) = PRSψ(x) = SPRψ(x) = SψR(x) , (3.361)

and similarly for ψL. Thus, ψR and ψL transform separately under a proper and
orthochronous transformation S:

ψ′R(x
′) = SψR(x) , ψ′L(x

′) = SψL(x) . (3.362)

This holds even if the mass is non-zero.
The above discussion is independent of representation. The situation, however,

becomes simpler in the Weyl representation (3.155) in which PR,L are written as

γ5 =
(
I 0
0 −I

)
→ PR =

(
I 0
0 0

)
, PL =

(
0 0
0 I

)
(Weyl) , (3.363)

which means that PR filters out the top two components and PL filters out the bottom
two components. Namely, in the Weyl representation the top half and the bottom
half of the spinor transform independently under S. Or equivalently, the matrix S
becomes block diagonal:

S =


· ·
· · 0

0
· ·
· ·

 : proper and orthochronous (Weyl) . (3.364)
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Therefore, in order to represent all proper and orthochronous transformations, that
is, to reflect the product rule of the space-time Lorentz transformations, one needs
only 2 × 2 matrices. In fact, one could use the 2 × 2 matrices that act on, say, the
top half of the spinor as the representation. In this sense, the 4× 4 representation of
proper and orthochronous Lorentz transformations is said to be reducible. When the
parity transformation SP = γ0 is included, however, the 2 × 2 representation is not
enough. This can be easily seen by the expression of γ0 in the Weyl representation
(3.155) which mixes the top half and the bottom half of the spinor.

We called ψR and ψL as the right-handed and left-handed components because in
the massless limit the fermion have helicity + and −, respectively. Now, we will show
that it is indeed the case. We take the spin quantization axis s⃗ to be the direction of
the boost under which a rest mass m will acquire a momentum p⃗:

s⃗ = p̂ ≡ p⃗

|p⃗|
. (3.365)

Noting that in the rest frame, we have s0 = 0 and s∥ = 1, where s∥ is the component
of s⃗ along the direction of boost, the spin 4-vector sµ in the boosted frame is given
by (

s0

s∥

)
=
(
γ η
η γ

)(
0
1

)
=
(
η
γ

)
=

( |p⃗|/m
E/m

)
, s⃗⊥ = 0 , (3.366)

where γ, η are related to E, p⃗ as before (3.230), and E and p⃗ are the energy and
momentum of an electron or a positron (with E ≥ 0).

In the massless limit (or high energy limit) we have E = |p⃗|, and sµ becomes
proportional to pµ:

sµ =
( |p⃗|
m
,
E

m
p̂
)

E→∞→ sµ =
(E
m
,
|p⃗|
m
p̂
)
=
pµ

m
. (3.367)

Since p//m is +1 or −1 depending on whether the state is an electron or a positron
(3.253), γ5 is then equal to the spin operator γ5s/ (with s⃗ = p̂) up to a sign:

γ5s/ = γ5
p/

m
=

{
γ5 (electron)

−γ5 (positron)
(s⃗ = p̂ , m→ 0) . (3.368)

Since the eigenvalue of γ5s/ correctly represents the spin component along p̂ for both
electron and positron solutions, we have

γ5 : ±1↔
{
helicity ± for e− (u’s)

helicity ∓ for e+ (v’s)
(m→ 0) , (3.369)

or equivalently,

PR,L ≡
1± γ5

2
:

{
helicity ± projection operator for e− (u’s)

helicity ∓ projection operator for e+ (v’s)
(m→ 0) . (3.370)
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Since γ5 and any proper and orthochronous transformation S commute, once a
state is an eigenstate of γ5, one cannot change the eigenvalue of γ5 by boosting it or
rotating it:

γ5ψ = ±ψ → γ5(Sψ) = Sγ5ψ = ±(Sψ) . (3.371)

Namely, in the massless limit, one cannot change the value of helicity by boosting
or rotating. This can be understood intuitively. For a rotation, it is plausible since
the spin and the direction of motion rotate together, and thus the component of spin
along the motion would stay the same. For a boost, a classical picture also works just
fine. The only way to reverse the spin component along the motion is for the observer
to move faster than the particle and overtake it. Then, the direction of momentum
viewed by the observer will flip while the spin will stay the same, and thus the helicity
will change its sign. In the massless limit, the particle will be moving at the speed of
light, and thus it is impossible to overtake it.

As we have seen, it does not require the mass to be zero in order for ψR and
ψL to transform independently under proper and orthochronous transformations. If
the mass is non-zero, however, ψR and ψL do not correspond to helicity +1 and
−1, respectively. The distinction between ψR and ψL, or what we called ‘handed-
ness’, is usually referred to as the chirality regardless of the mass, while helicity is
defined as the spin component along the direction of motion. Helicity +(−) and
right-handedness (left-handedness), however, are often used synonymously.
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Problems

3.1 Property of γ5.
(a) The matrix γ5 is defined by γ5 ≡ i γ0γ1γ2γ3. Show that it can also be written as

γ5 =
i

24
ϵµνσργ

µγνγσγρ ,

where ϵµνσρ is the totally antisymmetric 4-th rank tensor and sum is implied over the
Lorentz indexes µ, ν, σ, and ρ.
(b) Use the definition of determinant for a 4× 4 matrix Λ

detΛ = ϵµνσρΛ
µ
0Λ

ν
1Λ

σ
2Λ

ρ
3

or equivalently
ϵαβγδ detΛ = ϵµνσρΛ

µ
αΛ

ν
βΛ

σ
γΛ

ρ
δ

to show that the quantity ψ̄(x)γ5ψ(x) transforms under a general Lorentz transforma-
tion as

ψ̄′(x′)γ5ψ
′(x′) = (det Λ)ψ̄(x)γ5ψ(x)

where ψ(x) is a 4-component spinor field. Namely, a pseudoscalar current changes
the sign under an improper Lorentz transformation.

3.2 Helicity states.
(a) Show that the product of the spin and the momentum, which are 3-dimentional
vectors, is conserved for free fields; namely,[

Σ⃗ · p⃗ , H
]
= 0 ,

with Σi = iγjγk (i, j, k : cyclic) and H = α⃗ · p⃗ + βm (p⃗ = −i∇⃗). The spin matrix
Σi can also be written as Σi = i

2
ϵijkγjγk. Note the factor of 2, why? (comment:

This means that the spin component along the direction of motion, called ’helicity’,
is conserved - for free fields, at least.)
(b) We now consider the solutions of the Dirac equation where the spin quantization

axis s⃗ is taken in the direction of the momentum. By directly applying Σ⃗ · p⃗ in the
Dirac representation, verify that the eigen spinors are given by (up to a constant) χ+

q⃗ · σ⃗
E +m

χ+

 e−iq·x ,
 q⃗ · σ⃗
E +m

χ−

χ−

 eiq·x : with eigen value + |q⃗| ,

 χ−

q⃗ · σ⃗
E +m

χ−

 e−iq·x ,
 q⃗ · σ⃗
E +m

χ+

χ+

 eiq·x : with eigen value − |q⃗| ,
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where (q̂ · σ⃗)χ± = ±χ± Note that p⃗ is the differential operator −i∇⃗, qµ = (q0, q⃗) is a
real-number 4-vector with q0 = E and q̂ is the unit vector in the direction of q⃗.

3.3 Plane-wave solutions of the Dirac equation.
(a) Let pµ = (E, p⃗) be a 4-vector. Show that in the Dirac representation of gamma
matrixes, the 4× 4 matrix p/ can be written as

p/ =
(
E −p⃗ · σ⃗
p⃗ · σ⃗ −E

)
.

(b) Using the result above, explicitly verify that the spinors u and v given by

u =
√
E +m

 χ

p⃗ · σ⃗
E +m

χ

 , v =
√
E +m

 p⃗ · σ⃗
E +m

χ

χ


satisfy the Dirac equations in momentum space for positive and negative energy so-
lutions (p/ − m)u = 0 and (p/ + m)v = 0, where χ is any arbitrary 2-component
column vector with normalization χ†χ = 1, and p0 ≡ E ≡

√
p⃗2 +m2. (hint: Note

that (p⃗ · σ⃗)2 = p⃗2.)

3.4 Spinor representation of T - a naive attempt.
When a spinor field ψ(x) satisfies the Dirac equation in a Lorentz frame, then in a
frame transformed by Λ (i.e. x′ = Λx), ψ′(x′) will also satisfy the Dirac equation in
that frame provided that ψ′(x′) = Sψ(x) with S−1γµS = Λµ

νγ
ν, where S is a 4 × 4

matrix in the spinor space corresponding to the particular Lorentz transformation Λ
which, of course, is in the space-time 4 dimentional space. This was true for any
Lorentz transformation including time inversion given by T : T 0

0 = −1, T i
i = 1 (i =

1, 2, 3), all other components = 0.
(a) Show that S(T ) = γ1γ2γ3 satisfies the relation S−1γµS = Λµ

νγ
ν for the time

reversal Lorentz transformation T .
(b) Write down the explicit 4× 4 matrix S(T ) in the Dirac representation.
(c) Apply S(T ) to a solution of the Dirac equation corresponding to an electron (not
positron) with momentum p⃗ and spin +s⃗. What are the physical momentum and spin
of the resulting wave function? Follow the rule ψ′(x′) = Sψ(x) strictly, and express
the resulting function in terms of x′. Use the Dirac representation. (comment: As
you see, this transformation changes an electron into a positron or positive energy to
negative energy and vice versa. That is not exactly what we want for the usual sense
of T inversion which keeps an electron as an electron and a positron as a positron
and simply reverses its momentum and spin.)

3.5 Weyl representation.
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(a) Find a matrix that transforms the Dirac representation to the Weyl representation;
namely, find a 4× 4 unitary matrix V that satisfies

γµ′ = V γµV † (µ = 0, 1, 2, 3) ,

where γµ′ is in the Weyl representation and γµ is in the Dirac representation.
b) Use the matrix V found above to transform the boost matrix S given in the Dirac
representation as

S =

√
E +m

2m

 1
p⃗ · σ⃗
E +m

p⃗ · σ⃗
E +m

1


to the Weyl representation.
(c) Use the Weyl representation of the γ matrixes in

S = e
1
2
aαβB

αβ

with Bαβ =
1

4
[γα, γβ]

to find two 2 × 2 representations of the proper and orthochronous transformations
corresponding to ψR and ψL, respectively. Namely, for each Lorentz transformation
expressed as

Λ = eξiKi+θiLi ,

with ξi = α0i, θi = αjk (i, j, k : cyclic), find a 2× 2 matrix that preserves the product
rule. Express the result as

S2×2 = eξiGi+θiHi

where Gi, Hi are 2× 2 matrixes (namely, find the 2× 2 generators Gi, Hi).
(d) Show that in the Weyl representation, the Dirac equation in the massless limit
decouples to a pair of equations for two 2-component spinors ϕR and ϕL as{

i(∂0 + σ⃗ · ∇⃗)ϕR = 0

i(∂0 − σ⃗ · ∇⃗)ϕL = 0

where ϕR and ϕL are the top half and the bottom half of the 4-component spinor ψ,
respectively. This pair of equations are known as Weyl equations.





Chapter 4

Quantization of Fields

Take some uniform medium that vibrates and in which waves can propagate, which
could for example be a lattice of molecules. In such system, each normal mode of the
vibration can be treated as an independent harmonic oscillator. Now suppose that
it is small enough that quantum effects become important; then, the quantum me-
chanical treatment results in each oscillator containing an integer number of quanta
corresponding to the wave length and oscillation frequency of the normal mode. These
quanta behave in many ways as if they are particles, each carrying a definite energy
and a momentum. The system is classically well-defined, and the procedure to obtain
the quantum mechanical system is straightforward as we will discuss shortly. Quan-
tum field theory of elementary particles takes such system as a model to describe
particles where the wave length is interpreted as the momentum of each particle and
the oscillation frequency as its energy. There are some important advantages to this
approach. First, since it is based on a classical model, the energy of the system is
well-defined by the total Hamiltonian of the system which is likely to be positive since
the energy of the classical system would be positive even after quantized. Second,
this will allow the theory to deal with multiple particles in a consistent way. So
far, wave functions for the Klein-Gordon and the Dirac equations described a single
particle; even in the hole theory, a pair creation was described as a transition of a
single negative energy electron to a positive energy state. This resulted from the
fact that there is only one pair of canonical observables (x⃗, p⃗) for such theories. In
quantum field theory, there are infinite number of degrees of freedom corresponding
to the position and momentum of each point of the field (or each molecule), and this
allows the theory to describe infinite number of particles.

Let’s have a quick look at how one quantizes a vibrating medium. Imagine a
one-dimensional string that can vibrate, where there will be a number ϕ(x) attached
to each point x on the string. It could be the transverse or longitudinal displacement
from the natural position, or anything else that can result in a wave. Classically, one
would have a certain equation of motion that describes such wave, or equivalently,

117
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the Lagrangian of the system. If the system is very small, the required quantum
mechanical description of the system can be obtained from the Lagrangian of the
classical system by the prescription called the canonical quantization which proceeds
as follows. First, one chooses a set of generalized coordinates that uniquely describes
the configuration of the string, q ≡ qi (i = 1, . . . , n), and write down the Lagrangian
of the system L(q, q̇):

L(q, q̇) = T − V (4.1)

where T is the kinetic energy and V is the potential energy of the system. Then, the
canonical momentum pi conjugate to qi is defined by

pi ≡
∂L

∂q̇i
(4.2)

and the Hamiltonian is formed as

H(p, q) ≡
∑
i

piq̇i − L (4.3)

where the result is expressed as a function of p and q. At this point, qi(t) and pi(t) are
considered as hermitian operators (i.e. observables) in the Heisenberg picture where
state vectors stay constant and all time dependences are carried by operators. Then,
a set of equal-time commutation relations are introduced as

[qi(t), pj(t)] = iδij , [qi(t), qj(t)] = [pi(t), pj(t)] = 0 . (4.4)

The time evolution of any observable O(t) in the Heisenberg picture is given by
Heisenberg’s equation of motion:

−iȮ = [H,O] , (4.5)

and the matrix element of O(t) at any given time for states |ϕ1,2⟩ is then given by
⟨ϕ1|O(t)|ϕ2⟩, which in principle allows the theory to be compared with measurements.

Since changing the order of qi and pi could result in a different quantum mechanical
H, this procedure is not unique; namely, there are in general more than one quantum
mechanical system that has the same classical counterpart. When there is ambiguity,
the choice should be made based on comparison with experiments and theoretical
consistency. In practice, however, the choice is usually either quite obvious or ordering
changes simply result in constant offsets that do not affect observable effects.

For the one-dimensional string, one obvious choice for the general coordinates is,
for example, the transverse displacement ϕ(x) of each point labeled by x, or equiva-
lently that of i-th molecule ϕi. An alternative choice is to describe the configuration
of the string at a given time t by a superposition of normal modes:

ϕ(x) =
∑
p

cpe
ipx + complex conjugate (4.6)
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which is nothing but the Fourier transform of ϕ(x). Each normal mode is a harmonic
oscillator labeled by its wave length 2π/p, and the oscillators are decoupled from each
other; namely, each oscillator oscillates with a frequency uniquely given by the equa-
tion of motion without being perturbed by other oscillators. Thus, one can take the
amplitudes of the normal modes as the general coordinates and proceed to quantize
the system. As we will see later, the resulting quantized system becomes equivalent
to the system quantized using the displacement ϕ(x) as the general coordinates.

So quantum field theory takes such quantized vibrating medium as a model to
describe multiple particles where a creation of a particle with momentum p and
energy E corresponds to an excitation of the normal mode with wave number p
and angular frequency E by one quanta. It is just about the simplest way to describe
multiple particles that can be created or annihilated, and it is quite amazing that such
simple prescription actually works for a complicated system that consists of variety
of elementary particles. Actually, in order for the model to work for the elementary
particles, we need to address a few non-trivial questions:

1. Is the theory independent of the frame in which the quantization is performed?

2. Is the causality respected? Namely, are the measurements of the field at two
points separated by a time-like distance independent of each other?

3. Electrons are known to obey Pauli’s exclusion principle; how can it be incorpo-
rated into the theory?

The classical model described above is clearly inconsistent with special relativity
since there is a spacial frame where the material is at rest. The move to a relativistic
theory is similar to the case of the electromagnetic wave where the concept of the
ether which transmits light was simply discarded and the electromagnetic fields and
their transformation properties survived. After we make such transition, we will see
that the answers to the item 1 and 2 are miraculously yes. Then, we will see that
the third question is solved by using anticommutators rather than commutators to
quantize the Dirac field which will limit the number of particles that occupy a single
normal mode to one. Even after these issues are resolved, we will encounter further
problems: how to formulate massless spin-1 particles (for example, photons), how to
handle the infinities when calculating higher-order effects, etc. These topics will be
dicussed in later chapters.

We will now start by briefly reviewing the quantum mechanics of a harmonic
oscillator, and see how Pauli’s exclusion principle can be incorporated using anticom-
mutators in the quantization procedure.
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4.1 Harmonic oscillator

Classical mechanics
Take a unit mass m = 1 attached to a spring with a spring constant ω2. It is placed
in a gravitational field and we take the vertical displacement upward from its natural
position to be q. The Lagrangian, which is a function of q and q̇, is

L(q, q̇) = T − V =
1

2
(q̇2 − ω2q2) , (4.7)

where the potential energy V is measured relative to the natural position. The La-
grange’s equation of motion is then

d

dt

( ∂L
∂q̇︸︷︷︸
q̇

)
=

∂L

∂q︸︷︷︸
−ω2q

→ q̈ = −ω2q (Lagrangian form) , (4.8)

which means q(t) ∝ e±iωt, and the general solution is (requiring that q be real)

q(t) = c e−iωt + c∗eiωt (4.9)

where c is an arbitrary complex constant.
The canonical momentum is defined as

p
def≡ ∂L

∂q̇
= q̇ , (4.10)

and the Hamiltonian is obtained by writing pq̇ − L in terms of q and p only:

H(p, q)
def≡ pq̇ − L = q̇2 − 1

2
(q̇2 − ω2q2) =

1

2
(q̇2 + ω2q2) (4.11)

→ H(p, q) =
1

2
(p2 + ω2q2) . (4.12)

Then Hamilton’s equations of motions are
q̇ =

∂H

∂p

ṗ = −∂H
∂q

→

 q̇ = p

ṗ = −ω2q
(Hamiltonian form) , (4.13)

where the first equation simply recovers the definition of p, which together with the
second reproduces the equation of motion (4.8).
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Quantization
When the system of the spring is very small then we have to use a quantum mechanical
description of the system to correctly take into account quantum effects such as
the quantization of energy levels. We will now follow the procedure of canonical
quantization: namely, we regard q(t) and p(t) as hermitian operators in the Heisenberg
picture, and impose the equal-time commutation relation

[q(t), p(t)] = i . (4.14)

Then, the equations of motion are obtained by applying Heisenberg’s equation of
motion −iȮ = [H,O] (4.5) to q(t) and p(t). Using the relation [AB,C] = A[B,C] +
[A,C]B,

−iq̇ = [H, q ] =
1

2
[p2 + ω2q2, q ] =

1

2
[p2, q ]

=
1

2

(
p [p, q ]︸ ︷︷ ︸
−i

+ [p, q ]︸ ︷︷ ︸
−i

p
)

= −ip → q̇ = p , (4.15)

−iṗ = [H, p ] =
1

2
[p2 + ω2q2, p ] =

1

2
[ω2q2, p ]

=
ω2

2

(
q [q, p ]︸ ︷︷ ︸

i

+ [q, p ]︸ ︷︷ ︸
i

q
)

= i ω2q → ṗ = −ω2q , (4.16)

thus reproducing the classical results which are now expressed as relations among
operators.

A new feature created by moving to the quantized system is that the energy level,
or the eigenvalue of H, can take only discrete values. The eigenvalue problem can be
studied by introducing

a(t)
def≡ 1√

2

(√
ωq + i

p√
ω

)
→ a†(t) =

1√
2

(√
ωq − i p√

ω

)
. (4.17)

Note that a(t) is not hermitian, and thus it is not an observable. The commutator of
a(t) and a†(t) is then

[a(t), a†(t)] =
1

2

[√
ωq + i

p√
ω
,
√
ωq − i p√

ω

]
=

1

2

(
i [p, q]︸ ︷︷ ︸
−i
−i [q, p]︸ ︷︷ ︸

i

)
= 1 . (4.18)
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Solving (4.17) for q and p,

q(t) =
1√
2ω

(
a(t) + a†(t)

)
, p(t) = −i

√
ω

2

(
a(t)− a†(t)

)
. (4.19)

Using this, one sees that the commutation relation of a(t) and a†(t) (4.18) leads to
that of q and p (4.14):

[q(t), p(t)] = − i
2
[ a(t) + a†(t) , a(t)− a†(t) ]

= − i
2

(
[a†(t), a(t)]︸ ︷︷ ︸
−1

− [a(t), a†(t)]︸ ︷︷ ︸
1

)
= i . (4.20)

Thus, the two commutation relations are equivalent.
The Hamiltonian can be written in terms of a(t) and a†(t) as follows:

a(t)a†(t) + a†(t)a(t) =
1

2

{(√
ωq + i

p√
ω

)(√
ωq − i p√

ω

)

+
(√

ωq − i p√
ω

)(√
ωq + i

p√
ω

)}

=
1

2

(
2ωq2 + 2

p2

ω

)
=

1

ω

(
ω2q2 + p2

)
︸ ︷︷ ︸

2H

. (4.21)

Thus,

H =
ω

2

(
a(t)a†(t)︸ ︷︷ ︸
1 + a†(t)a(t) by (4.18)

+a†(t)a(t)
)
= ω

(
a†(t)a(t) +

1

2

)
. (4.22)

The time dependence of a(t) is then given by

−iȧ(t) = [H, a(t)] = ω[a†(t)a(t), a(t)] = ω [a†(t), a(t)]︸ ︷︷ ︸
−1

a(t)

→ ȧ(t) = −iωa(t) , (4.23)

which has the general solution

a(t) = ae−iωt with a
def≡ a(0) . (4.24)

The a operator without explicit time dependence ‘(t)’ is understood hereafter to be
the value at t = 0. Then,

a(t)a†(t) = aa† , a†(t)a(t) = a†a , (4.25)
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and thus,

[a, a†] = 1 , (4.26)

and

H = ω
(
N +

1

2

)
, N

def≡ a†a , (4.27)

where the operator N is called the number operator for the reason we will see below.
We first evaluate [a†, N ] and [a,N ]:

[a†, N ]︸ ︷︷ ︸
a†N −Na†

= [a†, a†a] = a† [a†, a]︸ ︷︷ ︸
−1

= −a† → Na† = a†(N + 1) ,

[a,N ]︸ ︷︷ ︸
aN −Na

= [a, a†a] = [a, a†]︸ ︷︷ ︸
1

a = a → Na = a(N − 1) .
(4.28)

Let |n⟩ be an eigenstate of N with an eigenvalue n:

N |n⟩ = n|n⟩ . (4.29)

where n is real since N is hermitian: N † = (a†a)† = a†a = N . Applying (4.28) to |n⟩,

Na†|n⟩ = a† (N + 1)︸ ︷︷ ︸
n+ 1

|n⟩ → N
(
a†|n⟩

)
= (n+ 1)

(
a†|n⟩

)
Na|n⟩ = a (N − 1)︸ ︷︷ ︸

n− 1

|n⟩ → N
(
a|n⟩

)
= (n− 1)

(
a|n⟩

)
.

(4.30)

Namely, a† raises the eigenvalue by 1 and a lowers eigenvalue by 1, which then trans-
lates to raising or lowering the energy, or the eigenvalue of H written as (4.27), by
one unit of ω. Accordingly, a† is called the creation operator, and a the annihilation
operator.

That n ≥ 0 can be seen as follows:

⟨n|N |n⟩︸ ︷︷ ︸
n ⟨n|n⟩︸ ︷︷ ︸
> 0

= ⟨n|a†a|n⟩︸ ︷︷ ︸
(norm of a|n⟩) ≥ 0

→ n ≥ 0 . (4.31)

If n is not an integer, then the state ak|n⟩ with k > n will have an eigenvalue n−k < 0
which contradicts the fact that n be non-negative. This can be avoided if at some
point applying a results in the null state (the state with zero norm). If n is an integer,
then indeed such is the case since a|0⟩ is a state with zero norm as can be seen by
setting n = 0 in (4.31):

⟨0|a†a|0⟩ = 0 → a|0⟩ = 0 . (4.32)
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Thus, n = 0 corresponds to the state with lowest energy which we normalize as

⟨0|0⟩ = 1 . (4.33)

All eigenstates of N can then be obtained by applying a† to the ground state |0⟩:

|n⟩ def≡ 1√
n !
a†n|0⟩ , (4.34)

where 1/n ! is a normalization factor. It can be readily shown that this state is indeed
properly normalized:

⟨n|n⟩ = 1 , (4.35)

and that the operations of a† and a on |n⟩ are given by{
a†|n⟩ =

√
n+ 1 |n+ 1⟩

a |n⟩ =
√
n |n− 1⟩ . (4.36)

Exercise 4.1 Eigenstates of harmonic oscilator.
(a) Show that the state |n⟩ as defined in (4.34) is normalized to unity; i.e. ⟨n|n⟩ = 1.
(b) Derive (4.36).

From (4.19) and the time dependence of a(t) (4.24), q(t) can be written as

q(t) =
1√
2ω

(
ae−iωt + a†eiωt

)
. (4.37)

Comparing this with the classical solution (4.9), one can see that the same quantum
mechanical system could be obtained by the following procedure: First, write down
the general classical solution as (4.9), identify the coefficient of e−iωt as a/

√
2ω and

then introduce the commutation relation [a, a†] = 1. How did the factor 1/
√
2ω in

(4.37) come about? It originated from the definition (4.17). If a(t) is defined as
(cq + ip/c)/

√
2 where c is an arbitrary real constant, then the same derivation as

(4.18) shows that [a(t), a†(t)] = 1 still results from [q, p] = i, or equivalently, a†(t)a(t)
is still the number operator with integer eigenvalues. However, the requirement that
the Hamiltonian be a function only of N = a†a and without terms such as a†2 or a2

leads to c2 = ω, which then uniquely fixes the definition (4.17) up to an overall sign.
It would be worthwhile at this point to emphasize an important feature of the

Heisenberg picture. We have a set of basis states |i⟩ (i = 0, 1, 2, . . .) which forms a
complete set in the Hilbert space that represents a single oscillator. In the Heisenberg
picture, these states do not vary with time. The time evolution corresponding to
any of these states, or any superpositions thereof, are contained in the set of time-
dependent observables such as q(t), p(t), etc. It is important to note that the same set
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of operators with the same time dependences takes care of any states. For example,
one can form a wave packet by a linear combination of the basis states where the
probability to find the mass is localized as a bump near a certain position at a given
time. Such a bump would follow a motion approximating a classical oscillation. In
the Heisenberg picture, such motion is representated by a stationary state in the
Hilbert space, and different motions (e.g., different amplitudes of the oscillation) are
represented by different static states. The operators and their time dependences are
identical for all these states representing different motions; q(t), for example, is always
given by (4.37).

Fermionic oscillator
The quantized harmonic oscillator we have just studied will serve as a normal mode
of a field corresponding to a given momentum where the number of quanta of the
oscillator is identified as the number of particles with that momentum. It works fine
for particles with an integer spin (spin 0, 1, . . . : called bosons) for which a given
state can be occupied by any number of such particles. However, particles with a
half-integer spin (1/2, 3/2, . . . : called fermions) cannot occupy an already occupied
state, and some modification is needed to limit the number of quanta for a given
oscillator to one. This can be accomplished by replacing the commutators among a
and a† by anticommutators:

[a, a†] = 1, [a, a] = [a†, a†] = 0

→ {a, a†} = 1, {a, a} = {a†, a†} = 0 . (4.38)

The anticommutation relations {a, a} = {a†, a†} = 0 mean that the square of a or a†

is zero:
a2 = 0 , a†2 = 0 . (4.39)

Define the number operator as before: N ≡ a†a, then,

N2 = a†a a†a︸︷︷︸
1− aa†

= a†a− a† aa︸︷︷︸
0

a† = N

→ N(N − 1) = 0 (4.40)

which means that N has eigenvalues 0 and 1 as promised. Let |0⟩ be the eigenstate
with eigenvalue 0

N |0⟩ = 0 (4.41)

which is assumed to be normalized as

⟨0|0⟩ = 1 . (4.42)
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Using the anticommutation relation (4.38), we have

Na† = a†a︸︷︷︸
1− aa†

a† = a† − a a†2︸︷︷︸
0

= a† . (4.43)

Applying this to |0⟩, we get
Na†|0⟩ = a†|0⟩ , (4.44)

which indicates the identification,

|1⟩ = a†|0⟩ , (4.45)

if it is not a null state. In fact, its norm is unity:

⟨1|1⟩ = ⟨0| a a†︸︷︷︸
1− a†a

|0⟩ = ⟨0|(1− N︸︷︷︸
0

)|0⟩ = ⟨0|0⟩ = 1 . (4.46)

Applying a to (4.45),

a |1⟩ = aa†︸︷︷︸
1− a†a

|0⟩ = (1− N︸︷︷︸
0

)|0⟩

→ |0⟩ = a |1⟩ . (4.47)

Equations (4.45) and (4.47) show that a and a† are acting as an annihilation operator
and a creation operator, respectively. If we try to lower the eigenvalue of |0⟩ or raise
the eigenvalue of |1⟩, then the state vanishes:{

a†|1⟩ = a†2|0⟩ = 0

a |0⟩ = a2|1⟩ = 0
. (4.48)

The Hamiltonian should be proportional to the number operator up to a constant
offset which may be ignored:

H = ωa†a , (4.49)

where the proportionality coefficient ω is identified as the energy of one quanta.
Heisenberg’s equation of motion (using a commutator) is assumed to be still valid;
then, the time dependence of a is given by

−iȧ = [H, a ] = ω[a†a, a] = ω(a† a a︸︷︷︸
0

− aa†︸︷︷︸
1− a†a

a) = ω(−a+ a† a a︸︷︷︸
0

) = −ωa

→ ȧ = −iωa . (4.50)

Thus, a has the same time dependence as in the boson case:

a(t) = ae−iωt , (4.51)
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where a without explicit time dependence ‘(t)’, in this equation and the rest of this
section, is simply understood to be the value of the operator at t = 0.

Thus, an oscillator that satisfies Pauli’s exclusion principle can be constructed
using anticommutators for the annihilation and creation operators a and a†. Such
an oscillator is sometimes called a fermionic oscillator. Before leaving the topic, we
note that the above formulation of the fermionic oscillator is symmetric under the
simultaneous exchanges |0⟩ ↔ |1⟩ and a↔ a†. Namely, if we define{

a′ ≡ a†

a′† = a
,

{
|0⟩′ ≡ |1⟩
|1⟩′ ≡ |0⟩ , (4.52)

then, a′ and a′† satisfy the same anticommutation relations (4.38) and the raising
(4.45) and lowering (4.47) relations:

{a′, a′†} = 1, {a′, a′} = {a′†, a′†} = 0 , (4.53)

a′†|0⟩′ = |1⟩′ , a′|1⟩′ = |0⟩′ . (4.54)

If we define the new number operator by

N ′ ≡ a′†a′ = aa† , (4.55)

the anticommutation relation {a, a†} = 1 reads

N ′ +N = 1 . (4.56)

Then, the relabeled eigenstates are correctly labeled by the eigenvalues of N ′:

N ′|0⟩′ = (1− N︸︷︷︸
1

)|1⟩ = 0 , N ′|1⟩′ = (1− N︸︷︷︸
0

)|0⟩ = |1⟩′ . (4.57)

Thus, it is arbitrary which is the occupied state and which is the empty state at this
point. Later, we will define the state with lower energy to be |0⟩.

Exercise 4.2 Matrix representation of fermionic oscillator.
In the space spanned by |0⟩ and |1⟩, a general state |ψ⟩ = a|0⟩+ b|1⟩ can be expressed
as a column vector as

|ψ⟩ =
(
a
b

)
.

Use the raising and lowering relations

a|1⟩ = |0⟩ , a†|0⟩ = |1⟩ ,

and
a†|1⟩ = 0; , a|0⟩ = 0 ,
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together with the normalizations

⟨1|1⟩ = ⟨0|0⟩ = 1 ,

express the operators a and a† as 2 by 2 matrices, and explicitly verify the anti-
commutation relations

{a, a†} = 1, {a, a} = {a†, a†} = 0 .

4.2 Lagrangian formulation of classical wave

As stated earlier, the first step toward quantizing a field is to find the Lagrangian of
the system, then we can proceed to derive the canonical momenta from it, form the
Hamiltonian, and then introduce commutation relations between the coordinates and
momenta to quantize the system. Thus, let’s first find the Lagrangian of a simple
vibrating material. At this stage, it has nothing to do with quantum mechanics; it is
just old classical mechanics.

Lagrangian density and the Euler-Lagrange equation
Consider a string of masses (m each) as shown in Figure 4.1. Each mass is attached to
a spring with a spring constant k. Each mass is constrained to move vertically without
friction, and the displacement of i-th mass from the natural position is denoted as ϕi,
which can also be labeled by the position along the string

ϕi ≡ ϕ(xi) . (4.58)

In order for waves to propagate, there should be some kind of coupling between the
masses which is provided by a rubber band stretched with a constant tension τ . The
tension is assumed to be independent of the vertical displacements or the slope of
the rubber band which are assumed to be small. All these assumptions seem rather
artificial; the only essential elements, however, are that the string has some uniform
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φ
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∆x

Figure 4.1: A string of springs, each with mass m and spring constant k. The masses
are connected by a rubber band of tension τ .
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mass and that the potential has one term that is proportional to ϕ2 and another
term that is proportional to (∂ϕ/∂x)2, which can lead to the Klein-Gordon equation
by adjusting parameters. It is the case for our system as we will see shortly. When
measured relative to the minimum potential (the natural state), these terms are the
lowest order terms when the potential is expanded in terms of ϕ and ∂ϕ/∂x. The
higher-order terms can be separately treated as self interactions of the field, and
ignored at this point.

Assuming that the angles θi’s (see Figure 4.1) are small, the total potential energy
of the rubber band relative to the natural state is

Vrubber =
∑
i

τ ∆x
( θ2i /2︷ ︸︸ ︷

1

cos θi
− 1

)
︸ ︷︷ ︸

rubber stretch length

=
∑
i

τ∆x
θ2i
2

=
∑
i

τ∆x
1

2

(ϕi − ϕi−1

∆x

)2
, (4.59)

and that of the springs is

Vspring =
∑
i

1

2
kϕ2

i . (4.60)

The Lagrangian of the system is then

L(ϕ, ϕ̇) = T − Vspring − Vrubber

=
∑
i

[
1

2
mϕ̇2

i −
1

2
kϕ2

i −
1

2
τ∆x

(ϕi − ϕi−1

∆x

)2]
(4.61)

with
ϕ ≡ (ϕ1, . . . , ϕn) . (4.62)

In terms of the mass per unit length µ and the spring constant per unit length κ, m
and k can be written as

m = µ∆x , k = κ∆x . (4.63)

The Lagrangian is then

L(ϕ, ϕ̇) =
∑
i

∆x
[
µ

2
ϕ̇2
i −

κ

2
ϕ2
i −

τ

2

(ϕi − ϕi−1

∆x

)2]
. (4.64)

Lagrange’s equation of motion is

d

dt

(
∂L

∂ϕ̇i

)
=

∂L

∂ϕi

(i = 1, . . . , n)

→ µϕ̈i = −κϕi − τ
(ϕi − ϕi−1)− (ϕi+1 − ϕi)

(∆x)2
, (4.65)
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where the tension term in ∂L/∂ϕi resulted from two terms corresponding to i and
i + 1. This is a set of n differential equations that are coupled. Let’s take the limit
n→∞ and ∆x→ 0 while keeping n∆x, µ and κ constant. Noting that in this limit
we have

(ϕi − ϕi−1)

∆x
=
∂ϕ

∂x
(xi) (4.66)

the tension term in (4.65) can be written as

(ϕi − ϕi−1)− (ϕi+1 − ϕi)

(∆x)2
=

(ϕi − ϕi−1)

∆x
− (ϕi+1 − ϕi)

∆x
∆x

=

∂ϕ

∂x
(xi)−

∂ϕ

∂x
(xi+1)

∆x
= −∂

2ϕ

∂x2
(xi) , (4.67)

and the equation of motion is now written in a differential form:

µϕ̈(x) = −κϕ(x) + τ
∂2ϕ

∂x2
(x) . (4.68)

To find the solution, let us try the plane wave form

ϕ = ϕ0e
i(ωt+kx) (ϕ0 : constant) (4.69)

in the above differential equation. One obtain,

µω2 − τk2 = κ . (4.70)

Namely, the solution is a plane wave whose oscillation frequency ω and wave number
k satisfies the above relation.

In the limit n → ∞, the Lagrangian (4.64) can be written as an integral over x.
Using (4.66),

L(ϕ, ϕ̇) =
∫
dxL

(
ϕ, ϕ̇,

∂ϕ

∂x

)
(4.71)

with

L
(
ϕ, ϕ̇,

∂ϕ

∂x

)
=
µ

2
ϕ̇2 − κ

2
ϕ2 − τ

2

(
∂ϕ

∂x

)2

. (4.72)

The range of integration could be either (−∞,∞) or (−L/2, L/2) where L is some
large length. If we take the range to be infinity, then we assume that the function
ϕ(x) vanishes at sufficiently large distances from origin. If we take the range to be
finite, we impose periodicity condition:

ϕ(x+ L) = ϕ(x) . (4.73)



4.2. LAGRANGIAN FORMULATION OF CLASSICAL WAVE 131

These conditions are required so that the boundary values do not contribute in the
partial integrations that occur in what follows. The integrand L(ϕ, ϕ̇, ∂ϕ/∂x) is a
function of the field value ϕ(x), its time derivative ϕ̇(x) and of the spacial derivative
∂ϕ/∂x(x), and called the Lagrangian density.

The equation of motion (4.68) was obtained by taking the limit ∆x → 0 of the
equation of motion for the discrete positions. It is convenient to establish a formula
which gives us the continuous equation of motion directly from the Lagrangian density.
To do so, we start from the action principle itself. The action S is the time integral
of the Lagrangian from time t1 to t2 which are the start and end of the motion of
interest:

S ≡
∫ t2

t1
Ldt =

∫ t2

t1
dt
∫
dxL

(
ϕ, ϕ̇,

∂ϕ

∂x

)
. (4.74)

Suppose we fix the shape of the string at t1 and t2; namely, ϕ(t1, x) and ϕ(t2, x) are
given. Between t1 and t2, the function ϕ(t, x) specifies the motion of the string which
may or may not be a true realizable motion, and for each motion, there is a real
number S associated with it as defined by (4.74). The action S is thus a mapping
of a function ϕ(t, x) to a number; such mapping is called a functional. The action
principle then tells us that the true motion is the one that has the smallest S. Or
equivalently, when we vary the function slightly around the true motion,

ϕ′(t, x) = ϕ(t, x) + δϕ(t, x) (4.75)

with the variation set to zero at the start and end of the time window,

δϕ(t1, x) = δϕ(t2, x) = 0 , (4.76)

then the change in S should be zero to the first order in δϕ:

δS ≡ S ′ − S = 0 , (4.77)

where

S =
∫
dtdxL

(
ϕ, ϕ̇,

∂ϕ

∂x

)
and S ′ =

∫
dtdxL

(
ϕ′, ϕ̇′,

∂ϕ′

∂x

)
. (4.78)

The range of time integration is understood to be (t1, t2).
We can write δS as

δS =
∫
dtdx δL(t, x) = 0 with δL = L

(
ϕ′, ϕ̇′,

∂ϕ′

∂x

)
− L

(
ϕ, ϕ̇,

∂ϕ

∂x

)
. (4.79)

On the other hand, the change in L at given time and position (t, x) occurs through
the changes in ϕ, ϕ̇, and ∂ϕ/∂x, each evaluated at the point (t, x):

δL(t, x) = ∂L
∂ϕ

δϕ+
∂L
∂ϕ̇

δ(ϕ̇) +
∂L

∂
(
∂ϕ
∂x

)δ(∂ϕ
∂x

)
. (4.80)
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Since ϕ′ = ϕ+ δϕ,

δ(ϕ̇) ≡ ϕ̇′ − ϕ̇ = ˙(δϕ), δ
(∂ϕ
∂x

)
≡ ∂ϕ′

∂x
− ∂ϕ

∂x
=

∂

∂x
(δϕ) , (4.81)

then using the chain rule A( ∂
∂s
B) = ∂

∂s
(AB)− ( ∂

∂s
A)B with s = t or x,

∂L
∂ϕ̇

δ(ϕ̇)︸ ︷︷ ︸
˙(δϕ)

=
∂

∂t

(
∂L
∂ϕ̇

δϕ
)

︸ ︷︷ ︸
→ 0

−
(
∂

∂t

(
∂L
∂ϕ̇

))
δϕ (4.82)

∂L
∂
(
∂ϕ
∂x

) δ(∂ϕ
∂x

)
︸ ︷︷ ︸
∂
∂x
(δϕ)

=
∂

∂x

(
∂L

∂
(
∂ϕ
∂x

)δϕ)
︸ ︷︷ ︸

→ 0

−
(
∂

∂x

(
∂L

∂
(
∂ϕ
∂x

)))δϕ (4.83)

where the first term in the right hand side of (4.82) or (4.83) vanishes upon integration
over t or x, respectively, due to the boundary conditions (4.76) and (4.73). Thus, δS
can now be written as

δS =
∫
dtdx

[
∂L
∂ϕ
− ∂

∂t

(
∂L
∂ϕ̇

)
− ∂

∂x

(
∂L

∂
(
∂ϕ
∂x

))]δϕ = 0 . (4.84)

Since δS should vanish for any variation δϕ, the integrand [· · ·] should be zero at all
(t, x):

∂

∂t

(
∂L
∂ϕ̇

)
+

∂

∂x

(
∂L

∂
(
∂ϕ
∂x

)) =
∂L
∂ϕ

, (4.85)

which is called the Euler-Lagrange equation for the Lagrangian density. Applying this
to the Lagrangian density (4.72), we obtain an equation of motion

∂

∂t

(
∂L
∂ϕ̇

)
= µϕ̈ ,

∂

∂x

(
∂L

∂
(
∂ϕ
∂x

)) = −τ ∂
2ϕ

∂x2
,

∂L
∂ϕ

= −κϕ

→ µϕ̈− τ ∂
2ϕ

∂x2
= −κϕ , (4.86)

which is exactly the same equation as (4.68) which was obtained directly from L(ϕ, ϕ̇)
in the limit ∆x→ 0.

When the field is labeled by a continuous parameter as in ϕ(x), the total La-
grangian is not convenient to deal with. This is because Lagrange’s equation of
motion for the total Lagrangian is written in terms of each discrete coordinate ϕi

and not in terms of ϕ(x) [see (4.65)]. In the continuous limit, a natural object is
the Lagrangian density which allows one to derive the relevant equation of motion
directly.
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It is easy to extend the Euler-Lagrange equation (4.85) to three dimensions. Now

the field is a function of x⃗, and ∇⃗ϕ replaces ∂ϕ/∂x in the argument of the Lagrangian
density:

L(ϕ, ϕ̇, ∇⃗ϕ) = L(ϕ, ∂µϕ) .
Then in (4.80), δL needs to be expanded in terms of δ(∂ϕ/∂y) and δ(∂ϕ/∂z) in
addition to δ(∂ϕ/∂x), and following through the same derivation results in

∂

∂t

(
∂L
∂ϕ̇

)
+

∂

∂x

(
∂L

∂
(
∂ϕ
∂x

))+
∂

∂y

(
∂L

∂
(
∂ϕ
∂y

))+
∂

∂z

(
∂L

∂
(
∂ϕ
∂z

)) =
∂L
∂ϕ

or

∂µ

(
∂L

∂(∂µϕ)

)
=
∂L
∂ϕ

, (4.87)

which is the Euler-Lagrange equation now written in a space-time symmetric form.
When there are more than one fields, ϕ1(x), . . . , ϕN(x), the Lagrangian density

becomes a function of these fields and their space time derivatives:

L
(
ϕ̃, ∂µϕ̃

)
, ϕ̃(x) ≡ (ϕ1(x), . . . , ϕN(x)) , x

µ = (t, x⃗) . (4.88)

Then the Lagrangian and the action are given by

L =
∫
d3xL , S =

∫
d4xL , (4.89)

where the integration range over time is (t1, t2), and the space integral is over the
entire space (infinite), or within a cube defined by −L/2 < xi < L/2 (i = 1, 2, 3).
If the range is infinite, then the fields are assumed to vanish at sufficiently large
distances from the origin:1

ϕ̃(t, x⃗) = 0 (|x⃗| → ∞) , (4.90)

or if the range is finite, then the periodicity is imposed:

ϕ̃(t, x+ L, y, z) = ϕ̃(t, x, y + L, z) = ϕ̃(t, x, y, z + L) = ϕ̃(t, x, y, z) . (4.91)

The corresponding Euler-Lagrange equation is obtained by taking the variation with
respect to only one field ϕk in (4.80) while keeping other fields fixed. Then the same
derivation leads to

∂µ

(
∂L

∂(∂µϕk)

)
=

∂L
∂ϕk

(k = 1, . . . , N) . (4.92)

1Strictly speaking, what is required of how quickly ϕ(t, x⃗) vanishes as |x⃗| → ∞ is that surface

terms such as
∫
d3x∇⃗ϕ vanish when integrated over all space. It is usually sufficient if ϕ vanishes

faster than 1/x⃗2.
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This form indicates that if the Lagrangian density L is a Lorentz scalar, then the
resulting equation of motion is also Lorentz-invariant assuming that ϕk transforms in
a well-defined way on both sides of the equation (scalar field, vector field, etc.).

Hamiltonian density
Let’s start from the one-dimensional discrete system whose total Lagrangian was given
by L(ϕ, ϕ̇) (4.64) with ϕ = ϕi (i = 1, . . . , n). One should not confuse the index i in
ϕi, which labels the position along the string, and the index k in ϕk(t, x⃗) which labels
the field. Here, we have only one field. The canonical momentum corresponding to
the i-th general coordinate ϕi is

πi
def≡ ∂L

∂ϕ̇i

= ∆xµϕ̇i , (4.93)

and the Hamiltonian is by definition

H ≡
∑
i

πiϕ̇i − L

=
∑
i

∆xµϕ̇2
i −

∑
i

∆x
[
µ

2
ϕ̇2
i −

κ

2
ϕ2
i −

τ

2

(ϕi − ϕi−1

∆x

)2]

=
∑
i

∆x
[
µ

2
ϕ̇2
i +

κ

2
ϕ2
i +

τ

2

(ϕi − ϕi−1

∆x

)2]
. (4.94)

This is kinetic energy + potential energy, and thus it is the total energy of the system.
In the continuous limit, it becomes

H =
∫
dx
[
µ

2
ϕ̇2 +

κ

2
ϕ2 +

τ

2

(
∂ϕ

∂x

)2]
. (4.95)

The same result can be obtained by the following general procedure: first, the
canonical field conjugate to ϕ is defined using the Lagrangian density L(ϕ, ϕ̇, ∂ϕ/∂x)
as

π(x)
def≡ ∂L

∂ϕ̇
= µϕ̇(x) , (4.96)

and the Hamiltonian density H is defined by

H
(
π, ϕ,

∂ϕ

∂x

)
def≡ πϕ̇− L

(
ϕ, ϕ̇,

∂ϕ

∂x

)
= µϕ̇2 −

[
µ

2
ϕ̇2 − κ

2
ϕ2 − τ

2

(
∂ϕ

∂x

)2
]

=
µ

2
ϕ̇2 +

κ

2
ϕ2 +

τ

2

(
∂ϕ

∂x

)2

(4.97)
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The total Hamiltonian is then its space integral:

H =
∫
dxH , (4.98)

which gives the same Hamiltonian as (4.95).
Extension to multiple fields in 3-dimension is straightforward. For a set of fields

ϕ̃ = (ϕ1(x), . . . , ϕN(x)), the conjugate fields are defined by

πk(x)
def≡

∂L
(
ϕ̃, ∂µϕ̃

)
∂ϕ̇k

(k = 1, . . . , N) ; (4.99)

then the total Hamiltonian is then given by

H =
∫
d3xH , (4.100)

with the Hamiltonian density defined by

H
(
π̃, ϕ̃, ∇⃗ϕ̃

)
def≡
∑
k

πkϕ̇k − L . (4.101)

Noether currents
One advantage of Lagrangian formulation is that symmetry of the system it describes
is evident in the form of the Lagrangian. If certain transformation leaves the action
invariant, then the resulting equations of motion will be the same before and after the
transformation and thus the law of physics it describes will stay the same. In general,
transformations that leave the action invariant are easy to spot in Lagrangian.

There exists a general theorem, called Noether’s theorem, that states that for each
transformation that leaves the action invariant, there exists a conserved quantity.
We now discuss such conserved quantities corresponding to the symmetry under the
space-time translations, which turn out to be the total energy and momentum of the
system.

That the equations of motion (or the laws of physics) is the same anytime anywhere
means that the Lagrangian does not depend on space-time explicitly. That is actually
what we have been assuming since there is no explicit xµ in the argument of L(ϕ, ∂µϕ).
Suppose a function ϕ(x) represents a true motion. For a given such motion ϕ(x), the
Lagrangian density L is a function of space-time though ϕ(x) and ∂µϕ(x). Applying
the chain rule of differentiation,

∂νL︸︷︷︸
gµν∂µL

=
∂L
∂ϕ︸︷︷︸

∂µ

(
∂L

∂(∂µϕ)

)
by (4.87)

∂νϕ+
∂L

∂(∂µϕ)
∂ν(∂µϕ)︸ ︷︷ ︸
∂µ(∂νϕ)
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= ∂µ

(
∂L

∂(∂µϕ)

)
∂νϕ+

∂L
∂(∂µϕ)

∂µ(∂νϕ) = ∂µ

[
∂L

∂(∂µϕ)
∂νϕ

]
. (4.102)

→ ∂µ

(
∂L

∂(∂µϕ)
∂νϕ− L gµν

)
= 0 . (4.103)

Note that this holds only for a true motion ϕ(x) since we have used the Euler-Lagrange
equation. We now have four conserved currents:

∂µJ
µν = 0 (ν = 0, 1, 2, 3) , (4.104)

with

Jµν =
∂L

∂(∂µϕ)
∂νϕ− L gµν . (4.105)

These conserved currents are called the Noether currents of the space-time transla-
tions. Then, the space integral of the time component of each current is conserved:

∂0J
0ν = −∂iJ iν

→ ∂

∂t

( ∫
d3xJ0ν

)
=
∫
d3x ∂0J

0ν = −
∫
d3x ∂iJ

iν = −
∫
A
dai J

iν = 0 (4.106)

where A is the boundary surface, dai is the i-th component of the area element and
the surface integral vanishes due to the boundary condition (4.90) or (4.91). The
conserved quantities are thus

P ν def≡
∫
d3xJ0ν (ν = 0, 1, 2, 3) . (4.107)

We can see that P 0 is nothing but the Hamiltonian (namely, the total energy):

P 0 ≡
∫
d3xJ00 =

∫
d3x

( π︷︸︸︷
∂L
∂ϕ̇

ϕ̇− L︸ ︷︷ ︸
H

)
= H . (4.108)

Then, it is natural to identify the space component P⃗ given by

P i ≡
∫
d3xJ0i =

∫
d3x

(
∂L
∂ϕ̇

∂iϕ
)
=
∫
d3xπ ∂iϕ (4.109)

as the total momentum of the system. In fact, this identification is required if we can
prove that P ν is a 4-vector, which, as it turns out, is not trivial. The main problem
is that P ν ’s are defined as space integrals in a given frame. In the following, we
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will assume that L is a Lorentz scalar and show that P ν transforms as a 4-vector
under an infinitesimal Lorentz transformation which is sufficient for all proper and
orthochronous transformations.

The following proof does not require that ϕ is a scalar, as long as fields are com-
bined in L to make it a scalar quantity. That L is a Lorentz scalar means

L′(x′) = L(x) , x′ = Λx . (4.110)

Then, since the quantity δL in (4.102) is a Lorentz scalar (it is the difference of
the values of L at two event points, x and x + ϵ) and ∂µ and ϵν are 4-vectors, the
quantity inside the square bracket should transform as a tensor. Together with the
fact that the metric tensor is itself a tensor (1.65), we see that Jµν defined by (4.105)
transforms as a tensor:

J ′µν(x′) = Λµ
αΛ

ν
βJ

αβ(x) . (4.111)

Since P ′ν and P ν are constants of motion, we choose to evaluate them at t′ = 0
and t = 0, respectively:

P ′ν ≡
∫
d3x′J ′0ν(0, x⃗ ′) , P ν ≡

∫
d3xJ0ν(0, x⃗) . (4.112)

For a proper transformation, we have det Λ = 1 and thus

d4x′ = (detΛ)d4x = d4x . (4.113)

Also, using the property of the delta function

δ(f(s)) =
∑
i

1

|f ′(si)|
δ(s− si) , (si: solutions of f(s) = 0) , (4.114)

we have

δ(t′) = δ(Λ0
ρ x

ρ) =
1

Λ0
0

δ
(
t+

Λ0
ix

i

Λ0
0

)
. (4.115)

Then, P ′ν can be written as

P ′ν ≡
∫
d3x′J ′0ν(0, x⃗ ′) =

∫ d4x︷︸︸︷
d4x′ δ(t′)︸ ︷︷ ︸
1

Λ0
0
δ
(
t+ Λ0

ix
i

Λ0
0

)
Λ0

αΛ
ν
β J

αβ(t, x⃗)︷ ︸︸ ︷
J ′0ν(t′, x⃗ ′)

=
1

Λ0
0

∫
dtd3x δ

(
t+

Λ0
ix

i

Λ0
0

)
Λ0

αΛ
ν
β J

αβ(t, x⃗)

=
1

Λ0
0

∫
d3xΛ0

αΛ
ν
β J

αβ
(
−Λ0

i x
i

Λ0
0
, x⃗
)
. (4.116)
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If Λ is an infinitesimal transformation, we can write

Λµ
ν = gµν + ωµ

ν , (4.117)

where ω is a small parameter. In particular, we have [ see (1.83)]

ω0
0 = 0 , → Λ0

0 = 1 , (4.118)

which means

−Λ0
i x

i

Λ0
0

= −(g0i + ω0
i)x

i = −ω0
i x

i . (4.119)

Then, to the first order in ω and expanding Jαβ(t, x⃗) about t = 0, P ′ν becomes

P ′ν =
∫
d3x (g0α + ω0

α)(g
ν
β + ων

β) J
αβ(−(ω0

i x
i), x⃗)

=
∫
d3x (g0αg

ν
β + g0αω

ν
β + ω0

αg
ν
β)
[
Jαβ(0, x⃗)− (∂0J

αβ)(ω0
i x

i)
]

=
∫
d3x

[
J0ν + ων

βJ
0β + ω0

αJ
αν︸ ︷︷ ︸

ω0
iJ

iν

− (∂0J
0ν)︸ ︷︷ ︸

−∂jJ jν by (4.104)

(ω0
i x

i)
]

=
∫
d3xJ0ν︸ ︷︷ ︸
P ν

+ων
β

∫
d3xJ0β︸ ︷︷ ︸
P β

+
∫
d3xω0

iJ
iν +

∫
d3xω0

i (∂jJ
jν)xi︸ ︷︷ ︸

∂j(J
jνxi)︸ ︷︷ ︸
→ 0

−J jν ∂jx
i︸︷︷︸

δij

= P ν + ων
βP

β + �
��Z
ZZ

∫
d3xω0

iJ
iν − �

��Z
ZZ

∫
d3xω0

iJ
iν

= (gνβ + ων
β)P

β

= Λν
βP

β , (4.120)

where all Jµν ’s are understood to be evaluated at (0, x⃗) unless otherwise indicated.
Thus, we have shown that P ν transforms as a 4-vector under an infinitesimal Lorentz
transformation. The proof can be easily extended to a finite transformation by divid-
ing the finite tranformation into a large number of infinitesimal transformations. The
four conserved quantities P ν therefore form a 4-vector, and since the time component
has been shown to be the total energy, we identify P ν as the total energy-momentum
4-vector. The tensor quantity Jµν is called the energy-momentum tensor.

Extension to multiple fields is again straightforward: for a set of real fields ϕk(x) (k =
1, . . . , N), the energy momentum tensor is given by

Jµν =
∂L

∂(∂µϕk)
∂νϕk − L gµν . , (4.121)
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and the total energy and momentum given by (4.107) are (using ∂i = −∇i)

P 0 = H , P⃗ = −
∫
d3xπk∇⃗ϕk , (4.122)

where πk and H are given by (4.99) through (4.101), and summations over k are
implied.

Note that P 0 and P⃗ defined above are conserved even when the Lagrangian density
is not a Lorentz scalar. All needed for the proof of conservation was that the La-
grangian density does not contain x explicitly. If the Lagrangian density is a Lorentz
scalar, then P ν ≡ (P 0, P⃗ ) transforms as a 4-vector.

Transition to Lorentz invariance
We are jumping ahead too fast, since we formed our Lagrangian density for a classical
system which is at rest in certain frame and yet assumed that the resulting Lagrangian
density is a Lorentz scaler. Let’s go back to the equation of motion of a string (4.68),
and discuss how we can make the system consistent with special relativity. If we set
µ = τ = 1 in the equation of motion, we obtain

∂2ϕ

∂t2
− ∂2ϕ

∂x2
+ κϕ = 0 . (4.123)

Then, we see that its three-dimensional extension is nothing but the Klein-Gordon
equation (∂2 +m2)ϕ = 0 with the identification κ = m2. Here, the critical condition
is µ = τ which allows the time and space derivatives to be combined into ∂2. Then,
the equation of motion becomes Lorentz-invariant provided that we define the field
ϕ(x) to be a scalar field:

ϕ′(x′) = ϕ(x) (x′ = Λx) . (4.124)

Just as we discarded the idea of ether that transmits light and took the elec-
tromagnetic fields and their transformation properties as the reality, we forget the
classical string at this point and take the field ϕ(x) and its transformation property
(4.124) as reality. As we will see shortly in the next section, the Lagrangian density
indeed becomes a Lorentz scaler with this transformation property of ϕ and the choice
of parameters µ = τ = 1.

4.3 Quantization of the Klein-Gordon field

Canonical quantization
We are now ready to quantize the Klein-Gordon field following the standard canonical
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quantization procedure. First, the Lagrangian density of the Klein-Gordon field is
obtained by setting µ = τ = 1 and k = m2 in (4.72) and extending it to 3-dimension

L(ϕ, ∂µϕ) =
1

2

(
ϕ̇2 − (∇⃗ϕ)2 −m2ϕ2) (4.125)

or

L(ϕ, ∂µϕ) =
1

2

(
∂µϕ ∂

µϕ−m2ϕ2
)
. (4.126)

If the above extension to the three-dimensional case is somewhat unclear, it is
justified by the fact that this Lagrangian density indeed leads to the Klein-Gordon
equation: the Euler-Lagrange equation (4.92) gives

∂µ

(
∂L

∂(∂µϕ)

)
︸ ︷︷ ︸

∂µϕ : note the factor of 2

−

−m2ϕ︷︸︸︷
∂L
∂ϕ

= (∂2 +m2)ϕ = 0 . (4.127)

From the definition (4.99), the conjugate field is

π(x) ≡ ∂L
∂ϕ̇

= ϕ̇ , (4.128)

and the Hamiltonian density defined by (4.101) is then

H(π, ϕ, ∇⃗ϕ) = 1

2

(
π2 + (∇⃗ϕ)2 +m2ϕ2

)
. (4.129)

Note that the field ϕ(x) is a real number as in the case of the one-dimensional
string. So far, this is just classical mechanics. The only difference from the string is
that the choice of parameters as well as the assumption that ϕ(x) is a scalar has made
the Lagrangian density a Lorentz scaler; namely, when L is regarded as a function of
x through ϕ(x), the value of L evaluated at x is the same as the value of L in the
trassformed frame at x′ = Λx: Using ϕ′(x′) = ϕ(x) and ∂′µ = Λµ

α∂α,

L′(x′) ≡ 1

2

(
∂′µϕ

′(x′) ∂µ′ϕ′(x′)︸ ︷︷ ︸
Λµ

αΛµ
β︸ ︷︷ ︸

gαβ

∂αϕ(x)∂
βϕ(x)

−m2ϕ′2(x′)
)

=
1

2

(
∂µϕ(x) ∂

µϕ(x)−m2ϕ2(x)
)
= L(x) . (4.130)
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Now we will turn the system into a quantum mechanical system by regarding
ϕ(t, x⃗) and π(t, x⃗) as operators in the Heisenberg picture, and introducing commu-
tation relations among them. Here, ϕ’s and π’s at different positions are considered
independent observables.

For clarity and simplicity, let’s start from the discrete one-dimensional case. The
total Lagrangian is (4.64) with µ = τ = 1 and κ = m2:

L(ϕ, ϕ̇) =
∑
i

∆x
1

2

[
ϕ̇2
i −m2ϕ2

i −
(ϕi − ϕi−1

∆x

)2]
. (4.131)

The operator conjugate to ϕi is then

πi(t) ≡
∂L

∂ϕ̇i

= ∆xϕ̇i(t) . (4.132)

The equal-time commutation relations are then well-defined; namely, the commutator
of ϕi and πi is i if they are conjugate to each other (i.e. have same index i) and zero
otherwise:

[ϕi(t), πj(t)] = iδij , (4.133)

[ϕi(t), ϕj(t)] = [πi(t), πj(t)] = 0 . (4.134)

The continuous limit of the conjugate field is defined directly from the lagrangian
density (4.72) with µ = τ = 1 and κ = m2:

L
(
ϕ, ϕ̇,

∂ϕ

∂x

)
=

1

2

[
ϕ̇2 −m2ϕ2 −

(
∂ϕ

∂x

)2]
. (4.135)

and given by

π(t, x) ≡ ∂L
∂ϕ̇

= ϕ̇(t, x) (4.136)

Together with the definition ϕi(t) ≡ ϕ(t, xi) (4.58), the relations connecting the con-
tinuous and discrete operators are:

ϕi(t) = ϕ(t, xi) , πi(t) = ∆xπ(t, xi) . (4.137)

Thus, the commutation relation (4.133) can be written as

[ϕ(t, xi), π(t, xj)] = i
δij
∆x

. (4.138)

For a finite ∆x, ϕ(t, x) is considered to have the value ϕi(t) for xi − ∆x/2 < x <
xi + ∆x/2, and similarly for π(t, x) (Figure 4.2). Then, for a given i, the value of
[ϕ(t, x), π(xi)] will be [ϕi(t), πi(t)] = i/∆x for xi −∆x/2 < x < xi +∆x/2.
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π (   )x

xx x

φ (   )x
φ (   )x[ ]π (   )xi, /i

ix i+1xi-1x ix i+1xi-1x ix i+1xi-1x

∆x∆x1/

Figure 4.2: The operator functions ϕ(t, x) and π(t, x) are shown symbolically for a
finite ∆x. The corresponding [ϕ(t, x), π(t, xi)]/i is shown on the right.

In the limit of small ∆x, [ϕ(t, x), π(t, xi)] is then identified as iδ(x− xi). Thus, in
the continuous limit we have

[ϕ(t, x), π(t, x′)] = iδ(x− x′) ,
[ϕ(t, x), ϕ(t, x′)] = [π(t, x), π(t, x′)] = 0 .

Extension to the three-dimensional case is straightforward and given by

[ϕ(t, x⃗), π(t, x⃗ ′)] = iδ3(x⃗− x⃗ ′) ,
[ϕ(t, x⃗), ϕ(t, x⃗ ′)] = [π(t, x⃗), π(t, x⃗ ′)] = 0 .

, (4.139)

with
δ3(x⃗− x⃗ ′) def≡ δ(x− x′)δ(y − y′)δ(z − z′) . (4.140)

Note that we are using the Heisenberg picture where all time dependences are con-
tained in the operators, and that the commutation relations above are defined at a
given time t.

Heisenberg’s equations of motion
We are now in the realm of quantum mechanics. We have infinite number of operators
ϕ(t, x⃗) representing the field values at different positions in space, and their conjugate
operators π(t, x⃗). Then, the time dependence of any operator which is a function of
ϕ and π is given by Heisenberg’s equation of motion and the commutation relations
(4.139). One natural question is then what kind of equation of motion does ϕ satisfy,
is it the Klein-Gordon equation? As we will see now, the answer is yes. Heisenberg’s
equations of motion for ϕ and π are

−iϕ̇(t, x⃗) = [H,ϕ(t, x⃗)] , (4.141)

−iπ̇(t, x⃗) = [H, π(t, x⃗)] , (4.142)
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where all times are understood to be the same. Note that what appears in the
commutators is the total Hamiltonian and not the Hamiltonian density. Using the
Hamiltonian density (4.129) and H =

∫
d3xH, the above equations are written as

(dropping ‘t’ for simplicity)

−iϕ̇(x⃗) =
[ ∫

d3x′
1

2

(
π2(x⃗ ′) + (∇⃗′ϕ(x⃗ ′))2 +m2ϕ2(x⃗ ′)

)
, ϕ(x⃗)

]
, (4.143)

−iπ̇(x⃗) =
[ ∫

d3x′
1

2

(
π2(x⃗ ′) + (∇⃗′ϕ(x⃗ ′))2 +m2ϕ2(x⃗ ′)

)
, π(x⃗)

]
. (4.144)

Some mathematical preparations are in order. For the operator function ϕ(x⃗), the
definition of ∇iϕ(x) is

∂ϕ

∂xi
(x⃗)

def≡ ϕ(x⃗+ ϵ êi)− ϕ(x⃗)
ϵ

(4.145)

where ϵ is a small real number and êi is the unit vector in the direction of the i-th axis.
We note that ∂iϕ is nothing but the difference between neighboring ϕ(x⃗)’s. Since ϕ(x⃗)
and ϕ(x⃗′) commute at equal time for any x⃗ and x⃗′, we then see that ∂iϕ(x⃗

′) commutes
with ϕ(x⃗) (at a given time t):

[∇⃗′ϕ(x⃗ ′), ϕ(x⃗)] = 0 . (4.146)

Note that the same argument cannot be applied to the time derivative ϕ̇ since the
commutation relation [ϕ(t, x⃗), ϕ(t, x⃗ ′)] = 0 is for a given time t; namely, commutators
such as [ϕ(t + dt, x⃗), ϕ(t, x⃗ ′)] are not defined at this point, and in fact it is not in
general zero as we will see later.

Next, if f(x⃗) is an arbitrary operator that is a function of x⃗, then from the
definition of ∂iϕ (4.145),∫

d3x′f(x⃗ ′)
[
∂ϕ

∂xi′
(x⃗ ′), π(x⃗)

]
=

∫
d3x′f(x⃗ ′)

[
ϕ(x⃗ ′ + ϵ êi)− ϕ(x⃗ ′)

ϵ
, π(x⃗)

]
=

1

ϵ

∫
d3x′f(x⃗ ′)

{
[ϕ(x⃗ ′ + ϵ êi), π(x⃗)]︸ ︷︷ ︸
iδ3(x⃗ ′ + ϵ êi − x⃗)

− [ϕ(x⃗ ′), π(x⃗)]︸ ︷︷ ︸
iδ3(x⃗ ′ − x⃗)

}

=
i

ϵ

(
f(x⃗− ϵ êi)− f(x⃗)

)
= −i ∂f

∂xi
(x⃗) . (4.147)

In the above, note that the same result is obtained when the operator f(x⃗ ′) is placed
after the commutator.

Then, (4.143) becomes

−iϕ̇(x⃗) =
1

2

∫
d3x′

[
π2(x⃗ ′) + �

��Z
ZZ(∇⃗′ϕ(x⃗ ′))2︸ ︷︷ ︸

by (4.146)

+m2

�
��Z
ZZϕ2(x⃗ ′) , ϕ(x⃗)

]
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=
1

2

∫
d3x′ [π2(x⃗ ′), ϕ(x⃗)]︸ ︷︷ ︸
π(x⃗ ′) [π(x⃗ ′), ϕ(x⃗)]︸ ︷︷ ︸

−iδ3(x⃗− x⃗ ′)

+ [π(x⃗ ′), ϕ(x⃗)]︸ ︷︷ ︸
−iδ3(x⃗− x⃗ ′)

π(x⃗ ′)

= −iπ(x⃗) ; (4.148)

namely,

ϕ̇(t, x⃗) = π(t, x⃗) , (4.149)

reproducing (4.136), this time derived from Heisenberg’s equation of motion. The
second equation of motion (4.144) is now,

−iπ̇(x⃗) =
1

2

∫
d3x′

[ /\
π2(x⃗ ′) + (∇⃗′ϕ(x⃗ ′))2 +m2ϕ2(x⃗ ′) , π(x⃗)

]
=

1

2

∫
d3x′

[
(∇⃗′ϕ(x⃗ ′))2, π(x⃗)

]
︸ ︷︷ ︸

≡ I1

+
m2

2

∫
d3x′

[
ϕ2(x⃗ ′), π(x⃗)

]
︸ ︷︷ ︸

≡ I2

. (4.150)

Using (4.147), the first term becomes

I1 =
1

2

∑
i

∫
d3x′

[
(∂′iϕ(x⃗

′))2, π(x⃗)
]

=
1

2

∑
i

∫
d3x′

{
∂′iϕ(x⃗

′) [∂′iϕ(x⃗
′), π(x⃗)]︸ ︷︷ ︸

−i∂i∂iϕ(x⃗)

+ [∂′iϕ(x⃗
′), π(x⃗)] ∂′iϕ(x⃗

′)︸ ︷︷ ︸
→ −i∂i∂iϕ(x⃗)

}

= −i∇2ϕ(x⃗) , (4.151)

while the second term is simpler:

I2 =
m2

2

∫
d3x′

{
ϕ(x⃗ ′) [ϕ(x⃗ ′), π(x⃗)]︸ ︷︷ ︸

iδ(x⃗ ′ − x⃗)

+ [ϕ(x⃗ ′), π(x⃗)]︸ ︷︷ ︸
iδ(x⃗ ′ − x⃗)

ϕ(x⃗ ′)
}

= im2ϕ(x⃗) . (4.152)

Putting the pieces together, we obtain

π̇(t, x⃗) = ∇2ϕ(t, x⃗)−m2ϕ(t, x⃗) , (4.153)

which, combined with π = ϕ̇ (4.149), leads to

ϕ̈(t, x⃗) = ∇2ϕ(t, x⃗)−m2ϕ(t, x⃗) ,
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→ (∂2 +m2)ϕ(t, x⃗) = 0 , (4.154)

which is nothing but the Klein-Gordon equation. Thus, we have shown that Heisen-
berg’s equations of motion for ϕ(x) and π(x) together with the commutation relations
among ϕ(x) and π(x) lead to the Klein-Gordon equation which is now satisfied by
the operator field ϕ(t, x⃗) in the Heisenberg picture.

Momentum expansion
We will now express the operator field ϕ(t, x⃗) in terms of normal modes and introduce
creation and annihilation operators associated with each mode. In performing the
expansion, it is convenient to impose the periodicity (4.91), and focus our attention
on the (large) box −L/2 < xi < L/2 (i = 1, 2, 3). Then at a given time t, any
operator function ϕ(t, x⃗) can be expanded as

ϕ(t, x⃗) =
∑
p⃗

Cp⃗(t)e
ip⃗·⃗x , (4.155)

where Cp⃗ are operators and p⃗ takes discrete values that satisfy

p⃗ = (px, py, pz) =
(
2πnx

L
,
2πny

L
,
2πnz

L

)
(−∞ < nx, ny, nz <∞ : integers) .

(4.156)

As we will show below, the set of functions {eip⃗·⃗x} forms a complete orthonormal set
in the box: ∫

d3x(eip⃗·⃗x)∗eip⃗
′·⃗x = V δp⃗,p⃗ ′∑

p⃗

(eip⃗·⃗x)∗eip⃗·⃗x
′
= V δ3(x⃗− x⃗ ′) ,

(4.157)

where δp⃗,p⃗ ′ is defined as

δp⃗,p⃗ ′
def≡
{
1 if p⃗ = p⃗ ′

0 otherwise
. (4.158)

In the above and hereafter, the space integral is understood to be within the box
of volume V ≡ L3 unless otherwise stated. The first of (4.157) is easy to verify:
since if p⃗ = p⃗ ′ then integrand is 1 and the integral is V , while if p⃗ ̸= p⃗ ′ then the
integrand oscillates and the integral vanishes. The second of (4.157) can be proven
by converting the sum over p⃗ to an integral using

∑
p⃗

=
V

(2π)3

∫
d3p (L→∞) . (4.159)

This can be seen as follows: the possible values of p⃗ = (2πnx/L, 2πny/L, 2πnz/L) are
on a cubic grid of cell size 2π/L. Each cell of volume dv = (2π/L)3 contains exactly



146 CHAPTER 4. QUANTIZATION OF FIELDS

one grid point, say, at its center. The integral of an arbitrary function f(p⃗) over p⃗
can be written in the limit 2π/L→ 0 as∫

d3pf(p⃗) =
∑
p⃗

dv︸︷︷︸
(2π/L)3

f(p⃗) =
(2π)3

V

∑
p⃗

f(p⃗) , (4.160)

which establishes the correspondence (4.159). Then, we have

∑
p⃗

(eip⃗·⃗x)∗eip⃗·⃗x
′
=

V

(2π)3

∫
d3p eip⃗·(x⃗

′−x⃗)︸ ︷︷ ︸
(2π)3δ3(x⃗− x⃗ ′)

= V δ3(x⃗− x⃗ ′) , (4.161)

which proves the second orthogonality of (4.157)
The expansion (4.155) is unique since the coefficient Cp⃗ is uniquely given by∫

d3x(eip⃗·⃗x)∗ϕ(t, x⃗) =
∑
p⃗ ′
Cp⃗ ′(t)

∫
d3x(eip⃗·⃗x)∗eip⃗

′·⃗x︸ ︷︷ ︸
V δp⃗,p⃗ ′

= V Cp⃗ ,

→ Cp⃗ =
1

V

∫
d3x(eip⃗·⃗x)∗ϕ(t, x⃗) , (4.162)

and it is complete since the original function ϕ is recovered as

∑
p⃗

Cp⃗ e
ip⃗·⃗x =

1

V

∑
p⃗

∫
d3x′(eip⃗·⃗x

′
)∗ϕ(t, x⃗ ′)eip⃗·⃗x

=
1

V

∫
d3x′

∑
p⃗

(eip⃗·⃗x
′
)∗eip⃗·⃗x

︸ ︷︷ ︸
V δ3(x⃗− x⃗ ′)

ϕ(t, x⃗ ′) = ϕ(t, x⃗) (4.163)

Since ϕ is an observable, it is hermitian, and thus

ϕ† = ϕ →
∑
p⃗

C†p⃗ e
−ip⃗·⃗x

︸ ︷︷ ︸∑
p⃗

C†−p⃗ e
ip⃗·⃗x (relabeled p⃗→ −p⃗)

=
∑
p⃗

Cp⃗ e
ip⃗·⃗x . (4.164)

Equating the coefficients of the orthonormal functions, the hermiticity condition is

C†−p⃗(t) = Cp⃗(t) (4.165)

Thus, any hermitian field can be expanded at any given time as (4.155) with the
hermiticity condition (4.165). The time dependence of the field, past and future, is
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then given as follows if ϕ(t, x⃗) is to satisfy the Klein-Gordon equation. Substituting
(4.155) in ϕ̈ = ∇2ϕ−m2ϕ,∑

p⃗

C̈p⃗ e
ip⃗·⃗x =

∑
p⃗

[
(ip⃗ )2 −m2

]
Cp⃗ e

ip⃗·⃗x

→ C̈p⃗ = −p0
2
Cp⃗ , (4.166)

where p0 is defined as a positive number given by

p0 ≡
√
p⃗ 2 +m2 ≥ 0 . (4.167)

The general solution is then

Cp⃗(t) = Ap⃗ e
−ip0t +Bp⃗ e

ip0t , (4.168)

where Ap⃗ and Bp⃗ are constant operators. The hermitian condition (4.165) is now

A†−p⃗ e
ip0t +B†−p⃗ e

−ip0t = Ap⃗ e
−ip0t +Bp⃗ e

ip0t (4.169)

which should hold for all t; namely,

A†−p⃗ = Bp⃗ , B†−p⃗ = Ap⃗ (4.170)

where the second condition is actually the same as the first. We then obtain the
general solution of the Klein-Gordon equation by substituting (4.168) in the expansion
(4.155) and using A†−p⃗ = Bp⃗:

ϕ(t, x⃗) =
∑
p⃗

(
Ap⃗ e

−ip0t + A†−p⃗ e
ip0t)eip⃗·⃗x

=
∑
p⃗

(
Ap⃗ e

−ip0t+ip⃗·⃗x + A†−p⃗ e
ip0t+ip⃗·⃗x︸ ︷︷ ︸

relabel p⃗→ −p⃗

)

=
∑
p⃗

(
Ap⃗ e

−ip·x + A†p⃗ e
ip·x
)

(4.171)

where we have used the 4-vector notation p · x = p0t− p⃗ · x⃗. Note that in relabeling
p⃗→ −p⃗, the value of p0 did not change because of the definition (4.167).

In analogy to the single harmonic oscillator case (4.37), we define the operator ap⃗
as

Ap⃗ =
1√
2p0V

ap⃗ . (4.172)

We will see below that ap⃗ and a†p⃗ act as the annihilation and the creation operator

for a particle with momentum p⃗. The normalization factor 1/
√
2p0V is such that
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the commutation relations among ϕ and π (4.139) leads to the commutation relation
[ap⃗, a

†
p⃗] = δp⃗,p⃗ ′ while satisfying π = ϕ̇.

Putting (4.171) and (4.172) together, the expansion can be written as

ϕ(x) =
∑
p⃗

(
ap⃗ ep⃗(x) + a†p⃗ e

∗
p⃗(x)

)
(4.173)

with the normal-mode functions defined by

ep⃗(x)
def≡ e−ip·x√

2p0V
(x ≡ (t, x⃗), p0 =

√
p⃗ 2 +m2 ≥ 0) (4.174)

This expansion is general; that is, you give me any solution of the Klein-Gordon
equation, then I will look at its spacial dependence at a fixed time t and expand
it uniquely as (4.155). Then the time dependence for the past and future is given
as in (4.168) in order to satisfy the Klein-Gordon equation, and together with the
hermitian condition (4.170), it results in the expansion above. 2 Note that p0 is a
function of p⃗, ep⃗(x) is just a number (namely, not an operator), and ap⃗ is an operator
that does not depend on t. The conjugate field can be obtained by (4.149):

π(x) = ϕ̇(x) =
∑
p⃗

(−ip0)
(
ap⃗ ep⃗(x)− a†p⃗ e∗p⃗(x)

)
, (4.175)

which is also hermitian.
In order to show that ap⃗ and a†p⃗ indeed are creation and annihilation operators,

we need the orthonormality relations of the normal-mode functions:∫
d3x e∗p⃗(x)ep⃗ ′(x) =

1

2V
√
p0p0′

∫
d3x eip·xe−ip

′·x

=
ei(p

0−p0′)t

2V
√
p0p0′

∫
d3x(eip⃗·⃗x)∗eip⃗

′·⃗x︸ ︷︷ ︸
V δp⃗,p⃗ ′

=
δp⃗,p⃗ ′

2p0
, (4.176)

where in the last step we have set p0 = p0′ which is allowed because of the delta
function δp⃗,p⃗ ′. The integral of ep⃗(x)ep⃗ ′(x) can be obtained similarly:∫

d3x ep⃗(x)ep⃗ ′(x) = e−2ip
0t δp⃗,−p⃗ ′

2p0
. (4.177)

2Because of the hermitian condition C†
−p⃗ = Cp⃗, the number of independent Ap⃗ is twice that of

Cp⃗. Thus, ϕ(x) at given time alone cannot uniquely fix all Ap⃗’s. Additional information on ϕ̇(x) at
given time will do. This is because the Klein-Gordon equation is second order in time derivative.
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This is a little awkward; it would be much better if the above gives zero instead of the
delta function with a phase factor. This can be accomplished by using the differential

operator
↔
∂0 introduced in (2.46):

a
↔
∂0b ≡ a(∂0b)− (∂0a)b , (4.178)

where a and b are arbitrary functions of t. We then have∫
d3x ep⃗(x)i

↔
∂0ep⃗ ′(x) = (p0′ − p0)

∫
d3x ep⃗(x)ep⃗ ′(x)︸ ︷︷ ︸

e−2ip
0tδp⃗,−p⃗ ′/2p0

= 0 (4.179)

where the delta function forced p0′ = p0. With
↔
∂ 0, the orthonormality (4.176) also

becomes simpler:∫
d3x e∗p⃗(x)i

↔
∂0ep⃗ ′(x) = (p0′ + p0)

∫
d3x e∗p⃗(x)ep⃗ ′(x)︸ ︷︷ ︸
δp⃗,p⃗ ′/2p0

= δp⃗,p⃗ ′ . (4.180)

Taking complex conjugate of these relations, we have a set of orthonormality relations
given by∫

d3x e∗p⃗(x)i
↔
∂0ep⃗ ′(x) = δp⃗,p⃗ ′ ,

∫
d3x ep⃗(x)i

↔
∂0e

∗
p⃗ ′(x) = −δp⃗,p⃗ ′ ,∫

d3x ep⃗(x)i
↔
∂0ep⃗ ′(x) = 0 ,

∫
d3x e∗p⃗(x)i

↔
∂0e

∗
p⃗ ′(x) = 0 .

(4.181)

In the classical (i.e. non-quantized) Klein-Gordon theory, the probability density is

given by j0 = ϕ∗i
↔
∂ 0ϕ (2.45). Thus, when interpreted as a c-number solution of the

Klein-Gordon equation, the normal-mode functions ep⃗(x) are normalized to be unit
probability in the volume V .

These relations allow us to express ap⃗ and a†p⃗ in terms of ϕ and π: using the
expansion (4.173),∫

d3x e∗p⃗(x)i
↔
∂0ϕ(x) =

∑
p⃗ ′

[
ap⃗ ′

∫
d3x e∗p⃗ i

↔
∂0ep⃗ ′︸ ︷︷ ︸

δp⃗,p⃗ ′

+a†p⃗ ′

∫
d3x e∗p⃗ i

↔
∂0e

∗
p⃗ ′︸ ︷︷ ︸

0

]
= ap⃗ , (4.182)

where we have used the linearity of the operator
↔
∂0 to take the sum over momentum

out of the integral. Writing out the left-hand side of the above explicitly

ap⃗ =
∫
d3x e∗p⃗(x)

[
iϕ̇+ p0ϕ(x)

]
=
∫
d3x e∗p⃗(x)

[
p0ϕ(x) + iπ(x)

]
. (4.183)
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Taking the hermitian conjugate of this relation, and noting that ϕ and π are hermitian,
we get

a†p⃗ =
∫
d3x ep⃗(x)

[
p0ϕ(x)− iπ(x)

]
. (4.184)

Note that the relations (4.183) and (4.184) are valid for any t.

Then, the commutation relations among ap⃗ and a†p⃗ follow directly from those
among ϕ and π (4.139): with the notation

x ≡ (t, x⃗), x′ ≡ (t, x⃗ ′) (equal time) (4.185)

we have

[ap⃗, a
†
p⃗ ′] =

[ ∫
d3x e∗p⃗(x)

(
p0ϕ(x) + iπ(x)

)
,
∫
d3x′ep⃗ ′(x′)

(
p0′ϕ(x′)− iπ(x′)

)]
=

∫
d3x

∫
d3x′e∗p⃗(x)ep⃗ ′(x′)

[
p0ϕ(x) + iπ(x) , p0′ϕ(x′)− iπ(x′)

]
︸ ︷︷ ︸
ip0′ [π(x), ϕ(x′)]︸ ︷︷ ︸
−iδ3(x⃗− x⃗ ′)

−ip0 [ϕ(x), π(x′)]︸ ︷︷ ︸
iδ3(x⃗− x⃗ ′)

=
∫
d3x e∗p⃗(x)ep⃗ ′(x)︸ ︷︷ ︸
δp⃗,p⃗ ′/2p0

p0 +
∫
d3x e∗p⃗(x)ep⃗ ′(x)︸ ︷︷ ︸
δp⃗,p⃗ ′/2p0= δp⃗,p⃗ ′/2p0′

p0′

= δp⃗,p⃗ ′ . (4.186)

Similarly, we can see that [ap⃗, ap⃗ ′] vanishes, which results from the two terms with

delta functions in (4.186) cancelling each other. Then, its hermitian conjugate [a†p⃗, a
†
p⃗ ′]

also vanishes. Thus, the commutation relations of ϕ and π resulted in those of ap⃗ and

a†p⃗ given by

[ap⃗, a
†
p⃗ ′] = δp⃗,p⃗ ′

[ap⃗, ap⃗ ′] = [a†p⃗, a
†
p⃗ ′] = 0

. (4.187)

which are exactly the commutation relations for the annihilation and creation oper-
ators for a set of independent harmonic oscillators where each harmonic oscillator is
labeled by p⃗; namely, for a given p⃗ we have [a, a†] = 1, and operators belonging to
different harmonic oscillators commute. Then by the same argument as in the case
of a single harmonic oscillator (4.28), this commutation relation between a and a†

singlehandedly leads to the fact that a† raises the eigenvalue of the number operator
N = a†a by one and a lowers by one, thus justifying the interpretation that they are
indeed creation and annihilation operators. The commutation relations among ϕ and
π (4.139) can be re-derived from those of ap⃗ and a†p⃗, and it is left as an exercise.
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Exercise 4.3 Quantization conditions of hermitian spin-0 field.
Start from the commutation relations among creation and annihilation operators (4.187)
and derive those among fields (4.139) using the momentum expansions.

Total energy and momentum
We have seen that a hermitian field ϕ(t, x⃗) that satisfies the Klein-Gordon equation
can be regarded as a set of harmonic oscillators each labeled by p⃗ and with associated
pair of annihilation and creation operators ap⃗ and a†p⃗. Then each harmonic oscillator
or normal mode can have an integer number of quanta each of which we regard as a

particle with momentum p⃗ and energy p0 =
√
p⃗ 2 +m2. If this picture is correct, then

the total energy and momentum should be simply the sum of energies and momenta
of the particles in each normal modes summed over all normal modes. We will now
see that it is indeed the case.

First, let’s examine in what kind of space the operators such as ap⃗, ϕ, π, etc. are
acting. This is in fact the Hilbert space we are dealing with. Since each normal mode
is an independent harmonic oscillator, there is a number operator for each p⃗:

Np⃗ ≡ a†p⃗ap⃗ , (4.188)

and the corresponding set of eigenstates denoted as |np⃗⟩p⃗ :

Np⃗|np⃗⟩p⃗ = np⃗|np⃗⟩p⃗ . (4.189)

Namely, |np⃗⟩p⃗ is a state of the harmonic oscillator labeled by p⃗ that contains np⃗ quanta.
Then just as in the case of the single harmonic oscillator (4.34), the state |np⃗⟩p⃗ can

be constructed by repeatedly applying a†p⃗ on the ground state of the oscillator |0⟩p⃗ :

|np⃗⟩p⃗ =
(a†p⃗)

np⃗√
np⃗!
|0⟩p⃗ (4.190)

Let |{np⃗}⟩ be the overall state with np⃗ quanta in the harmonic oscillator labeled by
p⃗ where p⃗ runs over all possible values. It is the direct product of the states of all
harmonic oscillators:

|{np⃗}⟩ =
∏
p⃗

|np⃗⟩p⃗ =
[∏

p⃗

(a†p⃗)
np⃗√
np⃗!

]
|0⟩ , (4.191)

where the vacuum state |0⟩ is the product of all ground states:

|0⟩ def≡
∏
p⃗

|0⟩p⃗ . (4.192)
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Since each |0⟩p⃗ is normalized, the over-all vacuum is also normalized:

⟨0|0⟩ = 1 . (4.193)

The Hilbert space is then spanned by the states |{np⃗}⟩ with all possible combinations
of {np⃗}. It is a very large space. When there are more than one types of particles,
then the space should be extended even larger: the basis states in this case are
|{nr,p⃗}⟩, where nr,p⃗ is the number of quanta in the normal mode corresponding to the
particle type r and momentum p⃗. These states with definite numbers of quanta in
each particle type and momentum are called the Fock states. For now, we assume
that there is only one type of particle.

What we would like to show is then, for the operator P µ that represents the total
energy-momentum, its action on a Fock state |{np⃗}⟩ is

P µ|{np⃗}⟩ =
(∑

p⃗

np⃗ p
µ
)
|{np⃗}⟩ , (4.194)

where pµ ≡ (p0, p⃗) with p0 =
√
p⃗ 2 +m2; namely, the total energy-momentum 4-vector

becomes the sum of those for all the existing particles in the universe. This would be
accomplished if the total energy-momentum operator can be written as

P µ =
∑
p⃗

pµNp⃗ , (4.195)

where Np⃗ is the number operator given by (4.188). Now what should we take for the
energy-momentum operator P µ to start with? In the case of classical field, we had the
conserved 4-vector (4.107) obtained from the Noether current of space-time transla-
tion, which is a good candidate to use after regarding the fields in the expressions as
operators. In fact, the Hamiltonian of the quantized Klein-Gordon field (4.129) was
constructed exactly in such manner and it was shown that such Hamiltonian indeed
leads to the Klein-Gordon equation through Heisenberg’s equations of motion. Thus,
we will start from the Hamiltonian density (4.129), regard the fields as operators, and
express the total Hamiltonian H =

∫
d3H in terms of ap⃗’s and a

†
p⃗’s.

Let’s first use a partial integration and the Klein-Gordon equation to simplify the
expression (4.129) for H:

H =
∫
d3x

1

2

(
π2 + (∇⃗ϕ)2︸ ︷︷ ︸
∇⃗ · (ϕ∇⃗ϕ)︸ ︷︷ ︸
→ 0

−ϕ∇2ϕ︸ ︷︷ ︸
ϕ̈+

/\
m2ϕ : by the K-G eq.

+
/\

m2ϕ2
)
=

1

2

∫
d3x

(
π2︸︷︷︸
ϕ̇2

−ϕϕ̈
)

=
1

2

∫
d3xϕ i

↔
∂0(i∂0ϕ) , (4.196)
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where we have used the fact that the surface term vanishes when integrated over all
space: ∫

d3x∇⃗ · (ϕ∇⃗ϕ) =
∫
boundary

da⃗ · (ϕ∇⃗ϕ) = 0 . (4.197)

Then, substituting the expansions (4.173) and using the orthonormality relations
(4.181), we have

H =
1

2

∫
d3x

[∑
p⃗

(ap⃗ ep⃗ + a†p⃗ e
∗
p⃗)
]
i
↔
∂0

[∑
p⃗ ′
p0′(ap⃗ ′ep⃗ ′− a†p⃗ ′e∗p⃗ ′)

]
=

1

2

∫
d3x

∑
p⃗,p⃗ ′

p0′
(
ap⃗ ap⃗ ′ep⃗ i

↔
∂0ep⃗ ′︸ ︷︷ ︸

→ 0

−ap⃗ a†p⃗ ′ep⃗ i
↔
∂0e

∗
p⃗ ′︸ ︷︷ ︸

→ − δp⃗,p⃗ ′

+a†p⃗ ap⃗ ′e∗p⃗ i
↔
∂0ep⃗ ′︸ ︷︷ ︸

→ δp⃗,p⃗ ′

−a†p⃗ a
†
p⃗ ′e∗p⃗ i

↔
∂0e

∗
p⃗ ′︸ ︷︷ ︸

→ 0

)

=
1

2

∑
p⃗

p0(ap⃗ a
†
p⃗︸ ︷︷ ︸

a†p⃗ ap⃗ + 1

+a†p⃗ ap⃗)

=
∑
p⃗

p0
(
a†p⃗ ap⃗ +

1

2

)
. (4.198)

Thus, the total Hamiltonian is now a simple function of the number operators Np⃗ =

a†p⃗ap⃗ . This is almost exactly what we wanted except the term
∑

p⃗ p
0/2 which appar-

ently is infinity. It is the energy of the state with np⃗ = 0 for all p⃗, namely, the energy
of the vacuum |0⟩. If the object we are dealing with is a lattice of atoms, then there
is a maximum value for |p⃗| where the wavelength becomes smaller than the lattice
spacing and waves stop propagating. In that case, this ground state energy is finite.
In our case of the Klein-Gordon field, theory may break down at very high energy,
and there may be a natural cutoff that would make the ground state energy finite.
In any case, such a constant offset of energy does not have observable effects on the
phenomena we are interested in, and thus we choose to simply discard it. Then, our
Hamiltonian is

H =
∑
p⃗

p0a†p⃗ ap⃗ (4.199)

which gives the time component of (4.195).
We will encounter similar situations where we want to discard constant offsets

corresponding to vacuum expectation values; thus, it is convenient to introduce a
procedure that forces the vacuum expectation value to be zero. This can be accom-
plished by the so-called normal ordering denoted by ‘: :’. Whatever is inside the
colons is a polynomial of annihilation and creation operators, and the normal ordering
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reorders each term such that all annihilation operators (a’s) are to the right of all
creation operators (a†’s). For example,

: ap⃗a
†
p⃗ ′ : = a†p⃗ ′ap⃗ , : a†p⃗ ′ap⃗ : = a†p⃗ ′ap⃗ ,

: ap⃗1a
†
p⃗2
a†p⃗3 : = a†p⃗2a

†
p⃗3
ap⃗1 , etc.

(4.200)

Recalling that ap⃗ annihilates the vacuum state [see (4.32)], we have

ap⃗|0⟩ = 0 → ⟨0|a†p⃗ = 0 , (4.201)

which means that the vacuum expectation value of any normal-ordered product of
ap⃗’s and a

†
p⃗’s is zero:

⟨0| : · · · : |0⟩ = 0 , (4.202)

because there is at least one ap⃗ directly to the left of |0⟩ or at least one a†p⃗ directly

to the right of ⟨0|. Since ap⃗’s commute among themselves as do a†p⃗’s, the normal
ordering uniquely defines the resulting operator. One has to be careful, however, not
to use commutation relations before the normal ordering is performed since it defeats
the very purpose of the normal ordering, namely to discard the constant term arising
from the commutator:

: ap⃗a
†
p⃗ ′ : = : δp⃗,p⃗ ′+ a†p⃗ ′ap⃗ : = δp⃗,p⃗ ′+ a†p⃗ ′ap⃗ (don’t do this) . (4.203)

Normal ordering is understood to be a simple reordering of a’s and a†’s after products
are expanded if there are any. Then, the total Hamiltonian can be written using the
normal ordering symbol as

H = :
∫
d3x

1

2

(
π2 + (∇⃗ϕ)2 +m2ϕ2

)
: =

∑
p⃗

p0Np⃗ . (4.204)

From now on, when we deal with terms in a Hamiltonian or Lagrangian, normal
ordering is implicitly assumed.

For the total momentum, we start from P⃗ given by (4.109), regard the fields as
operators, and use the momentum expansion to write it in terms of a’s and a†’s. In

doing so, it is convenient to write it using
↔
∂0. First, we note that the implicit normal

ordering means
: (∇⃗π)ϕ : = : ϕ(∇⃗π) : . (4.205)

Then, the total momentum can be expressed as

P⃗ = −
∫
d3xπ∇⃗ϕ = −1

2

∫
d3x(π∇⃗ϕ+ π∇⃗ϕ︸ ︷︷ ︸

∇⃗(πϕ)︸ ︷︷ ︸
surface term → 0

− (∇⃗π)ϕ︸ ︷︷ ︸
ϕ(∇⃗π)

)
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= −1

2

∫
d3x(ϕ̇∇⃗ϕ− ϕ∇⃗ϕ̇)

=
1

2

∫
d3xϕ i

↔
∂0(−i∇⃗ϕ) . (4.206)

At this point, we notice the pattern: both H and P⃗ are written in the form

1

2

∫
d3xϕi

↔
∂0Oϕ , (4.207)

where O = i∂0 for H, and O = −i∇⃗ for P⃗ . Once written in this form, the rest is
nearly identical to the Hamiltonian case (4.198), and the result is

P⃗ = − :
∫
d3xπ∇⃗ϕ : =

∑
p⃗

p⃗ Np⃗ . (4.208)

Exercise 4.4 Complete the derivation above.

Note that in the case of classical fields there is no difference between π∇⃗ϕ and
(∇ϕ)π, but for the quantized fields they differ since π and ϕ do not commute. The
normal ordering, however, resolves such ambiguity.

We have seen in the classical case that the quantities P ν given by (4.107) are
conserved. Now we are dealing with quantized fields, and a natural question is if the
operators P ν are indeed constants of motion. Time variations of operators are given
by Heisenberg’s equation of motion, and thus immediately we see that P 0 = H is
conserved since H commutes with itself. It is easy to see that P⃗ is also conserved:

−i ˙⃗P = [H, P⃗ ] =
[∑

p⃗

p0Np⃗ ,
∑
p⃗

p⃗ Np⃗

]
= 0 , (4.209)

since Np⃗ commutes with all other Np⃗’s including itself. Similarly, the components of

total momentum P⃗ commute among themselves:[
P i, P j

]
= 0 (i, j = 1, 2, 3) . (4.210)

Thus, all the four components of P µ commute among themselves, and thus can si-
multaneously good quantum numbers of a system.

Space-time translation
This is a good place to show that the operators P ν given in general by (4.122) are the
generators of space-time translations; namely, if F (ϕ(x), π(x)) is an arbitrary function
(namely, polynomial) of ϕ and π ≡ ϕ̇, then

eiP ·aF (x)e−iP ·a = F (x+ a) (4.211)
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provided that ϕ satisfies the equation of motion, where the operator F (x) is a function
of x = (t, x⃗) through ϕ(x) and π(x) and aµ is a real 4-vector constant. We will assume
the number of fields to be one, but the derivation can be readily extended to multiple
fields.

We first evaluate the commutator of P⃗ and ϕ, π (all at equal time):

[P⃗ , ϕ(x)] = −
∫
d3x′[π(x⃗ ′)

commute by (4.146)︷ ︸︸ ︷
∇⃗′ϕ(x⃗ ′), ϕ(x⃗) ]

= −
∫
d3x′ [π(x⃗ ′), ϕ(x⃗)]︸ ︷︷ ︸
−iδ3(x⃗ ′ − x⃗)

∇⃗′ϕ(x⃗ ′)

= i∇⃗ϕ(x⃗) (4.212)

and

[P⃗ , π(x)] = −
∫
d3x′ [π(x⃗ ′)∇⃗′ϕ(x⃗ ′), π(x⃗)]

= −
∫
d3x′ π(x⃗ ′) [∇⃗′ϕ(x⃗ ′), π(x⃗)]

= i∇⃗π(x⃗) by (4.147) . (4.213)

Together with Heisenberg’s equations of motion −iϕ̇ = [P 0, ϕ] and −iπ̇ = [P 0, π], we
have

[P µ, ϕ(x)] = −i∂µϕ(x)
[P µ, π(x)] = −i∂µπ(x) . (4.214)

Then, it is easy to show that, for an arbitrary polynomial of ϕ and π, F (ϕ, π),

[P µ, F (ϕ, π)] = −i∂µF (ϕ, π) . (4.215)

Exercise 4.5 Space-time translation operators.
Use the property of the energy-momentum operator P µ (4.214) and show that (4.215)
holds for any F (ϕ(x), π(x)) that can be expanded as

F (ϕ, π) =
∞∑

n,m=0

cn,mϕ
nπm (4.216)

where cn,m are c-numbers.
(hint: Prove and use

[A,Bn] = Bn−1[A,B] +Bn−2[A,B]B + ...+ [A,B]Bn−1.

Comment: note that the above can be extended to any number of different fields.)
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For a small translation aµ = ϵµ, we have (to the first order in ϵ),

eiP ·ϵF (x)e−iP ·ϵ = (1 + iP · ϵ)F (1− iP · ϵ)
= F + i(P µϵµF − FP µϵµ)

= F + i [P µ, F ]︸ ︷︷ ︸
−i∂µF

ϵµ

= F (x) + (∂µF )ϵµ = F (x+ ϵ) . (4.217)

Applying again eiP ·ϵ from the left and e−iP ·ϵ from the right, and repeating n times
total, we obtain

eiP ·nϵF (x)e−iP ·nϵ = F (x+ nϵ) . (4.218)

Taking the limit n→∞ while keeping a = nϵ, we obtain (4.211).
Thus, we have shown that the total energy-momentum operator P µ indeed gen-

erates space-time translation where the time translation is nothing but the time evo-
lution according to Heisenberg’s equation of motion. Note that we started from the
definition of P µ for a general field and used only the commutation relations between
ϕ and π which happens to be valid for all bosons. We will see later that (4.211) also
holds for spin-1/2 fields; it is in fact a general feature of quantum field theory.

4.4 Two scalar fields of the same mass

In the case of a hermitian scalar field, we had one pair of creation and annihilation
operators, a†p⃗ and ap⃗, for a given momentum p⃗. Thus, it cannot have more than
one degree of freedom for a given p⃗; namely, it cannot represent a particle with
spin greater than zero, or a system of a particle and its antiparticle. We will now
discuss a framework that can describe a spin-0 particle and its antiparticle that are
distinct. It is accomplished by combining two hermitian Klein-Gordon fields with
the same mass into one non-hermitian field. The fact that the two fields have same
mass introduces a symmetry to the combined Lagrangian, and the conserved quantity
associated with the symmetry will turn out to be the ‘charge’ of the particles where
a particle and an antiparticle have charges with opposite signs and same magnitude.
A hermitian or non-hermitian field in quantum field theory corresponds respectively
to a real or complex field in classical field theory. These terminologies are often used
interchangeably.

Lagrangian
Consider two real fields with same mass m, ϕ1(x) and ϕ2(x), within the framework
of classical field theory. The Lagrangian density for each is given by (4.126):

Lk(ϕk, ∂µϕk) =
1

2
(∂µϕk∂

µϕk −m2ϕ2
k) (k = 1, 2; no sum over k) . (4.219)
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Assuming there is no interaction, the Lagrangian of the system is just the sum of the
two:

L(ϕ̃, ∂µϕ̃) = L1(ϕ1, ∂µϕ1) + L2(ϕ2, ∂µϕ2)

=
1

2

[
∂µϕ1∂

µϕ1 + ∂µϕ2∂
µϕ2 −m2(ϕ2

1 + ϕ2
2)
]

(4.220)

where ϕ̃ = (ϕ1, ϕ2). The Euler-Lagrange equations of this Lagrangian indeed lead to
correct equations of motion:

∂L
∂ϕk︸ ︷︷ ︸
−m2ϕk

= ∂µ
∂L

∂(∂µϕk)︸ ︷︷ ︸
∂µϕk

→ (∂µ∂
µ +m2)ϕk = 0 (k = 1, 2) . (4.221)

The conjugate fields are, by the definition (4.99),

πk ≡
∂L
∂ϕ̇k

= ϕ̇k (k = 1, 2) . (4.222)

The Hamiltonian then becomes just the sum of those of the two systems: with π̃ =
(π1, π2), we have

H ≡
∑
k

πkϕ̇k − L =
∑
k

(πkϕ̇k − Lk) =
∑
k

Hk , (4.223)

and
H = H1 +H2 , with Hk =

∫
d3xHk (k = 1, 2) . (4.224)

Define two complex fields ϕ and ϕ† by

ϕ
def≡ 1√

2
(ϕ1 + iϕ2)

ϕ†
def≡ 1√

2
(ϕ1 − iϕ2)

. (4.225)

Then, we have

ϕ†ϕ =
1

2
(ϕ1 − iϕ2)(ϕ1 + iϕ2) =

1

2
(ϕ2

1 + ϕ2
2) (4.226)

and

∂µϕ
†∂µϕ =

1

2
(∂µϕ1 − i∂µϕ2)(∂

µϕ1 + i∂µϕ2) =
1

2
(∂µϕ1∂

µϕ1 + ∂µϕ2∂
µϕ2) . (4.227)

The Lagrangian of the system (4.220) can then be written as

L = ∂µϕ
†∂µϕ−m2ϕ†ϕ . (4.228)
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Since ϕ1 and ϕ2 both satisfy the Klein-Gordon equation, so do ϕ and ϕ†:

(∂2 +m2)ϕ = 0 , (∂2 +m2)ϕ† = 0 , (4.229)

which can also be obtained by regarding ϕ and ϕ† as independent in (4.228) and
applying the Euler-Lagrange equation:

∂L
∂ϕ︸︷︷︸
−m2ϕ†

= ∂µ
∂L

∂(∂µϕ)︸ ︷︷ ︸
∂µϕ†

→ (∂µ∂
µ +m2)ϕ† = 0 (4.230)

∂L
∂ϕ†︸︷︷︸
−m2ϕ

= ∂µ
∂L

∂(∂µϕ†)︸ ︷︷ ︸
∂µϕ

→ (∂µ∂
µ +m2)ϕ = 0 . (4.231)

Again regarding ϕ and ϕ† as independent, the corresponding conjugate fields, π and
π†, are by definition given by

π
def≡ ∂L

∂ϕ̇
= ϕ̇† , π†

def≡ ∂L
∂ϕ̇†

= ϕ̇ , (4.232)

or using (4.225) and (4.222)

π =
1√
2
(π1 − iπ2)

π† =
1√
2
(π1 + iπ2)

(4.233)

Note that at this point, π and π† are defined as the conjugate fields of ϕ and ϕ†,
respectively, and considered independent; the relations (4.225) and (4.233), however,
are self-consistent when the symbol † is considered as complex conjugation or, in
the case of quantized fields, hermitian conjugation. The correct Hamiltonian can be
obtained also by regarding ϕ and ϕ† as independent:

H = πϕ̇+ π†ϕ̇† − L

=
1

2

[
(π1 − iπ2)(ϕ̇1 + iϕ̇2) + (π1 + iπ2)(ϕ̇1 − iϕ̇2)

]
− L

=
∑
k

πkϕ̇k − L . (4.234)

How could ϕ and ϕ† be considered independent without destroying the whole logical
structure, since they seem to be clearly related by complex conjugation? Actually,
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there is a good reason why such procedure works. If we regard ϕ and ϕ† as indepen-
dent, and π and π† as independent, then the relations (4.225) and (4.233) formally
constitute a canonical transformation generated by

F =
1√
2

[
π(ϕ1 + iϕ2) + π†(ϕ1 − iϕ2)

]
, (4.235)

where it can be readily verified that

ϕ =
∂F

∂π
, ϕ† =

∂F

∂π†
, and πk =

∂F

∂ϕk

(k = 1, 2) (4.236)

reproduce (4.225) and (4.233). Thus, it is no surprise that the two ‘coordinate sys-
tems’ describe the identical dynamical system using the same H and L expressed in
terms of appropriate fields.

Quantization
The quantization proceeds as usual. We regard ϕk and πk as operator fields, and
introduce the equal-time commutators given by

[ϕk(t, x⃗), πk′(t, x⃗
′)] = iδkk′δ

3(x⃗− x⃗ ′)
[ϕk(t, x⃗), ϕk′(t, x⃗

′)] = [πk(t, x⃗), πk′(t, x⃗
′)] = 0 ;

(4.237)

namely, the same as (4.139) except that if ϕ or π belong to different fields, then they
always commute. Heisenberg’s equation of motion for ϕk is

−iϕ̇k(x) = [H,ϕk(x)] = [H1 +H2, ϕk(x)] = [Hk, ϕk(x)] (4.238)

which, together with the corresponding equation for πk and following exactly the
same derivation as (4.141) through (4.154), leads to the Klein-Gordon equation for
ϕk:

(∂2 +m2)ϕk = 0 (k = 1, 2) . (4.239)

Then, the two fields ϕk can be momentum-expanded using the normal-mode functions
ep⃗(x) (4.174) together with the creation and annihilation operators for each field:

ϕk(x) =
∑
p⃗

(
akp⃗ ep⃗(x) + a†kp⃗ e

∗
p⃗(x)

)
(k = 1, 2) . (4.240)

Note that we can use the same ep⃗(x) for both fields since they have the same mass
which results in the same value of p0 for a given momentum p⃗. Then, as before, the
commutation relations (4.237) lead to

[akp⃗, a
†
k′p⃗ ′] = δkk′δp⃗,p⃗ ′

[akp⃗, ak′p⃗ ′] = [a†kp⃗, a
†
k′p⃗ ′] = 0 .

(4.241)
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The equal-time commutation relations among ϕk and πk (4.237) and the definitions
of the non-hermitian fields (4.225) and (4.233) readily lead to

[ϕ(t, x⃗), π(t, x⃗ ′)] = iδ3(x⃗− x⃗ ′)

[ϕ†(t, x⃗), π†(t, x⃗ ′)] = iδ3(x⃗− x⃗ ′)

all others = 0

. (4.242)

Note that this is what one would get if ϕ and ϕ† (and π and π†) are regarded as
independent fields and the standard quantization procedure is followed.

The momentum expansion of ϕ is obtained simply from those of ϕ1 and ϕ2:

ϕ(x) ≡ 1√
2

(
ϕ1(x) + iϕ2(x)

)
=

1√
2

[∑
p⃗

(a1p⃗ ep⃗ + a†1p⃗ e
∗
p⃗) + i

∑
p⃗

(a2p⃗ ep⃗ + a†2p⃗ e
∗
p⃗)
]

=
∑
p⃗

[
1√
2
(a1p⃗ + ia2p⃗)ep⃗ +

1√
2
(a†1p⃗ + ia†2p⃗)e

∗
p⃗)
]
. (4.243)

Defining a set of new operators by

ap⃗
def≡ 1√

2
(a1p⃗ + ia2p⃗) ,

bp⃗
def≡ 1√

2
(a1p⃗ − ia2p⃗) → b†p⃗ =

1√
2
(a†1p⃗ + ia†2p⃗) ,

(4.244)

the field ϕ can then be expanded as

ϕ(x) =
∑
p⃗

(
ap⃗ ep⃗(x) + b†p⃗ e

∗
p⃗(x)

)
. (4.245)

The commutation relations among a’s and b’s easily follow from those among ak’s:

[ap⃗, a
†
p⃗ ′] = δp⃗,p⃗ ′ , [bp⃗, b

†
p⃗ ′] = δp⃗,p⃗ ′

all others = 0
. (4.246)

This indicates that ap⃗ and bp⃗ act as annihilation operators of some particles. In

particular, a†p⃗ ap⃗ would be the number operator of the particle ‘a’ and b†p⃗ bp⃗ that of the
particle ‘b’.
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Exercise 4.6 Quantization of charged Klein-Gordon field.
(a) Derive the commutation relations among a’s and b’s (4.246) from those among
a1’s and a2’s: (4.241).
(b) Derive the equal-time commutators among ϕ and π: (4.242) from those among ϕk

and πk (4.237).

Following the same derivation as (4.196) through (4.199), the total Hamiltonian
of the two fields, H1 and H2, can be written as

H1 =
∑
p⃗

p0a†1p⃗ a1p⃗ , H2 =
∑
p⃗

p0a†2p⃗ a2p⃗ . (4.247)

The total Hamiltonian of the system is simply the sum of the two:

H = H1 +H2 =
∑
p⃗

p0(a†1p⃗ a1p⃗ + a†2p⃗ a2p⃗) . (4.248)

Noting that

a†p⃗ ap⃗ + b†p⃗ bp⃗ =
1

2
(a†1p⃗ − ia

†
2p⃗)(a1p⃗ + ia2p⃗) +

1

2
(a†1p⃗ + ia†2p⃗)(a1p⃗ − ia2p⃗)

= a†1p⃗ a1p⃗ + a†2p⃗ a2p⃗ , (4.249)

we have
→ H =

∑
p⃗

p0(a†p⃗ ap⃗ + b†p⃗ bp⃗) , (4.250)

which shows that the total energy is the sum of the energies of all ‘a-particles’ and
‘b-particles’. Similarly, the total momentum defined by (4.122) is just the sum of
those of two fields: using (4.208),

P⃗ = −
∫
d3xπk∇⃗ϕk = −

∫
d3xπ1∇⃗ϕ1︸ ︷︷ ︸∑

p⃗

p⃗ a†1p⃗ a1p⃗

−
∫
d3xπ2∇⃗ϕ2︸ ︷︷ ︸∑

p⃗

p⃗ a†2p⃗ a2p⃗

=
∑
p⃗

p⃗ (a†1p⃗ a1p⃗ + a†2p⃗ a2p⃗) . (4.251)

Then, (4.249) allows us to write it as

P⃗ =
∑
p⃗

p⃗ (a†p⃗ ap⃗ + b†p⃗ bp⃗) , (4.252)

which shows that the total momentum is the sum of the momenta of all a-particles and
b-particles. Next, we will see that the two types of particles have opposite ‘charge’,
and that the total ‘charge’ of the universe is conserved.
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Noether current of internal symmetry
We have seen that the symmetry under space-time translation led to the conserva-
tion of total energy and momentum. Here, we encounter a slightly different kind of
conserved quantity arising from an internal symmetry which crept into the system
because the two fields ϕ1 and ϕ2 have the same mass. We start from non-quantized
fields.

We first note that the Lagrangian (4.228) is invariant under the phase rotation

ϕ′(x) = eiθϕ(x) → ϕ′†(x) = e−iθϕ†(x) , (4.253)

where θ is a real parameter and the space-time points are equal on the both sides of
the equalities. In fact,

L′ ≡ ∂µϕ
′†∂µϕ′ −m2ϕ′†ϕ′ = ∂µϕ

†∂µϕ−m2ϕ†ϕ = L . (4.254)

Note that ϕ and ϕ† are not treated as independent in this procedure; indeed, it is
critical that ϕ† is rotated by a phase exactly opposite to that of ϕ. In terms of ϕ1

and ϕ2, the phase rotation is written as

ϕ′ ≡ 1√
2
(ϕ′1 + iϕ′2)

= eiθϕ = (cos θ + i sin θ)
1√
2
(ϕ1 + iϕ2)

=
1√
2

[
(cos θϕ1 − sin θϕ2) + i(sin θϕ1 + cos θϕ2)] . (4.255)

Equating the real parts and the imaginary parts, respectively, we have(
ϕ′1
ϕ′2

)
=
(
cos θ − sin θ
sin θ cos θ

)(
ϕ1

ϕ2

)
, (4.256)

which is a rotation in the space spanned by ϕ1 and ϕ2. Such transformations form
a group called SO(2) - a group formed by 2 × 2 orthogonal matrices with det = 1
(special). This group is then apparently equivalent to the group formed by simple
phase rotations eiθ which are 1× 1 unitary matrices - called U(1). Thus, SO(2) and
U(1) have the same group structure:

SO(2) ∼ U(1) . (4.257)

Let’s try Noether’s mathematical trick again to extract a conserved current as-
sociated with this symmetry. For the case of space-time translation, the Lagrangian
density L changed its value under the transformation since it is a function of x through
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ϕ(x). This time, the value of L is unchanged under the transformation. For a small
θ, the changes in the fields and their derivatives are

δϕ = iθϕ , δϕ† = −iθϕ† ,
δ(∂µϕ) = iθ∂µϕ , δ(∂µϕ

†) = −iθ∂µϕ†
(4.258)

Then, the change in L(ϕ, ϕ†, ∂µϕ, ∂µϕ†), which should be zero, can be written as

δL =
∂L
∂ϕ︸︷︷︸

∂µ
∂L

∂(∂µϕ)
by (4.230)

iθϕ︷︸︸︷
δϕ +

∂L
∂(∂µϕ)

iθ∂µϕ︷ ︸︸ ︷
δ(∂µϕ)+

∂L
∂ϕ†︸︷︷︸

∂µ
∂L

∂(∂µϕ†)
by (4.231)

−iθϕ†︷︸︸︷
δϕ† +

∂L
∂(∂µϕ†)

−iθ∂µϕ†︷ ︸︸ ︷
δ(∂µϕ

†)

= iθ
[
∂µ

∂L
∂(∂µϕ)

ϕ+
∂L

∂(∂µϕ)
∂µϕ︸ ︷︷ ︸

∂µ

(
∂L

∂(∂µϕ)
ϕ

)
−∂µ

∂L
∂(∂µϕ†)

ϕ† − ∂L
∂(∂µϕ†)

∂µϕ
†

︸ ︷︷ ︸
−∂µ

(
∂L

∂(∂µϕ†)
ϕ†
)

]

= iθ∂µ

(
∂L

∂(∂µϕ)
ϕ− ∂L

∂(∂µϕ†)
ϕ†
)
= 0 . (4.259)

Thus, we have a conserved current given by

∂µJ
µ = 0 , Jµ = i

(
∂L

∂(∂µϕ†)
ϕ† − ∂L

∂(∂µϕ)
ϕ
)
, (4.260)

where the factor ‘i’ is arbitrary at this point. The conserved quantity, which we
generically call ‘charge’, is the space integral of the time component:

Q =
∫
d3xJ0 , Q̇ = 0 . (4.261)

So far, we have not assumed any particular functional form of the Lagrangian. For
the Klein-Gordon Lagrangian (4.228), we have

Jµ = i
[
(∂µϕ)ϕ† − (∂µϕ†)ϕ

]
= ϕ†i

↔
∂
µϕ , (4.262)

and
Q =

∫
d3xJ0 =

∫
d3xϕ†i

↔
∂
0ϕ , (4.263)

which is exactly the same conserved current as (2.45) obtained earlier by directly
constructing a conserved quantity from the Klein-Gordon equation. This time, the
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same conserved current was obtained from the U(1) symmetry of the Lagrangian
through Noether’s trick.

At this point, we consider the fields that appear in Q as operators, and apply the
momentum expansion to write it in terms of creation and annihilation operators. A
simple calculation gives (normal ordering is implicit)

Q =
∫
d3xϕ†i

↔
∂
0ϕ =

∑
p⃗

(a†p⃗ap⃗ − b
†
p⃗bp⃗) (4.264)

or
Q = Na −Nb (4.265)

where
Na

def≡
∑
p⃗

a†p⃗ap⃗ , Nb
def≡
∑
p⃗

b†p⃗bp⃗ , (4.266)

are the operators that represents the total number of a-particles and b-particles,
respectively. Then, the Heisenberg equation of motion tells us that Q is indeed a
constant of motion:

−iQ̇ = [H,Q]

= [
∑
p⃗

p0(a†p⃗ap⃗ + b†p⃗bp⃗),
∑
p⃗

(a†p⃗ap⃗ − b
†
p⃗bp⃗) ]

= 0 , (4.267)

where we have used the fact that the number operators a†p⃗ap⃗ and b†p⃗ ′bp⃗ ′ all commute
among them.

Thus, the total number of a-particles minus that of b-particles is conserved. The
expressions of the total charge (4.266) indicates that an a-particle carries charge +1
and a b-particle carries charge −1 regardless of momentum. Together with the fact
that the two types of particles have the same mass, a natural interpretation is that
they are antiparticles of each other. Which is plus and which is minus is arbitrary at
this point, and so is the absolute value of the charge; we could have multiplied any
constant to (4.262). This charge is not necessarily the electric charge. Electric charge
is something that couples to photons, and we have not introduced any interaction yet.
Here, the charge simply refers to the quantum numbers attached to the two types of
particles. Then, why cannot ϕ1 and ϕ2 be interpreted as antiparticles of each other?
This can be seen by writing the conserved charge Q in terms of ak’s and a†k’s using
(4.244). The result is

Q = i
∑
p⃗

(a†1p⃗ a2p⃗ − a
†
2p⃗ a1p⃗) (4.268)

which does not contain number operators of particles 1 and 2. One should keep in
mind, however, that the two interpretations - particles a and b, or particles 1 and 2 -
are equivalent.
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Exercise 4.7 Conserved quantities of charged spin-0 field.

(a) Start from the Langrangian density in terms of ϕ and ϕ†:

L = ∂µϕ
†∂µϕ−m2ϕ†ϕ ,

and treat ϕ and ϕ† as independent variables to show that the hamiltonian is given by

H =
∫
d3x

(
ϕ̇†ϕ̇+ ∇⃗ϕ† · ∇⃗ϕ+m2ϕ†ϕ

)
.

Compare with the result obtained by regarding ϕ1 and ϕ2 as independent variables and
verify that they are identical. Up to here, regard the fields as non-quantized.

(b) Express H above in terms of creation and annihilation operators a’s and b’s. Use
the momentum expansions in terms of a’s and b’s and commutators among them. Do
not refer to a1’s and a2’s. Normal ordering is implicit.

c) Similarly, show that the total charge operator Q given by

Q =
∫
d3xJ0 =

∫
d3xϕ†i

↔
∂
0ϕ ,

can be written in terms of a’s and b’s as

Q =
∑
p⃗

(a†p⃗ap⃗ − b
†
p⃗bp⃗) .

When we studied the Klein-Gordon equation without field quantization, we had
two problems: negative energy and negative probability. Now we can see how they
are solved by quantizing the field. First, the energy is now representated by the
Hamiltonian H and (4.250) shows that both a-particles and b-particles contribute
positively. Second, the probability current is now interpreted as the charge current
and thus there is no inconsistency in the total charge having a negative value.

For a real Klein-Gordon field, by definition we cannot rotate the phase of the
field as done in the derivation of the conserved charge. Nothing stops us, however,
from taking the field ϕ in (4.259) as real; then, the entire derivation that leads to
the conserved current (4.259) is still valid. Using a real field ϕ in the conserved
current, however, gives Jµ = 0. Thus, a conserved charge current does not exist for
a hermitian Klein-Gordon field, which is consistent with the interpretation that a
hermitian Klein-Gordon field represents a particle that is antiparticle of itself. Then,
what happened to the probability current? Can one define the probability to find a
particle at a given point x at a given time t in the framework of quantum field theory?
This brings us to the next topic: the state ϕ(x)|0⟩ and the important related issue of
microscopic causality.
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4.5 Microscopic causality

The state ϕ(x)|0⟩
Let’s take a hermitian Klein-Gordon field ϕ(x) as the simplest example. In order
to define the probability to find a particle at a given space-time point x = (x0, x⃗),
one needs a state where at time x0 a particle is localized at position x⃗. Is ϕ(t, x⃗)|0⟩
such a state? If that is the case, then the inner product of ϕ(t, x⃗)|0⟩ with ϕ(t, y⃗)|0⟩,
where times are the same, should be zero unless x⃗ = y⃗. We will see that such is
not the case. For convenience, we first divide ϕ into the positive-energy part and the
negative-energy part:

ϕ(x) = ϕa(x) + ϕ†a(x) , (4.269)

with
ϕa(x)

def≡
∑
p⃗

ap⃗ ep⃗(x) , ϕ†a(x) =
∑
p⃗

a†p⃗ e
∗
p⃗(x) . (4.270)

Since ap⃗|0⟩ = 0 and ⟨0|a†p⃗ = 0, ϕa facing the vacuum on its right or ϕ†a facing the
vacuum on its left annihilates the state. Thus, the inner product of ϕ(x)|0⟩ and
ϕ(y)|0⟩, where x0 and y0 are in general not the same, can be written as (using the
hermiticity ϕ† = ϕ)

⟨0|ϕ†(x)ϕ(y)|0⟩ = ⟨0|ϕ(x)ϕ(y)|0⟩ = ⟨0|ϕa(x)ϕ
†
a(y)|0⟩

= ⟨0|
∑
p⃗

ap⃗ ep⃗(x)
∑
p⃗ ′
a†p⃗ ′e∗p⃗ ′(y)|0⟩

= ⟨0|
∑
p⃗,p⃗ ′

ap⃗ a
†
p⃗ ′︸ ︷︷ ︸

δp⃗,p⃗ ′ + a†p⃗ ′ap⃗︸ ︷︷ ︸
→ 0

ep⃗(x)e
∗
p⃗ ′(y)|0⟩

=
∑
p⃗

ep⃗(x)e
∗
p⃗(y) ⟨0|0⟩︸ ︷︷ ︸

1

, (4.271)

The last expression can be written as an integral over p⃗ using (4.159):

∑
p⃗

ep⃗(x)e
∗
p⃗(y) =

V

(2π)3

∫
d3p

e−ip·x√
2p0V

eip·y√
2p0V

=
1

(2π)3

∫ d3p

2p0
e−ip·(x−y) = ∆+(x− y) , (4.272)

where we have defined the function ∆+(z) to be

∆+(z)
def≡ 1

(2π)3

∫ d3p

2p0
e−ip·z , (4.273)
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Figure 4.3: The real and imaginary parts of the function ∆+(x). The predominant
gray tone in the space-like region represents zero, darker is negative and lighter is
positive. Units of x and t are 1/m. The function is real and positive in the space-like
region, and in general complex in the time-like region.

where z is a real 4-vector and p0 ≡
√
p⃗ 2 +m2. Thus, in terms of this function, we

have

⟨0|ϕ(x)ϕ(y)|0⟩ = ∆+(x− y) . (4.274)

Up to this point, x and y are arbitrary. Now let’s assume x0 = y0 (equal-time). Then,
the time component of z ≡ x− y becomes zero and

∆+(0, z⃗) =
1

(2π)3

∫ d3p

2p0
eip⃗·⃗z

=
1

(2π)3

∫ 2πp2dp d cos θ

2
√
p2 +m2

eipr cos θ (4.275)

where p ≡ |p⃗| and r ≡ |z⃗|. This looks awful, but actually it is a well-defined real
function of r and can be expressed in terms of the modified Bessel function K1(z)
which is a solution of the differential equation z2X ′′ + zX ′ − (z2 + n2)X = 0 with
n = 1:

∆+(0, z⃗) =
m

4π2r
K1(mr)

r→∞∼
√
m

(2πr)3/2
e−mr . (4.276)

This is a rapidly decreasing function of r, but the important fact is that it is not
zero. Thus, the state ϕ(t, x⃗)|0⟩ cannot be interpreted as the state in which a particle
is localized at (t, x⃗); it is sharply peaked at that point, but there is some spill-over. A
profile of the function ∆+(x) is shown in Figure 4.3. For completeness, the function
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∆+(x) in the entire region is given by

(x0 > 0) ∆+(x) =


m

8π
√
x2

[
Y1(m

√
x2) + iJ1(m

√
x2)

]
(x2 > 0)

m

4π2
√
−x2

K1(m
√
−x2) (x2 < 0)

(x0 < 0) : use ∆+(−x) = ∆∗+(x) [follows directly from (4.273)] ,

(4.277)

where J1 and Y1 are the standard Bessel functions that are solutions of z2X ′′+ zX ′+
(z2 − n2)X = 0 with n = 1. The function ∆+(x) is real and positive for x2 < 0, and
complex and oscillatory for x2 > 0.

Let’s step back a little and examine more carefully what we have here. First, we
note that the norm of the state ϕ(x)|0⟩ is infinity:

⟨0|ϕ†(x)ϕ(x)|0⟩ = ∆+(0) =
∫ d3p

(2π)32p0
=∞ . (4.278)

Undaunted, let’s proceed. We are in the Heisenberg picture, thus the states are
constant over time and the operators carry all time dependences. The state ϕ(t, x⃗)|0⟩
then represents a particle nearly localized at (t, x⃗), but through the time-varying
operators, it also represents the entire history of the evolution from the infinite past
to the infinite future. Then what is the inner product of two such states ϕ(x)|0⟩
and ϕ(y)|0⟩? It may be easier to visualize it if we move to the Schrödinger picture.
For simplicity, assume y0 = 0 and x0 > y0. At t = y0 = 0, states and operators in
the two pictures are taken to be identical. Namely, the operators and states in the
Schrödinger picture are defined by

ϕS(x⃗) ≡ ϕ(0, x⃗) , ϕS(y⃗) ≡ ϕ(0, y⃗) , (4.279)

|x⃗⟩S ≡ ϕS(x⃗)|0⟩ , |y⃗⟩S ≡ ϕS(y⃗)|0⟩ . (4.280)

where the subscript ‘S’ indicates the Schrödinger picture. The time evolution of the
state |y⃗⟩S is given by

|t, y⃗⟩S = e−iHt|y⃗⟩S . (4.281)

Using the space-time translation formula (4.211), ϕ(x0, x⃗) is related to ϕ(0, x⃗) by

ϕ(x0, x⃗) = eiHx0

ϕ(0, x⃗)︸ ︷︷ ︸
ϕS(x⃗)

e−iHx0

. (4.282)

Then, the inner product ⟨0|ϕ†(x)ϕ(y)|0⟩ can be written as (with y0 = 0)

⟨0|ϕ†(x0, x⃗)ϕ(y0, y⃗)|0⟩ = ⟨0|eiHx0︸ ︷︷ ︸
⟨0|

ϕ†S(x⃗) e
−iHx0

|y⃗⟩S︷ ︸︸ ︷
ϕ(0, y⃗)|0⟩︸ ︷︷ ︸
|x0, y⃗⟩S

= S⟨x⃗ |x0, y⃗⟩S , (4.283)
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where we have used H = 0 for the vacuum (H is normal-ordered implicitly), which
leads to

e−iHx0 |0⟩S = |0⟩S . (4.284)

If we interpret the state |0, y⃗⟩S as a creation of a particle at position y⃗ at t = 0, then
the state |x0, y⃗⟩S is its time-evolved state at time x0. The inner product above would
then be the amplitude to find the particle at position x⃗. Thus, ⟨0|ϕ†(x)ϕ(y)|0⟩ can
be loosely interpreted as the amplitude of a particle created at (y0, y⃗) to propagate
to (x0, x⃗).

Then, what do we make of the fact that the inner product is non-zero even if the
separation between x and y are space-like (namely, cannot be reached from one to
the other by a velocity less than the speed of light)? This apparent paradox arises
since the state ϕ(x)|0⟩ is actually not a state a particle is localized at x⃗ at time t.
Thus, the non-zero amplitude outside the light cone does not mean that a particle
can actually move faster than speed of light; rather, if we interpret ϕ(x)|0⟩ as the
state where a particle is created at x, then we have to accept that there is non-zero
‘propagation’ outside the light cone. It is largely a matter of terminology.

Causality
The ‘propagation’ outside of the light cone that we have just seen is still alarming.
Does it violate the principle of special relativity which states that any physical event
at x should not affect another physical event at y if the x and y are outside the light
cone of each other? Physical events are detected through observables. A hermitian
field ϕ(x) can be viewed as an observable; in fact, it was introduced by quantizing the
actual string motion. Then, causality requires that two observables ϕ(x) and ϕ(y)
commute if the separation of x and y is space-like; namely,

[ϕ(x), ϕ(y)] = 0 , if (x− y)2 < 0 (?) (4.285)

Note that the quantization condition (4.139) we had before, [ϕ(t, x⃗), ϕ(t, y⃗)] = 0, is
an equal-time commutator; now, x0 and y0 are in general different.

First, divide ϕ into the negative-energy and positive-energy parts as in (4.269).
Since ap⃗’s commute with ap⃗’s and a

†
p⃗’s commute with a†p⃗’s,

[ϕa(x), ϕa(y)] = [ϕ†a(x), ϕ
†
a(y)] = 0 , (4.286)

for any x and y. Then, the commutator (4.285) can be written as

[ϕ(x), ϕ(y)] = [ϕa(x) + ϕ†a(x) , ϕa(y) + ϕ†a(y)]

= [ϕa(x), ϕ
†
a(y)] + [ϕ†a(x), ϕa(y)]︸ ︷︷ ︸

−[ϕa(y), ϕ
†
a(x)]

= [ϕa(x), ϕ
†
a(y)]− (x↔ y) . (4.287)
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Using the expansion (4.270) and the definition of the function ∆+ (4.272), we have

[ϕa(x), ϕ
†
a(y)] = [

∑
p⃗

ap⃗ ep⃗(x) ,
∑
p⃗ ′
a†p⃗ ′e∗p⃗ ′(y)]

=
∑
p⃗,p⃗ ′

ep⃗(x)e
∗
p⃗ ′(y) [ap⃗ , a

†
p⃗ ′]︸ ︷︷ ︸

δp⃗,p⃗ ′

=
∑
p⃗

ep⃗(x)e
∗
p⃗(y) = ∆+(x− y) . (4.288)

Thus,
[ϕ(x), ϕ(y)] = i∆(x− y) , (4.289)

with
i∆(z)

def≡ ∆+(z)−∆+(−z) . (4.290)

Since ∆+(−x) = ∆∗+(x) (4.277),

∆+(z)−∆+(−z) = 2iIm∆+(z)

is purely imaginary, and the factor i is added in the definition to make ∆(x) real.
Our task now is to show that ∆(z) = 0 for z2 < 0 which establishes the causality
(4.285). To do so, we will show that ∆(z) is Lorentz-invariant under proper and
orthochronous transformations; or more precisely, it has the same value when one
replaces z by Λz where Λ is proper and orthochronous. It should then be a function
of the only Lorentz-invariant quantity formed by z: z2 ≡ z0

2 − z⃗2. Then, for a given
value of z2 < 0, we take z′ = (0, z⃗′) with z⃗′2 = −z2 > 0 for which ∆(z) should have
the same value; namely

∆(z) = ∆(z′) with z′ = (0, z⃗′) and z⃗′2 = −z2 . (4.291)

With z′ = x − y, the commutator (4.289) with z′ = (0, z⃗′) becomes the equal-time
commutator [ϕ(t, x⃗), ϕ(t, y⃗)] which we know is zero. Thus, all we need to demonstrate
is the Lorentz invariance of ∆ (or equivalently, of ∆+); namely, that the value of the
function does not change when the space-time argument is transformed by a proper
and orthochronous Lorentz transformation.

The Lorentz invariance of ∆+(x) can be shown using the following useful identity:

∫
d4p δ(p2 −m2)θ(p0) · · · =

∫ d3p

2p0
· · · , (4.292)

where d4p ≡ dp0dp1dp2dp3, ‘. . . ’ is any function of pµ, p2 ≡ p0
2 − p⃗ 2, and θ(p0) is a

step function that limits the integration to positive p0:

θ(p0) =

{
1 (p0 ≥ 0)

0 (p0 < 0)
. (4.293)
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In (4.292), p0 is an integration variable on the left-hand side, while on the right-hand

side, p0 is fixed to
√
p⃗ 2 +m2.

Proof of (4.292)
We will apply the property of the delta function (4.114) to f(x) = x2 − (p⃗ 2 +m2).
The roots of f(x) = 0 are

x1 = +
√
p⃗ 2 +m2 , x2 = −

√
p⃗ 2 +m2 . (4.294)

Using f ′(x) = 2x,

δ(f(x)) =
∑
i

1

|f ′(xi)|
δ(x− xi)

=
δ(x− x1)
2|x1|

+
δ(x− x2)
2|x2|

. (4.295)

Then, for an arbitrary function F (x), we have∫ ∞
0

dx δ
(
x2 − (p⃗ 2 +m2)

)
F (x)

=
∫ ∞
0

dx

(
δ(x−

√
p⃗ 2 +m2)

2
√
p⃗ 2 +m2

+
δ(x+

√
p⃗ 2 +m2)

2
√
p⃗ 2 +m2︸ ︷︷ ︸

does not contribute

)
F (x)

=
F (
√
p⃗ 2 +m2)

2
√
p⃗ 2 +m2

. (4.296)

Renaming x as p0 and using the definition p2 ≡ p0
2 − p⃗ 2, this can be written as∫ ∞

−∞
dp0δ(p2 −m2)θ(p0)F (p0) =

F (p0)

2p0

∣∣∣∣∣
p0=
√

p⃗ 2+m2

, (4.297)

where θ(p0) is inserted and the integration range is extended to (−∞,∞). Note that

p0 on the left-hand side is an integration variable and not fixed to
√
p⃗ 2 +m2. As-

suming that F is a function also of p⃗ and integrating over p⃗, we obtain (4.292).

Using (4.292), ∆+(x) is now written as

∆+(x) =
1

(2π)3

∫
d4p δ(p2 −m2)θ(p0)e−ip·x (4.298)
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where the integration d4p ≡ dp0d3p is now over the entire four-dimensional space; in
particular, the p0 range is from −∞ to ∞ thanks to the step function θ(p0). Now,
is this Lorentz-invariant? Namely, does ∆+(x

′) = ∆+(x) hold if x′ = Λx where Λ
is a proper and orthochronous transformation? Let’s see; we take x′ = Λx as the
argument and relabel pµ → pµ′ which is allowed since they are dummy integration
variables:

∆+(x
′) =

1

(2π)3

∫
d4p′ δ(p′2 −m2)θ(p′0)e−ip

′·x′
. (4.299)

Then, we change the integration variables to p which is related to p′ by

p = Λ−1p′ . (4.300)

Since x′ = Λx and p′ = Λp, we have

p′2 = p2 , p′ ·x′ = p ·x , (4.301)

and since Λ is proper and orthochronous,

d4p′ = detΛ︸ ︷︷ ︸
1

d4p = d4p , θ(p′0) = θ(p0) . (4.302)

The last relation θ(p′0) = θ(p0) may not be trivial. This relation holds because as
long as p2 = m2 > 0, as guaranteed by δ(p2 −m2), an orthochronous transformation
cannot change the sign of the energy p0. Putting all together, ∆+(x

′) is now

∆+(x
′) =

1

(2π)3

∫
d4p δ(p2 −m2)θ(p0)e−ip·x = ∆+(x) . (4.303)

Thus, i∆(x) = ∆+(x) − ∆+(−x) is Lorentz-invariant; namely, it is a function only
of x2, and this completes the proof of the causality. At this point, it is worthwhile
to point out the difference between the Lorentz-invariance of a scalar field ϕ(x) and
that of ∆+(x). Both are functions of x, but the scalar field changes its functional
form under a Lorentz transformation: ϕ′(x′) = ϕ(x), while ∆(x) does not:

∆(x′) = ∆(x) . (4.304)

This distinction is important; otherwise, any scalar field ϕ(x) would be a function
only of x2 !

We have seen that measurements of the Klein-Gordon field at two space-time
points are indeed independent if they are separated by a space-like distance. It is
interesting to see how this has happened. Since i∆(x−y) = ∆+(x−y)−∆+(y−x) = 0
for space-like x − y, we see that ∆+(x − y) = ∆+(y − x) for a space-like x − y. On
the other hand, ∆+(x− y) had a loose interpretation as the amplitude for a particle



174 CHAPTER 4. QUANTIZATION OF FIELDS

created at y to propagate to x, and according to the formula (4.277) (or Figure 4.3)
it is non-zero even when x − y is space-like. Then, the causality is accomplished by
the amplitude of propagation from y to x cancelling out that of propagation from x
to y.

Exercise 4.8 Microscopic causality of charged Klein-Gordon field.
(a) Evaluate the commutator

[ϕ(x) , ϕ†(y)]

where x and y are arbitrary space-time points, and express it in terms of the function
∆+ (or ∆).
(b) In the case of hermitian field, there was an interpretation for the vanishing of
the commutator for x and y separated by a space-like distance: cancellation of the
amplitude for a particle to propagate from x to y and that for the propagation from y
to x. Find a similar interpretation for this case.

Lorentz invariance of the quantization procedure
The procedure of canonical quantization is performed in a given frame using equal-
time commutation relations. Then, a natural question is whether quantizations per-
formed in different frames result in consistent quantized systems. In order to study
this, it is convenient to re-write the sum over momentum as an integral. The reason
is that the cube of volume V = L3 is obviously not Lorentz-invariant and thus makes
it difficult to connect formulations in different frames.

We start from the momentum expansion of ϕ(x) (4.173) and use the identity∑
p⃗ = V/(2π)3

∫
d3p (4.159):

ϕ(x) =
∑
p⃗

(
ap⃗ ep⃗(x) + a†p⃗ e

∗
p⃗(x)

)
=

V

(2π)3

∫
d3p

(
ap⃗ ep⃗(x) + a†p⃗ e

∗
p⃗(x)

)
, (4.305)

and define new annihilation operators and normal-mode functions by

ãp⃗
def≡
√

V

(2π)3
ap⃗ , ẽp⃗(x)

def≡
√

V

(2π)3
ep⃗(x) =

e−ip·x√
(2π)3 2p0

(4.306)

to write it as
ϕ(x) =

∫
d3p

(
ãp⃗ ẽp⃗(x) + ã†p⃗ ẽ

∗
p⃗(x)

)
. (4.307)

Note that in changing the sum to an integral in (4.305), the operator value of ϕ stays
the same. It can be readily verified that the new normal-mode functions satisfy the
orthonormal relations given by∫

d3x ẽ∗p⃗(x)i
↔
∂0ẽp⃗ ′(x) = δ3(p⃗− p⃗ ′) ,

∫
d3x ẽp⃗(x)i

↔
∂0ẽ

∗
p⃗ ′(x) = −δ3(p⃗− p⃗ ′) ,∫

d3x ẽp⃗(x)i
↔
∂0ẽp⃗ ′(x) = 0 ,

∫
d3x ẽ∗p⃗(x)i

↔
∂0ẽ

∗
p⃗ ′(x) = 0 .

(4.308)
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What is the commutator [ãp⃗ , ã
†
p⃗ ′]? Since the discrete-p⃗ version is δp⃗,p⃗ ′, one expects

that this is proportional to δ3(p⃗− p⃗ ′). In fact, using the definition (4.306), we find∫
d3p [ãp⃗ , ã

†
p⃗ ′] =

∫
d3p

V

(2π)3︸ ︷︷ ︸∑
p⃗

[ap⃗ , a
†
p⃗ ′]︸ ︷︷ ︸

δp⃗,p⃗ ′

= 1 ; (4.309)

namely, [ãp⃗ , ã
†
p⃗ ′] acts as δ3(p⃗− p⃗ ′):

[ãp⃗ , ã
†
p⃗ ′] = δ3(p⃗− p⃗ ′) . (4.310)

Since ap⃗ and ap⃗ ′ commute regardless of p⃗ and p⃗ ′ in the discrete-p⃗ version, they will
commute in the continuous-p⃗ version also:

[ãp⃗ , ãp⃗ ′] = [ã†p⃗ , ã
†
p⃗ ′] = 0 . (4.311)

We have seen before that a†p⃗ creates one particle in the volume V . To see what

ã†p⃗ does, we write the total energy (4.199) in the integral form (without changing its
operator value):

H =
∑
p⃗︸︷︷︸

V/(2π)3
∫
d3p

p0 a†p⃗ap⃗︸ ︷︷ ︸
(2π)3/V ã†p⃗ãp⃗

=
∫
d3p p0ã†p⃗ãp⃗ , (4.312)

and apply it to the state ã†p⃗|0⟩:

Hã†p⃗ |0⟩ =
( ∫

d3p′p0′ã†p⃗ ′ ãp⃗ ′

)
ã†p⃗︸ ︷︷ ︸

δ3(p⃗− p⃗ ′) +�
��Z
ZZã†p⃗ãp⃗ ′

|0⟩ = p0 ã†p⃗ |0⟩ . (4.313)

Thus, the total energy of the state ã†p⃗ |0⟩ is p0, indicating that ã†p⃗ creates one particle

with momentum p⃗ in the entire universe. This is not surprising since ã†p⃗ is proportional

to a†p⃗ , and thus ã†p⃗ |0⟩ has the same eigenvalue as a†p⃗|0⟩; simply, the volume V is now
the entire universe. It is usually clear whether we are using discrete p⃗ or continuous
p⃗; thus, we will hereafter omit the ‘˜’ on ap⃗ and ep⃗(x).

Now, let’s get back to the question of Lorentz-invariance of the quantization pro-
cedure, and define exactly what we mean by the statement. In a frame K, we take
the Lagrangian of the Klein-Gordon field ϕ, find the conjugate field π, and introduce
the commutation relations among them. When the field is momentum-expanded, the
quantization condition becomes equivalent to the commutation relations among the
expansion coefficients, namely among ap⃗’s and a

†
p⃗’s:

[ap⃗ , a
†
p⃗ ′] = δ3(p⃗− p⃗ ′)
all else = 0

↔ [ϕ(t, x⃗), π(t, x⃗ ′)] = iδ3(x⃗− x⃗ ′)
all else = 0

(4.314)
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Exercise 4.9 Continous p⃗ formalisms.
Start from the momentum expansion of the charged scalar field

ϕ(x) =
∫
d3p (ap⃗ep⃗(x) + b†p⃗e

∗
p⃗(x)) (4.315)

with

ep⃗(x) ≡
1√

(2π)32p0
e−ip·x (4.316)

and the commutation relations among creation and annihilation operators

[ap⃗ , a
†
p⃗ ′] = [bp⃗ , b

†
p⃗ ′] = δ3(p⃗− p⃗ ′)

all else = 0
(4.317)

to derive
[ϕ(t, x⃗), π(t, x⃗ ′)] = iδ3(x⃗− x⃗ ′) ,

[ϕ(t, x⃗), ϕ(t, x⃗ ′)] = [π(t, x⃗), π(t, x⃗ ′)] = 0 ,

[ϕ(t, x⃗), ϕ†(t, x⃗ ′)] = [π(t, x⃗), π†(t, x⃗ ′)] = 0 ,

(4.318)

where π = ϕ̇† and π† = ϕ̇.

Now, if one performs the same quantization procedure in a different frame K ′

related to K by a proper and orthochronous transformation Λ, then the question is
whether or not the commutation relations in the two frames are consistent. Namely,
does the set of quantization conditions in one frame leads to that in another frame
and vice versa? We could prove the consistency for the commutation relations for ϕ
and π or, equivalently, those for ap⃗ and a†p⃗’s. We choose the latter.

First, we need some principle to relate the operators in the two systems, which is
provided by the scalar-field condition

ϕ′(x′) = ϕ(x) (x′ = Λx) . (4.319)

This can be converted to relations for a’s and a†’s as follows: Momentum-expanding
ϕ′(x′),

ϕ′(x′) =
∫
d3p′

(
a′p⃗ ′ep⃗ ′(x′) + a′†p⃗ ′e∗p⃗ ′(x′)

)
=

∫
d3p′

1√
(2π)32p0′

(
a′p⃗ ′e−ip

′·x′
+ a′†p⃗ ′eip

′·x′)
(4.320)

where we labeled the integration variable as p⃗ ′ (could be anything since it is a dummy
variable), and the prime on ap⃗ indicates that it is defined in the K ′ frame. We will
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now change the integration variable to p (or more precisely, its space part p⃗) related
to p′ by p′ = Λp. Using the identity (4.292) and (4.302), we have

∫ d3p′

2p0′
· · · =

∫
d4p′δ(p′

2 −m2)θ(p0′) · · ·

=
∫
d4p δ(p2 −m2)θ(p0) · · · =

∫ d3p

2p0
· · · . (4.321)

Thus, replacing d3p′ by d3p (p0′/p0), and using p′ ·x′ = p ·x, ϕ′(x′) is now written as

ϕ′(x′) =
∫
d3p

1√
(2π)32p0

√
p0′

p0

(
a′p⃗ ′e−ip·x + a′†p⃗ ′eip·x

)

=
∫
d3p

√
p0′

p0

(
a′p⃗ ′ep⃗(x) + a′†p⃗ ′e∗p⃗(x)

)
, (4.322)

which should equal to ϕ(x); namely,

∫
d3p

√
p0′

p0

(
a′p⃗ ′ep⃗(x) + a′†p⃗ ′e∗p⃗(x)

)
= ϕ(x) =

∫
d3p

(
ap⃗ ep⃗(x) + a†p⃗ e

∗
p⃗(x)

)
. (4.323)

Applying e∗p⃗(x)i
↔
∂ from the left and integrating over x⃗, the orthonormality relation

(4.308) gives √
p0′

p0
a′p⃗ ′ = ap⃗ →

√
p0′a′p⃗ ′ =

√
p0ap⃗ , (4.324)

which means that a particle with 4-momentum p′ = Λp in the frame K ′ and a particle
with 4-momentum p in the frame K are represented by the same state in the Hilbert
space (the over-all constants do not affect the physical meaning of the states).

We now assume that ap⃗ and a†q⃗ satisfy [ap⃗, a
†
q⃗] = δ3(p⃗ − q⃗) in the frame K, and

derive the corresponding relations in the frame K ′, [a′p⃗ ′, a
′†
q⃗ ′] = δ3(p⃗ ′− q⃗ ′). Using the

relation (4.324), the commutation relation between a′p⃗ ′ and a
′†
q⃗ ′ is then

[a′p⃗ ′ , a
′†
q⃗ ′] =

√
p0q0

p0′q0′
[ap⃗ , a

†
q⃗] =

p0

p0′
δ3(p⃗− q⃗) , (4.325)

where p⃗ and q⃗ are given by p′ = Λp and q′ = Λq (or the space parts thereof), and when

the delta function forces p⃗ and q⃗ to be equal it also forces p0 = q0 since p0 ≡
√
p⃗ 2 +m2

and q0 ≡
√
q⃗2 +m2 by defintiion. Thus, the delta function forces p = q which also

leads to p′ = q′. On the other hand, one can show that

p0′δ3(p⃗ ′− q⃗ ′) = p0δ3(p⃗− q⃗) (4.326)
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as follows: Using (4.321) and noting that p⃗ ′= q⃗ ′ corresponds to p⃗ = q⃗, we have∫ d3p

2p0︸︷︷︸
d3p′/(2p0′)

[
2p0′δ3(p⃗ ′− q⃗ ′)

]
f(p⃗) =

∫
d3p′δ3(p⃗ ′− q⃗ ′)f(p⃗)

= f(p⃗)
∣∣∣
p⃗ ′=q⃗ ′

= f(q⃗) ,

(4.327)

where f(p⃗) is an arbitrary function of p⃗. Namely, 2p0′δ3(p⃗ ′− q⃗ ′) behaves the same
way as 2p0δ3(p⃗− q⃗):∫ d3p

2p0

[
2p0δ3(p⃗− q⃗)

]
f(p⃗) =

∫
d3p δ3(p⃗− q⃗)f(p⃗) = f(q⃗) , (4.328)

thus proving (4.326). Then, from (4.325) and (4.326), we have

[a′p⃗ ′ , a
′†
q⃗ ′] = δ3(p⃗ ′− q⃗ ′) , (4.329)

which shows that the same quantization condition holds in the K ′ frame. Thus, we
have shown that the quantization procedure is Lorentz-invariant.

4.6 Quantization of the Dirac field

Quantization of the Dirac field proceeds similarly to that of the Klein-Gordon field,
except for one major difference: once the classical field is expanded into normal modes,
the quantization condition should be imposed such that it is consistent with Pauli’s
exclusion principle; namely, each state can be occupied by at most one quantum.
We have seen that such condition can be implemented if we use anticommutators
instead of commutators among the creation and annihilation operators. Thus, we
will first find the Lagrangian that gives the Dirac field, derive the conjugate field
and the Hamiltonian, and upon momentum-expanding the field, we will introduce
anticommutation relations among the expansion coefficients. Then, anticommutators
among the field and its conjugate field will follow, time variations of operators will
be given by Heisenberg’s equations of motion as before, and the quantized system
will be established. Our initial motivation for using the anticommutators is thus
experimental - namely, nature demands it in the form of Pauli’s exclusion principle.
We will find, however, that it is also demanded by the theory if we require that
both particle and antiparticle have positive energy, and that the Dirac field respects
microscopic causality.

Lagrangian formulation of the Dirac field
As we will see shortly, the Lagrangian density for the Dirac equation is given by

L = ψ̄(i∂/ −m)ψ . (4.330)
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To show that this Lagrangian indeed gives the Dirac equation, we go back to the
action principle itself:

δS = 0 , S ≡
∫
d4xL =

∫
d4xψ†γ0(i∂/ −m)ψ , (4.331)

where the space integral is over the volume V (or the entire universe) and the time
integral is from t1 to t2 which is the time window of interest. Here, we have 4-
component field ψ with each component being complex. As before, ψn and ψ∗n (n =
1, 2, 3, 4) can be regarded as independent variables. Thus, we first take all possible
small variations of ψ† = (ψ∗1, ψ

∗
2, ψ

∗
3, ψ

∗
4) keeping ψ unchanged. We will vary ψ later.

In fact, it does not matter which of the eight independent variables are changed; one
could vary only one at a time if one wishes; the result will be the same. Then, the
variation in S in this case is very simple:

δS =
∫
d4x δψ† γ0(i∂/ −m)ψ = 0 , (4.332)

with
δψ† ≡ (δψ∗1, δψ

∗
2, δψ

∗
3, δψ

∗
4) . (4.333)

This should hold for all possible variations of ψ; thus, each of the four components of
γ0(i∂/ −m)ψ should be zero. Multiplying γ0 from the left,

γ0(i∂/ −m)ψ = 0 , → (i∂/ −m)ψ = 0 , (4.334)

which is the Dirac equation as promised.
You may find, however, something odd about the form of this Lagrangian: it is

patently asymmetric between ψ and ψ†, and it is not real either. In fact, if we take
complex conjugate of L, we get

L∗ =
[
ψ̄(i∂/ −m)ψ

]∗
=
[
ψ̄γµi∂µψ −mψ̄ψ

]∗
= (−i∂µψ̄) γµ︸︷︷︸

γµ
ψ −mψ̄ψ

= −ψ̄(i
←
∂/ +m)ψ . (4.335)

which seems to differ from the original L. It does, however, have the form from which
we can extract the Dirac equation for ψ† (or equivalently ψ̄) by varying the four
components of ψ:

δ
∫
d4xL∗ = −

∫
d4x ψ̄(i

←
∂/ +m)δψ = 0

→ ψ̄(i
←
∂/ +m) = 0 . (4.336)
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which is the Dirac equation for ψ̄ (3.71). In fact, L and L∗ are related by partial
integration:

δS = δ
∫
d4xL = δ

∫
d4x

[
i ψ̄γµ∂µψ︸ ︷︷ ︸
∂µ(ψ̄γ

µψ)︸ ︷︷ ︸
→ 0

−(∂µψ̄)γµψ

−mψ̄ψ
]

= −δ
∫
d4x ψ̄(i

←
∂/ +m)ψ

= δ
∫
d4xL∗ . (4.337)

The discarding of the integral
∫
d4x ∂µ(ψ̄γ

µψ) requires some clarification. First, we
are not using the conservation of current ∂µj

µ = 0 (jµ ≡ ψ̄γµψ) since ψ does not
necessarily satisfy the Dirac equation. It does not contribute, however, when δS is
evaluated:

δ
∫
d4x ∂µj

µ = δ
∫
dt
∫
d3x(∂0j

0 + ∇⃗ · j⃗︸ ︷︷ ︸
→ 0 upon

∫
d3x

)

=
∫ t2

t1
dt ∂0

( ∫
d3x δ j0

)
=
[ ∫

d3x δ j0
]t2
t1

= 0 , (4.338)

where the last equality is due to the constraint δψ(t1) = δψ(t2) = 0 (4.76) which leads
to δj0(t1) = δj0(t2) = 0. Thus, the Lagrangian densities L and L∗ are equivalent and
results in the same equation of motion. In fact, ψ̄(i

←
∂/ + m) = 0 is just the spinor

adjoint of (i∂/ −m)ψ = 0. One could force the Lagrangian to be real by

LR ≡ 1

2
(L+ L∗

)
=

1

2
ψ̄(i∂/ −m− i

←
∂/ −m

)
ψ

= ψ̄
(
i

↔
∂/

2
−m

)
ψ . (4.339)

We will use L = ψ̄(i∂/ −m)ψ most of the time.
The field conjugate to the n-th component of ψ is, by definition,

πn ≡
∂L
∂ψ̇n

=
∂

∂ψ̇n

[ ψ̄γµi∂µψ︸ ︷︷ ︸
ψ̄γ0i∂0ψ︸ ︷︷ ︸
iψ∗nψ̇n

+ · · ·

−mψ̄ψ
]
= iψ∗n

→ π = iψ† . (4.340)
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How about the field conjugate to ψ∗n? Since there is no ψ̇∗n appearing in L, it does
not have a conjugate field. In fact, the above expression for π tells us that ψ∗n itself
is conjugate to ψn up to a constant. The situation is similar if we start from L∗
instead of L; in this case, ψn’s do not have conjugate field. In either case, we have
four fields and their conjugate fields. If this is confusing, one can always take the
real and imaginary parts of each field to be the independent fields, in which case we
have eight fields to start with. Then, regardless of which Lagrangian one uses [L,
L∗, or LR = (L + L∗)/2], one finds that four fields become conjugate to the other
four fields or linear combinations thereof, ending up with four dynamical degrees of
freedom in each case. In the case of the complex Klein-Gordon field, we saw that the
field conjugate to ϕ was the time derivative of ϕ∗ up to a constant. Why don’t we
get time derivatives in this case when we extract conjugate fields? Apparently, that
is because the Lagrangian is linear in the time derivative of fields which in turn is
because the Dirac equation is linear in time derivative.

Using the Lagrangian L and the conjugate fields π given above, and regarding
ψ = (ψ1, ψ2, ψ3, ψ4) as independent fields, the Hamiltonian is

H ≡
4∑

n=1

πn︸︷︷︸
iψ∗n

ψ̇n − L︸︷︷︸
ψ̄γµi∂µψ −mψ̄ψ

= �
��Z
ZZiψ†ψ̇ −

(
iψ̄γ0∂0ψ︸ ︷︷ ︸

�
��Z
ZZiψ†ψ̇

+ iψ̄γk∂kψ︸ ︷︷ ︸
iψ† γ0γk︸ ︷︷ ︸

αk

∂kψ

−mψ†γ0︸︷︷︸
β

ψ
)
, (4.341)

where k is the space index which is summed, or

H = ψ†(−iα⃗ · ∇⃗+mβ)ψ . (4.342)

Note that the operator sandwiched by ψ† and ψ is nothing but the ‘Hamiltonian’ we
encountered when we introduced the Dirac equation: i∂0ψ = (−iα⃗ ·∇⃗+mβ)ψ. When
ψ satisfies the Dirac equation, the total Hamiltonian can be written as

H ≡
∫
d3xH =

∫
d3xψ†i∂0ψ . (4.343)

The total momentum is obtained by applying the general form (4.122):

P⃗ ≡ −
∫
d3xπn︸︷︷︸

iψ∗n

∇⃗ψn =
∫
d3xψ†(−i∇⃗)ψ . (4.344)

As in the case of the Klein-Gordon field (4.207), we note the form for the total energy

and momentum where the corresponding differential operator O = i∂0 or −i∇⃗ is
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sandwiched by the appropriate inner product of field: 1
2
ϕ(i

↔
∂0)Oϕ for the real Klein-

Gordon field, and ψ†Oψ for the Dirac field.

Momentum expansion of the Dirac field
We now proceed to quantize the Dirac field. The first step is to expand the general
solution of the Dirac equation into normal modes. Suppose ψ(t, x⃗) is an arbitrary
solution of the Dirac equation; then, at a given time, say t = 0, each component
ψn(0, x⃗) can be uniquely Fourier-expanded:

ψ(0, x⃗) =


ψ1(0, x⃗)
ψ2(0, x⃗)
ψ3(0, x⃗)
ψ4(0, x⃗)

 =


∑

p⃗ c1p⃗ e
ip⃗·⃗x∑

p⃗ c2p⃗ e
ip⃗·⃗x∑

p⃗ c3p⃗ e
ip⃗·⃗x∑

p⃗ c4p⃗ e
ip⃗·⃗x

 =
∑
p⃗


c1p⃗
c2p⃗
c3p⃗
c4p⃗

 eip⃗·⃗x , (4.345)

where cnp⃗ (n = 1, 2, 3, 4) are uniquely-determined complex coefficients. For each p⃗,
we can use the orthonormal set of spinors (up⃗,±s⃗ , v−p⃗,±s⃗) (3.308) to uniquely expand
cnp⃗ : 

c1p⃗
c2p⃗
c3p⃗
c4p⃗

 =
∑
s⃗

(Ap⃗,s⃗ up⃗,s⃗ +B−p⃗,s⃗ v−p⃗,s⃗) , (4.346)

where the sum over s⃗ is understood to be over ±s⃗ where s⃗ is some fixed unit vector,
which could be a function of p⃗ (s⃗ = p̂, for example) or fixed in space (s⃗ = ẑ, for
example). It is important to note that for any pair (p⃗, s⃗), we have an orthonormal set
(up⃗,±s⃗ , v−p⃗,±s⃗) by which any complex 4-component vector can be uniquely expanded.
In particular, the set of four spinors (up⃗,±s⃗ , v−p⃗,±s⃗) are different for different p⃗. We
choose to expand the 4-component spinor (c1p⃗, c2p⃗, c3p⃗, c4p⃗) using the orthonormal set
(up⃗,±s⃗ , v−p⃗,±s⃗) where p⃗ is the same one that appears in the indexes of cnp⃗’s. We now
have a unique expansion of a general solution of the Dirac equation at t = 0:

ψ(0, x⃗) =
∑
p⃗,s⃗

(Ap⃗,s⃗ up⃗,s⃗ +B−p⃗,s⃗ v−p⃗,s⃗)e
ip⃗·⃗x

=
∑
p⃗,s⃗

(Ap⃗,s⃗ up⃗,s⃗ e
ip⃗·⃗x +Bp⃗,s⃗ vp⃗,s⃗ e

−ip⃗·⃗x︸ ︷︷ ︸
relabeled p⃗↔ −p⃗

) . (4.347)

What is the time dependence of ψ(t, x⃗)? Actually, we already know the answer:
in order to be a solution of the Dirac equation, up⃗,s⃗ e

ip⃗·⃗x should be attached to the
positive frequency e−ip

0t, and vp⃗,s⃗ e
−ip⃗·⃗x should be attached to the negative frequency

eip
0t with p0 ≡

√
p⃗ 2 +m2:

up⃗,s⃗ e
−ip·x = up⃗,s⃗ e

−ip0t+ip⃗·⃗x , vp⃗,s⃗ e
ip·x = vp⃗,s⃗ e

ip0t−ip⃗·⃗x . (4.348)
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Thus, the general solution is now written as

ψ(t, x⃗) =
∑
p⃗,s⃗

(Ap⃗,s⃗ up⃗,s⃗ e
−ip·x +Bp⃗,s⃗ vp⃗,s⃗ e

ip·x) . (4.349)

This expansion is general and unique; namely, if you give me an arbitrary solution of
the Dirac equation, I can uniquely expand it at a given time t in the Fourier series
in the 3-dimensional space, and then the time dependence is uniquely determined for
the function to be a solution of the Dirac equation. Note that, in addition to the
appropriate time dependence, up⃗,s⃗ had to be attached to eip⃗·⃗s and vp⃗,s⃗ to e−ip⃗·⃗s. The
required opposite sign of p⃗ in the subscript of vp⃗,s⃗ and that in the corresponding expo-
nent would not have resulted if we had used the other orthonormal set (up⃗,±s⃗ , vp⃗,±s⃗)
which is defined by the inner product āb (try it).

In the case of the Klein-Gordon field, the normal mode ϕ(x) = ep⃗(x) was normal-

ized such that the classical probability density ϕ∗i
↔
∂ 0ϕ gives unity when integrated

over V as seen in (4.181). In the case of the Dirac field, the classical probability
density is given by j0 = ψ†ψ; thus, we take the normal-mode functions to be

fp⃗,s⃗(x)
def≡ up⃗,s⃗√

2p0V
e−ip·x , gp⃗,s⃗(x)

def≡ vp⃗,s⃗√
2p0V

eip·x , (4.350)

which is normalized properly:∫
d3xf †p⃗,s⃗(x)fp⃗,s⃗(x) =

∫
V
d3x

1

2p0V
u†p⃗,s⃗up⃗,s⃗︸ ︷︷ ︸
2p0 by (3.308)

= 1 , etc. (4.351)

Then, the expansion is now

ψ(x) =
∑
p⃗,s⃗

(
ap⃗,s⃗ fp⃗,s⃗(x) + b†p⃗,s⃗ gp⃗,s⃗(x)

)
, (4.352)

where
ap⃗,s⃗ ≡

√
2p0V Ap⃗,s⃗ , b†p⃗,s⃗ ≡

√
2p0V Bp⃗,s⃗ . (4.353)

Note that we used b†p⃗,s⃗ instead of bp⃗,s⃗ in the second equation above. This anticipates
that it will be a creation operator, rather than an annihilation operator, of antiparti-
cle. We will discuss this choice later in the context of the energy sign of antiparticle.
The spin sum is over ±s⃗, where s⃗ is a unit vector which could in general be a function
of p⃗. It is easily verified that the normal-mode functions satisfy the orthonormality
relations given by∫

d3xf †p⃗,s⃗(x)fp⃗ ′,s⃗ ′(x) =
∫
d3x g†p⃗,s⃗(x)gp⃗ ′,s⃗ ′(x) = δp⃗,p⃗ ′δs⃗,s⃗ ′∫

d3xf †p⃗,s⃗(x)gp⃗ ′,s⃗ ′(x) =
∫
d3x g†p⃗,s⃗(x)fp⃗ ′,s⃗ ′(x) = 0

, (4.354)
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where s⃗ and s⃗ ′ are plus or minus some direction which is in general a function of p⃗.

Exercise 4.10 Verify (4.354).

Then, we can use the orthonormality relations to write a’s and b†’s as

ap⃗,s⃗ =
∫
d3x f †p⃗,s⃗(x)ψ(x)

b†p⃗,s⃗ =
∫
d3x g†p⃗,s⃗(x)ψ(x) .

(4.355)

Up to this point, ψ(x) is just a complex wave function. We will now regard a’s and
b†’s as operators in the Hilbert space and impose anticommutation relations given by

{ap⃗,s⃗ , a†p⃗ ′,s⃗ ′} = {bp⃗,s⃗ , b†p⃗ ′,s⃗ ′} = δp⃗,p⃗ ′δs⃗,s⃗ ′

all others = 0
. (4.356)

This will assure that the oscillator associated with each normal mode will be occupied
by at most one quantum; namely, the number operators a†p⃗,s⃗ ap⃗,s⃗ and b†p⃗,s⃗ bp⃗,s⃗ have
eigenvalues 0 and 1 only. Note that the operator field ψ(x) satisfies the Dirac equation
since fp⃗,s⃗(x) and gp⃗,s⃗(x) in the expansion (4.352) do:

(i∂/ −m)ψ(x) = 0 (ψ : operator) . (4.357)

Using the momentum expansion, we can derive aniticommutation relations among
fields. Let’s define

ψ = ψa + ψb† , with ψa
def≡
∑
p⃗,s⃗

ap⃗,s⃗ fp⃗,s⃗ , ψb†
def≡
∑
p⃗,s⃗

b†p⃗,s⃗ gp⃗,s⃗ . (4.358)

Since only the combinations {a, a†} or {b, b†} survive,

{ψn(t, x⃗) , ψm(t, x⃗
′)} = {ψ†n(t, x⃗) , ψ†m(t, x⃗ ′)} = 0 . (4.359)

The anticommutator {ψn(t, x⃗) , ψ
†
m(t, x⃗

′)} becomes

{ψn(t, x⃗) , ψ
†
m(t, x⃗

′)} = {ψan(t, x⃗) + ψb†n(t, x⃗) , ψ
†
am(t, x⃗

′) + ψ†b†m(t, x⃗
′)}

= {ψan(t, x⃗) , ψ
†
am(t, x⃗

′)}+ {ψb†n(t, x⃗) , ψ
†
b†m

(t, x⃗ ′)} .(4.360)

Using the anticommutation relation (4.356) and the explicit expression for fp⃗,s⃗ (4.350),
we have

{ψan(t, x⃗) , ψ
†
am(t, x⃗

′)} =
∑

p⃗,s⃗,p⃗ ′,s⃗ ′
{ap⃗,s⃗ , a†p⃗ ′,s⃗ ′}︸ ︷︷ ︸
δp⃗,p⃗ ′δs⃗,s⃗ ′

fp⃗,s⃗n(t, x⃗)f
†
p⃗ ′,s⃗ ′

m
(t, x⃗ ′)

=
∑
p⃗,s⃗

fp⃗,s⃗n(t, x⃗)f
†
p⃗,s⃗m

(t, x⃗ ′)

=
∑
p⃗

eip⃗·(x⃗−x⃗
′)

2p0V

∑
s⃗

(up⃗,s⃗u
†
p⃗,s⃗)nm . (4.361)



4.6. QUANTIZATION OF THE DIRAC FIELD 185

Similarly,

{ψb†n(t, x⃗) , ψ
†
b†m

(t, x⃗ ′)} =
∑
p⃗

e−ip⃗·(x⃗−x⃗
′)

2p0V

∑
s⃗

(vp⃗,s⃗v
†
p⃗,s⃗)nm

(relabel p⃗→ −p⃗) =
∑
p⃗

eip⃗·(x⃗−x⃗
′)

2p0V

∑
s⃗

(v−p⃗,s⃗v
†
−p⃗,s⃗)nm . (4.362)

Then, the anticommutator {ψn(t, x⃗) , ψ
†
m(t, x⃗

′)} is, adding (4.361) and (4.362),

{ψn(t, x⃗) , ψ
†
m(t, x⃗

′)} =
∑
p⃗

1

V
eip⃗·(x⃗−x⃗

′)

︸ ︷︷ ︸
δ3(x⃗− x⃗ ′) by (4.157)

1

2p0
∑
s⃗

(up⃗,s⃗u
†
p⃗,s⃗ + v−p⃗,s⃗v

†
−p⃗,s⃗)nm︸ ︷︷ ︸

δnm by (3.323)

= δnmδ
3(x⃗− x⃗ ′) . (4.363)

Thus, using π = iψ† and together with (4.359),

{ψn(t, x⃗) , πm(t, x⃗
′)} = iδnmδ

3(x⃗− x⃗ ′)
{ψn(t, x⃗) , ψm(t, x⃗

′)} = {πn(t, x⃗) , πm(t, x⃗ ′)} = 0
. (4.364)

Namely, the field ψ and its conjugate π satisfy similar quantization conditions as those
of the Klein-Gordon fields, but with commutators replaced by anticommutators.

We have seen that one complex field represents a charged spin-0 particle and a set
of four complex fields represents a spin-1/2 particle. For a charged spin-0 particle with
a given moemtnum, there are two degrees of freedom: a particle and its antiparticle.
On the other hand, for a spin-1/2 particle with a given momentum, there are four
degrees of freedom: electron, positron and spin up, down. The question is then why a
spinor field requires factor of two more complex fields per degree of freedom compared
to a scalar field. One way to understand this is to count the number of independent
canonical pairs of fields. For a charged spin-0 field, there are two such pairs (ϕ, π) and
(ϕ†, π†). For a spin-1/2 field, the conjugate field is given by π = iψ†, and thus there
are only four independent canonical pairs. Another way is to simply count the number
of independent complex coefficients required for a given p⃗ in the Fourier expansion of
field. For a complex scalar field, there are two time dependences that can be assigned
for a given p⃗; namely, e−ip·x and eip·x. Then, after quantization, the corresponding
coefficients ap⃗ and b†p⃗ are interpreted as the annihilation operator of particle and the
creation opearator of antiparticle, respectively. For a spinor field, when the spatial
dependence is Fourier transformed and expanded into u and v spinors there are four
coefficients for a given p⃗. However, the time dependences corresponding to up⃗s⃗ or
vp⃗s⃗ are already uniquely defined, and thus one has only four independent coefficients,
leading to four degrees of freedom for a given p⃗. The difference between the spin-0
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and spin-1/2 cases arises essentially from the fact that the Klein-Gordon equation is
second-order in time derivative while the Dirac equation is first-order.

Total energy and momentum
We will now express the total energyH =

∫
d3xψ†i∂0ψ (4.343) in terms of annihilation

and creation operators. Using the expansion (4.352) and the orthonormality relations
(4.354), we obtain

H =
∫
d3xψ†i∂0ψ

=
∫
d3x

∑
p⃗,s⃗

(a†p⃗,s⃗ f
†
p⃗,s⃗ + bp⃗,s⃗ g

†
p⃗,s⃗)

∑
p⃗ ′,s⃗ ′

p0′(ap⃗ ′,s⃗ ′fp⃗ ′,s⃗ ′− b†p⃗ ′,s⃗ ′gp⃗ ′,s⃗ ′)

=
∑

p⃗,s⃗,p⃗ ′,s⃗ ′
p0′(a†p⃗,s⃗ap⃗ ′,s⃗ ′ δp⃗,p⃗ ′δs⃗,s⃗ ′− bp⃗,s⃗b†p⃗ ′,s⃗ ′ δp⃗,p⃗ ′δs⃗,s⃗ ′)

=
∑
p⃗,s⃗

p0(a†p⃗,s⃗ap⃗,s⃗ − bp⃗,s⃗b
†
p⃗,s⃗) (4.365)

So far, we have used only the orthonormality relations of normal-mode functions,
and no operator relations have been used. In fact, the above is valid for the non-
quantized fields also if hermitian conjugation is understood to be complex conjugation.
Now, we can change the second term to a number operator by {bp⃗,s⃗ , b†p⃗,s⃗} = 1 or

bp⃗,s⃗b
†
p⃗,s⃗ = 1− b†p⃗,s⃗bp⃗,s⃗ :

H =
∑
p⃗,s⃗

p0(a†p⃗,s⃗ap⃗,s⃗ + b†p⃗,s⃗bp⃗,s⃗ − 1) , (4.366)

which shows that both a-particles and b-particles contribute positively to the total
energy. Since, in the expansion of ψ, a-particles are associated with electron solutions
up⃗,s⃗ e

−ip·x and b-particle with positron solutions vp⃗,s⃗ e
ip·x, one expects that a-particles

are electrons and b-particles positrons (or fermions and anti-fermions). Such an in-
terpretation will be justified later when we find ‘charge’ carried by those particles.
Thus, we see that both electrons and positrons carry positive energy. Suppose we had
quantized by commutators instead of anticommutators; namely, suppose the braces
in (4.356) were square brackets. Then, (4.365) would still be valid, and using the
commutator [bp⃗,s⃗ , b

†
p⃗,s⃗] = 1, the total energy would then be

H =
∑
p⃗,s⃗

p0(a†p⃗,s⃗ap⃗,s⃗ − b
†
p⃗,s⃗bp⃗,s⃗ − 1) (commutators used) , (4.367)

which indicates that b-particles carry negative energy. Since the commutation relation
indicates that any number of quanta can occupy a given normal mode, we see that
there is no lowest energy state which would have defined the vacuum. Thus, it was
critical that we quantize the Dirac field by anticommutation relations in order to
avoid the negative energy problem.
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It is instructive to examine the origin of the negative sign on the second term bp⃗,s⃗b
†
p⃗,s⃗

in (4.365). This came about due to the first-order time derivative ψ̇ that appear in
H which picked up the factor (−ip0) from fp⃗,s⃗ and ip0 from gp⃗,s⃗. The corresponding
sign in the case of the Klein-Gordon field was positive as seen in (4.198), and this is
because there are two time derivatives per term for the Klein-Gordon Hamiltonian
H = (ϕ̇2 − ϕϕ̈)/2.

One subtle point is left: when we expanded ϕ in (4.352), we could have labeled
the coefficient of the second term as bp⃗,s⃗ instead of b†p⃗,s⃗ with all else identical including

the anticommutation relations which are symmetric between bp⃗,s⃗ and b
†
p⃗,s⃗. Then, the

total energy (4.365) before any quantization condition is used would be

H =
∑
p⃗,s⃗

p0(a†p⃗,s⃗ap⃗,s⃗ − b
†
p⃗,s⃗bp⃗,s⃗) , (4.368)

which is already expressed in terms of number operators. Then, does this mean that
the energy of the b-particle can be negative? Not so. We recall that the formulation
of fermionic oscillator was symmetric under the exchange of a† ↔ a and |0⟩ ↔ |1⟩.
Which to use was to be determined by defining the lower-energy state to be the empty
state |0⟩. The above Hamiltonian shows that the state |1⟩ for a given p⃗ of b-particle
contributes −p0 < 0 to the total energy while the |0⟩ contributes zero. This indicates
that we have mislabeled |0⟩ and |1⟩ for the b-particles. Thus, we have to redefine as
|0⟩ ↔ |1⟩ and also b†p⃗,s⃗ ↔ bp⃗,s⃗, which recovers the original derivation (4.366).

Just as in the case of the Klein-Gordon field, the total Hamiltonian (4.366) con-
tains an apparent infinity

∑
p⃗,s⃗(−p0). Again, we regard it as a harmless constant offset

and choose to discard it by normal ordering. This time, however, we have to change
the sign of the term when the creation and annihilation operators are swapped:

: a†p⃗,s⃗ap⃗,s⃗ − bp⃗,s⃗b
†
p⃗,s⃗ : = a†p⃗,s⃗ap⃗,s⃗ +

↑
sign flip

b†p⃗,s⃗bp⃗,s⃗ . (4.369)

Thus, the normal ordering procedure is now extended to include fermion operators:
it simply reorders the annihilation and creation operators such that all creation op-
erators are to the left of all annihilation operators, and add a minus sign if odd
number of swaps of fermion operators are needed for the reordering. If both boson
and fermion operators are present, it is assumed that fermion operators commute with
boson operators. For example, if all are fermion operators,

: a1a
†
2 : = −a

†
2a1 , : b1a1a

†
2 : = a†2 b1a1︸︷︷︸

−a1b1

= −a†2a1b1 , etc. (4.370)

Note that, when fermions are involved, one does have to keep track of the ordering
among creation operators or that among annihilation operators.
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Using this extended definition of normal ordering, the total Hamiltonian can be
written as

H ≡ :
∫
d3xψ†i∂0ψ : =

∑
p⃗,s⃗

p0(a†p⃗,s⃗ap⃗,s⃗ + b†p⃗,s⃗bp⃗,s⃗) . (4.371)

Similarly, the total momentum (4.344) can be expressed in terms of a’s and b’s as

P⃗ ≡ :
∫
d3xψ†(−i∇⃗)ψ : =

∑
p⃗,s⃗

p⃗ (a†p⃗,s⃗ap⃗,s⃗ + b†p⃗,s⃗bp⃗,s⃗) . (4.372)

Using the above expressions of P µ = (H, P⃗ ), it is straightforward to show

[P µ, ψ(x)] = −i∂µψ(x) , [P µ, π(x)] = −i∂µπ(x) , (4.373)

which can be extended to any polynomial function F (ψ, π):

[P µ, F (ψ, π)] = −i∂µF (ψ, π) . (4.374)

Thus, the total energy-momentum operators act as space-time translation operators
just as in the case of the Klein-Gordon field.

Exercise 4.11 Heisenberg’s equation of motion for the Dirac field.
Use the momentum expansion of Dirac field and the total Hamiltonian (expressed
in terms of the number operators) to show that the Dirac field obeys Heisenberg’s
equation of motion (note the commutator, not anticommutator):

−iψ̇(x) = [H,ψ(x)] . (4.375)

(hint: You may find the following identity handy: [AB,C] = A{B,C} − {A,C}B.)

Exercise 4.12 Use the momentum expansion of the Dirac field to verify (4.372).

The Noether current for the phase transformation
The Lagrangian L = ψ̄(i∂/ −m)ψ is invariant under the phase rotation

ψ′ = eiθψ → ψ̄′ = e−iθψ̄ , (4.376)

where θ is a real parameter and all four components of ψ are rotated by the same
angle simultaneously. If each component of ψ is phase-rotated individually, then the
Lagrangian is not invariant because of the off-diagonal terms such as ψ∗1∂µψ2 (due to
the off diagonal elements of the γ matrices). The derivation of the Noether current
corresponding to this phase rotation is identical to the case of charged Klein-Gordon
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field (4.259) except that this time there are four fields ψn (n = 1, 2, 3, 4) whose
contribution to the variation of L should be added up:

∂µj
µ = 0 , jµ ≡ i

(
∂L

∂(∂µψ∗n)︸ ︷︷ ︸
0

ψ∗n −
∂L

∂(∂µψn)︸ ︷︷ ︸
i(ψ̄γµ)n

ψn

)
, (4.377)

namely,

jµ = ψ̄γµψ . (4.378)

This is exactly the same current as the ‘probability current’ (3.67) we have derived
directly from the Dirac equation in the non-quantized theory; we noted that the
time component j0 = ψ†ψ was always positive and consistent with the interpretation
that it is the probability density. We will now see that the same quantity in the
framework of the quantum field theory is interpreted as the charge current, and that
the conserved quantity - the total charge - can take both positive and negative values.

The conserved quantify is the space integral of the time component of a conserved
current:

Q ≡
∫
d3x j0 =

∫
d3xψ†ψ . (4.379)

We use the momentum expansion of ψ and the orthonormality relations (4.354) to
obtain

Q =
∫
d3x

∑
p⃗,s⃗,p⃗ ′,s⃗ ′

(a†p⃗,s⃗f
†
p⃗,s⃗ + bp⃗,s⃗g

†
p⃗,s⃗)(ap⃗ ′,s⃗ ′fp⃗ ′,s⃗ ′ + b†p⃗ ′,s⃗ ′gp⃗ ′,s⃗ ′)

=
∑

p⃗,s⃗,p⃗ ′,s⃗ ′
(a†p⃗,s⃗ap⃗ ′,s⃗ ′ δp⃗,p⃗ ′δs⃗,s⃗ ′ + bp⃗,s⃗b

†
p⃗ ′,s⃗ ′ δp⃗,p⃗ ′δs⃗,s⃗ ′)

=
∑
p⃗,s⃗

(a†p⃗,s⃗ap⃗,s⃗ + bp⃗,s⃗b
†
p⃗,s⃗︸ ︷︷ ︸

1− b†p⃗,s⃗bp⃗,s⃗ ← {bp⃗,s⃗ , b†p⃗,s⃗} = 1

)

=
∑
p⃗,s⃗

(a†p⃗,s⃗ap⃗,s⃗ − b
†
p⃗,s⃗bp⃗,s⃗ + 1) . (4.380)

We see that a-particles contribute to the quantity Q by +1 each regardless of mo-
mentum and spin, and b-particles contribute by −1 each. Thus, one can interpret
that a-particles are electrons carrying +1 ‘electron number’ each and b-particles are
positrons carrying −1 electron number each. The extra term

∑
p⃗,s⃗ 1 is again infinite,

which reminds us of the electron sea in the hole theory. Again, we discard the constant
offset by normal ordering:

: a†p⃗,s⃗ap⃗,s⃗ + bp⃗,s⃗b
†
p⃗,s⃗ : = a†p⃗,s⃗ap⃗,s⃗ − b

†
p⃗,s⃗bp⃗,s⃗ ; (4.381)
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namely,

Q ≡ :
∫
d3xψ†ψ : =

∑
p⃗,s⃗

(a†p⃗,s⃗ap⃗,s⃗ − b
†
p⃗,s⃗bp⃗,s⃗) . (4.382)

Note that
∫
d3xψ†ψ is a linear combination of terms which are product of creation

and annihilation operators, and that the normal ordering applies directly to each
term.

Noether current of rotational invariance (general)

In (3.246), the hole theory guided us to assign spin +1/2 to the spinor v0⃗,+s⃗ even
though its egenvalue of the spin operator Σ·s⃗/2 was −1/2. It is now time to show that
the creation operator b†

0⃗,s⃗
which is associated with v0⃗,+s⃗ indeed creates a state with

spin +1/2 in the s⃗ direction. To do so, we have to find the total angular momentum
operator which should contain the spin term. As we will see below, the orbital angular
momentum x⃗× p⃗ shows up as a part of the conserved quantity corresponding to the
invariance of Lagrangian under rotation. The rest of the conserved quantity is then
identified as the spin of the particle. We will first derive a general expression for the
total angular momentum.

Our starting point is that the Lagrangian density is a Lorentz scalar:

L′(x′) = L(x) (x′ = Λx) , (4.383)

where Λ is a proper and orthochronous Lorentz transformation. Let us be specific
about the meaning of this relation. In general, a Lagrangian density is a function of
a set of fields ϕ̃ = (ϕ1, . . . , ϕn) and its derivative ∂µϕ̃:

L(x) def≡ L(ϕ̃(x), ∂µϕ̃(x)) (4.384)

Under a Lorentz transformation, the field ϕ̃ transforms by a certain n× n matrix S:

ϕ′a(x
′) = Sabϕb(x) (a, b = 1, . . . , n) . (4.385)

The Lagrangian in the transformed frame L′(x′) is then defined by the same functional
form as L(ϕ̃, ∂µϕ̃) where ϕ̃(x) is replaced by ϕ̃′(x′) and x by x′:

L′(x′) def≡ L(ϕ̃′(x′), ∂′µϕ̃′(x′)) . (4.386)

We have already seen in (4.130) that, with these definitions, the spin-0 Lagrangian
indeed satisfies the relation L′(x′) = L(x). It is also straightforward to show that the
Dirac field Lagrangian ψ̄(i∂/ −m)ψ is a Lorentz scalar.

Exercise 4.13 Show that the Lagrangian density of free Dirac field ψ̄(i∂/ − m)ψ is
indeed a Lorentz scalar as defined above.
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As can be seen in the definitions (4.384) and (4.386), L(x) as a function of
(ϕ̃(x), ∂µϕ̃(x)) and L′(x′) as a function of (ϕ̃′(x′), ∂′µϕ̃

′(x′)) have the same functional
form; thus, we can express L′(x′)−L(x) = 0 in terms of the changes in the arguments

δϕa
def≡ ϕ′a(x

′)− ϕa(x) and δ(∂µϕa)
def≡ ∂′µϕ

′
a(x
′)− ∂µϕa(x) . (4.387)

Namely,

0 = L(ϕ̃′(x′), ∂′µϕ̃′(x′))− L(ϕ̃(x), ∂µϕ̃(x))

=
∂L
∂ϕa︸ ︷︷ ︸

∂µ
∂L

∂(∂µϕa)
(by equation of motion)

δϕa +
∂L

∂(∂µϕa)
δ(∂µϕa) . (4.388)

There are six independent generators Mαβ for proper and orthochronous Lorentz
transformations Λ, and correspondingly there should be six independent generators
in the space of n fields ϕ̃. Namely, corresponding to the infinitesimal Lorentz trans-
formation (1.89)

Λµ
ν = gµν + ωµ

ν = gµν +
1

2
ωαβ(M

αβ)µν (4.389)

the matrix S can be written as

Sab = δab +
1

2
ωαβ(T

αβ)ab , (4.390)

where Tαβ are the generators in the space of ϕ̃ and are antisymmetric under the
exchange α↔ β:

Tαβ = −T βα (4.391)

making the number of independent generators to be six. Then δϕa and δ(∂µϕa) are

δϕa = ϕ′a(x
′)− ϕa(x)

= Sabϕb(x)− ϕa(x)

=
1

2
ωαβ(T

αβ)abϕb(x) (4.392)

δ(∂µϕa) = ∂′µϕ
′
a(x
′)− ∂µϕa(x)

= (Λµ
ν∂ν)Sabϕb(x)− ∂µϕa(x)

= (gµ
ν + ωµ

ν)∂ν
(
δab +

1

2
ωαβ(T

αβ)abϕb(x)
)
− ∂µϕa(x)

= (∂µ + ωµ
ν∂ν)

(
ϕa(x) +

1

2
ωαβ(T

αβ)abϕb(x)
)
− ∂µϕa(x)

= ωµ
ν∂νϕa(x) +

1

2
ωαβ(T

αβ)ab∂µϕb(x) , (4.393)



192 CHAPTER 4. QUANTIZATION OF FIELDS

where in the last step we discarded the term that is second order in ω. Using these
in (4.388),

0 =

(
∂µ

∂L
∂(∂µϕa)

)(1
2
ωαβ(T

αβ)abϕb

)
+

∂L
∂(∂µϕa)

(
ωµ

ν∂νϕa +
1

2
ωαβ(T

αβ)ab∂µϕb

)
= ∂µ

(
∂L

∂(∂µϕa)

1

2
ωαβ(T

αβ)abϕb

)
+

∂L
∂(∂µϕa)

ωµν∂
νϕa︸ ︷︷ ︸

∂L
∂(∂αϕa)

ωαβ∂
βϕa

= ωαβ

[
∂µ

(
∂L

∂(∂µϕa)

(Tαβ)ab
2

ϕb

)
+

∂L
∂(∂αϕa)

∂βϕa

]
. (4.394)

This holds for any (small) ωαβ. Then, can we set the quantity inside the square
bracket to be zero? No, since ωαβ’s are antisymmetric with respect to (α, β) and are
not independent. We can, however, pick a specific pair (α, β) and set

ωµν = 0 for all µ and ν, except ωαβ = −ωβα . (4.395)

Then using Tαβ = −T βα, (4.394) becomes (no sum over α, β)

0 = ωαβ

[
∂µ

(
∂L

∂(∂µϕa)

(Tαβ)ab
2

ϕb

)
+

∂L
∂(∂αϕa)

∂βϕa − (α↔ β)

]

= ωαβ

[
∂µ

(
∂L

∂(∂µϕa)

(Tαβ)ab − (T βα)ab
2

ϕb

)
+

∂L
∂(∂αϕa)

∂βϕa −
∂L

∂(∂βϕa)
∂αϕa

− gαβL + gαβL︸ ︷︷ ︸
0

]

= ωαβ

[
∂µ

(
∂L

∂(∂µϕa)
(Tαβ)abϕb

)
+ Jαβ − Jβα

]
(4.396)

where in the second line we have added and subtracted L gαβ, and Jαβ is the energy
momentum tensor defined in (4.121):

Jαβ ≡ ∂L
∂(∂αϕa)

∂βϕa − L gαβ .

Using the conservation of Jαβ, Jαβ − Jβα can be written as

∂µ(x
αJµβ − xβJµα) = δµαJ

µα + xα ∂µJ
µα︸ ︷︷ ︸

0

+δµβJ
µβ + xβ ∂µJ

µβ︸ ︷︷ ︸
0

= Jαβ − Jβα . (4.397)
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Then (4.396) becomes

0 = ωαβ∂µM
µαβ (4.398)

with

Mµαβ ≡ ∂L
∂(∂µϕa)

(Tαβ)abϕb + (xαJµβ − xβJµα) . (4.399)

Since there is no sum over α and β as prescribed in (4.395), we immeidately obtain
the conservation relation

∂µM
µαβ = 0 , (4.400)

which is valid for any (α, β) since the choice of (α, β) was arbitrary in (4.395). Note
that Mµαβ is also antisymmetric under the exchange α↔ β.

The conserved quantity corresponding to the rotation around the k-th axis is then
(i, j, k: cyclic)

Jk =
∫
d3xM0ij

=
∫
d3x

[
∂L
∂ϕ̇a

(T ij)abϕb + (xiJ0j − xjJoi)

]

=
∫
d3x

[
πa(T

ij)abϕb + (x⃗× J⃗0)k
]

(4.401)

where J⃗0 ≡ (J01, J02, J03) is the momentum density and used the definition of conju-
gate field πa ≡ δL/δϕ̇a. The second term has the form of orbital angular momentum
around the origin, and the first term is then interpreted as the spin angular momen-
tum carried by the particle. The quantity Jk is the total angular momentum which
is a constant of motion only after spin of the particle is added to the orbital angular
momentum.

You may be wondering what are the ‘conserved quantities’ of (4.400) for α = 0
or β = 0 which should correspond to the generators of boost. The time derivative of
such quantities would indeed be zero; because of the explicit time dependence that
appear in the definition (4.399), however, such quantities are not genuine physical
conserved quantities.

Spin of electron

We can now apply (4.401) to the Dirac field Lagrangian to obtain the correspond-
ing total angular momentum operator. Using the definition (4.121), the momentum
density J0i is (using π = iψ†)

J0i =
∂L
∂ψ̇a

∂iψa − g0iL = πa∂
iψa = ψ†(−i∇i)ψ . (4.402)
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The generators in the spinor space are T ij = Bij = −iΣk/2 (3.182). The total angular
momentum (4.401) is then

Jk =
∫
d3xψ†

(
Σk

2
+ (x⃗× p⃗)k

)
ψ (p⃗ ≡ −i∇⃗) , (4.403)

and the component along some fixed direction s⃗ is given by

s⃗ · J⃗ =
∫
d3xψ†

(
s⃗ · Σ⃗
2

+ s⃗ · (x⃗× p⃗)
)
ψ . (4.404)

We will now evaluate the expectation value of this operator for a state that represents
a positron at rest: b†

0⃗,s⃗
|0⟩ where s⃗ is taken to be the same s⃗ that is used in s⃗ · J⃗ .

Momentum-expanding the fields and recalling the implicit normal ordering, we get

⟨0|b0⃗,s⃗(s⃗ · J⃗)b
†
0⃗,s⃗
|0⟩

= ⟨0|b0⃗,s⃗
∑

p⃗,s⃗1,p⃗ ′,s⃗2

∫
d3x : ( �

��Z
ZZa†p⃗,s⃗1f
†
p⃗,s⃗1

+ bp⃗,s⃗1g
†
p⃗,s⃗1

)

×
(
s⃗ · Σ⃗
2

+ s⃗ · (x⃗× p⃗)
)
( �

��Z
ZZap⃗ ′,s⃗2fp⃗ ′,s⃗2 + b†p⃗ ′,s⃗2

gp⃗ ′,s⃗2) : b
†
0⃗,s⃗
|0⟩

=
∑

p⃗,s⃗1,p⃗ ′,s⃗2

⟨0|b0⃗,s⃗ : bp⃗,s⃗1b
†
p⃗ ′,s⃗2

:︸ ︷︷ ︸
−b†p⃗ ′,s⃗2

bp⃗,s⃗1

b†
0⃗,s⃗
|0⟩

︸ ︷︷ ︸
−δ0⃗,p⃗ ′δs⃗,s⃗2δp⃗,⃗0δs⃗1,s⃗

∫
d3x g†p⃗,s⃗1

(
s⃗ · Σ⃗
2

+ s⃗ · (x⃗× p⃗)
)
gp⃗ ′,s⃗2

= −
∫
d3x g†

0⃗,s⃗

(
s⃗ · Σ⃗
2

+ s⃗ · (x⃗× p⃗)
)
g0⃗,s⃗ . (4.405)

Since applying p⃗ = −i∇⃗ on g0⃗,s⃗ annihilates it and

(s⃗ · Σ⃗)g0⃗,s⃗ = −g0⃗,s⃗ (4.406)

by construction [see (3.263)], we have

⟨0|b0⃗,s⃗(s⃗ · J⃗)b
†
0⃗,s⃗
|0⟩ = 1

2

∫
d3x g†

0⃗,s⃗
g0⃗,s⃗ =

1

2
. (4.407)

Thus, the angular momentum of the positron state b†
0⃗,s⃗
|0⟩ is indeed +1/2 in the s⃗

direction. Note the crucial minus sign when the normal ordering was applied to
bp⃗,s⃗1b

†
p⃗ ′,s⃗2

which cancelled the minus sign in (4.406). When the state is changed to an

electron at rest, then all needed is to change b
(†)
0⃗,s⃗

to a
(†)
0⃗,s⃗

in the procedure above. One
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sees that the relevant product a†p⃗,s⃗1ap⃗ ′,s⃗2 in the angular momentum operator is already
normal ordered and there is no minus sign in (4.406) when g is replaced by f , and
one obtains

⟨0|a0⃗,s⃗(s⃗ · J⃗)a
†
0⃗,s⃗
|0⟩ = 1

2
. (4.408)

Thus, the spin indexes of a†p⃗,s⃗ and b†p⃗,s⃗ both correctly represent the corresponding
physical spin.

Microscopic causality of the Dirac field
We have seen that the Klein-Gordon field satisfied microscopic causality; namely, field
operators ϕ(x) and ϕ(y) commuted if x and y are separated by a space-like distance:

[ϕ(x), ϕ(y)] = i∆(x− y) = 0 , if (x− y)2 < 0 , (4.409)

where i∆(x) is given by (4.290). In the case of the Dirac field also, in order for
two measurements to be independent, the corresponding operators A and B should
commute and not anticommute. In fact, independence of two meansurements means
that for any eigenvalue a of the operator A and any eigenvalue b of the operator
B, there exists a simultaneous eigenstate |a, b⟩ that allows measurements of the two
observables with infinite accuracy. Then, the operators A and B should commute:

(AB −BA)|a, b⟩ = (ab− ba)|a, b⟩ = 0 (for all a, b)

→ [A,B] = 0 . (4.410)

On the other hand, the operator relations for the Dirac fields are given as anticommu-
tators, and commutators such as [ψn(x), ψ

†
m(y)] do not vanish for (x−y)2 < 0; in fact,

it is a messy expression of a’s and b’s and not even a c-number. Physically relevant
quantities, however, always appear as bilinear covariants which have the form

ψ̄ Γψ = Γnmψ̄nψm , (4.411)

where Γ is a 4× 4 matrix. Thus, if

[ψ̄n(x)ψm(x), ψ̄k(y)ψl(y)] = 0 (x− y)2 < 0 (for any n,m, k, l), (4.412)

then we conclude that microscopic causality is satisfied for the Dirac field. In proving
this, we first note that if field components at x, ψ̄n(x) and ψm(x), anticommute with
those at y, ψ̄k(y) and ψl(y), then ψ̄n(x)ψm(x) commutes with ψ̄k(y)ψl(y):

(−1)2 (−1)2
←−−−−−−−−
ψ̄n(x)ψm(x) ψ̄k(y) ψl(y) = ψ̄k(y)

←−−−−−−−−
ψ̄n(x)ψm(x) ψl(y)

= ψ̄k(y)ψl(y) ψ̄n(x)ψm(x) .

(4.413)
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Thus, we need to show that, for any n,m = 1, 2, 3, 4,
{ψn(x), ψm(y)} = 0

{ψ̄n(x), ψ̄m(y)} = 0

{ψn(x), ψ̄m(y)} = 0

for (x− y)2 < 0 . (4.414)

First two are trivial since the only non-zero anticommutators are of the type {a, a†}
or {b, b†}:

ψ contains a and b† only → {ψn(x), ψm(y)} = 0 ,

ψ̄ contains a† and b only → {ψ̄n(x), ψ̄m(y)} = 0 .
(4.415)

The evaluation of the anticommutator {ψn(x), ψ̄m(y)} requires some care. For
convenience, let’s extend the definition of matrix of the form abT , where a and b are
column vectors, to the anticommutators (and similarly to the commutators): {a, bT}
is a matrix whose components are defined by

{a, bT}nm
def≡ {an , bm} , (4.416)

which is clearly linear with respect to a and b.t Then, using the division of ψ into
creation and annihilation parts (4.358),

{ψ(x), ψ̄(y)} = {ψa(x) + ψb†(x) , ψ̄a(y) + ψ̄b†(y)}
= {ψa(x) , ψ̄a(y)}+ {ψb†(x) , ψ̄b†(y)} . (4.417)

Following the procedure similar to (4.361),

{ψa(x) , ψ̄a(y)} =
∑

p⃗,s⃗,p⃗ ′,s⃗ ′
{ap⃗,s⃗ , a†p⃗ ′,s⃗ ′}︸ ︷︷ ︸
δp⃗,p⃗ ′δs⃗,s⃗ ′

fp⃗,s⃗(x)f p⃗ ′,s⃗ ′(y) =
∑
p⃗,s⃗

fp⃗,s⃗(x)f p⃗,s⃗(y)

=
∑
p⃗

1

2p0V︸ ︷︷ ︸
1

(2π)3

∫ d3p
2p0

∑
s⃗

up⃗,s⃗ ūp⃗,s⃗︸ ︷︷ ︸
( p/︸︷︷︸
i∂/x

+m) by (3.317)

e−ip·(x−y)

= (i∂/x +m)
1

(2π)3

∫ d3p

2p0
e−ip·(x−y)

= (i∂/x +m)∆+(x− y) , (4.418)

where ∂µx ≡ ∂/∂xµ (namely, operates on x and not on y). Similarly,

{ψb†(x) , ψ̄b†(y)} =
∑

p⃗,s⃗,p⃗ ′,s⃗ ′
{b†p⃗,s⃗ , bp⃗ ′,s⃗ ′}︸ ︷︷ ︸
δp⃗,p⃗ ′δs⃗,s⃗ ′

gp⃗,s⃗(x)gp⃗ ′,s⃗ ′(y) =
∑
p⃗,s⃗

gp⃗,s⃗(x)gp⃗,s⃗(y)
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=
∑
p⃗

1

2p0V︸ ︷︷ ︸
1

(2π)3

∫ d3p
2p0

∑
s⃗

vp⃗,s⃗ v̄p⃗,s⃗︸ ︷︷ ︸
( p/︸︷︷︸
−i∂/x

−m) by (3.317)

eip·(x−y)

= −(i∂/x +m)
1

(2π)3

∫ d3p

2p0
eip·(x−y)

= −(i∂/x +m)∆+(y − x) . (4.419)

Then, we have

{ψ(x), ψ̄(y)} = (i∂/x +m) [∆+(x− y)−∆+(y − x)]
= (i∂/x +m)i∆(x− y)
def≡ −iS(x− y) (4.420)

Now, the function i∆(x − y) is already known to vanish for (x − y)2 < 0; thus,
{ψ(x), ψ̄(y)} = 0 for (x − y)2 < 0, and all bilinear covariants commute at space-like
distances. Thus, the quantized Dirac field satisfies microscopic causality.

What would have happened to the microscopic causality if we had quantized the
Dirac field with commutators instead of anticommutators? Then, we would have

[ap⃗,s⃗ , a
†
p⃗ ′,s⃗ ′] = [bp⃗,s⃗ , b

†
p⃗ ′,s⃗ ′] = δp⃗,p⃗ ′δs⃗,s⃗ ′ , (4.421)

and all other commutators would be zero. The momentum expansion in terms of
normal modes would be the same as before, and we would evaluate [ψn(x), ψ̄m(y)]
instead of the corresponding anticommutator. The critical difference occurs when we
use [b†p⃗,s⃗ , bp⃗ ′,s⃗ ′] = −[bp⃗ ′,s⃗ ′ , b†p⃗,s⃗] = −δp⃗,p⃗ ′δs⃗,s⃗ ′ which will change the sign in the first line
of (4.419), and as a result we would obtain

[ψ(x), ψ̄(y)] = (i∂/x +m) [∆+(x− y) + ∆+(y − x)] , (4.422)

which does not vanish for (x−y)2 < 0 since ∆+(x−y) = ∆∗+(y−x) and ∆+(x−y) is real
and positive in the space-like region. Thus, in addition to the positive definiteness of
the energy, the microscopic causality also requires that the Dirac field be quantized
by anticommutators. How did it work out for the case of the Klein-Gordon field?
There, we did not have the minus sign in the commutator corresponding to (4.419)
and the necessary relative minus sign between ∆+(x− y) and ∆+(y − x) came from
the property of commutator [ϕ†a(x), ϕa(y)] = −[ϕa(y), ϕ

†
a(x)] used in (4.287). In 1940,

Pauli extended the above argument of microscopic causality to particles with general
spins, and established the fundamental connection between spin and statistics:

Integer spin ↔ Bose-Einstein statistics,

Half-integer spin ↔ Fermi-Dirac statistics,
(4.423)
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where ‘Bose-Einstein statistics’ means that the field must be quantized by commuta-
tors and thus a given state can be occupied by any number of particles, and ‘Fermi-
Dirac statistics’ means that the field must be quantized by anticommutators and thus
a given state can be occupied by at most one particle.

Lorentz invariance of the Dirac-field quantization
Let’s now turn to the question of whether systems quantized in different Lorentz
frames are equivalent or not. As in the case of the Klein-Gordon field, we could prove
the equivalence of the anticommutation relations of fields in different frames, or those
of creation and annihilation operators. Let’s take the fields this time. First, we will
see below that the general-time anticommutation relation (4.415) and (4.420) reduces
to the equal-time anticommutation relation (4.364) when we set x0 = y0. In fact,
setting x0 = y0 = t in (4.415), we obtain

{ψn(t, x⃗), ψm(t, y⃗)} = 0 , {πn(t, x⃗), πm(t, y⃗)} = 0 . (4.424)

Setting x0 = y0 in {ψ(t, x⃗), ψ̄(t, y⃗)} is equivalent to repeating the derivation (4.420)
with x0 = y0 from the beginning. We start from just before p/ is replaced by the
differential operator in (4.418) and (4.419):

{ψ(x) , ψ̄(y)}x0=y0 =
1

(2π)3

∫ d3p

2p0

[
( p/︸︷︷︸

p0γ0 − p⃗ · γ⃗

+m)eip⃗·(x⃗−y⃗)+( p/︸︷︷︸
p0γ0 − p⃗ · γ⃗

−m)e−ip⃗·(x⃗−y⃗)

︸ ︷︷ ︸
relabel p⃗→ −p⃗

]

=
1

(2π)3

∫ d3p

2p0

[
(p0γ0 − p⃗ · γ⃗ +m) + (p0γ0 + p⃗ · γ⃗ −m)︸ ︷︷ ︸

2p0γ0

]
eip⃗·(x⃗−y⃗)

= γ0
1

(2π)3

∫
d3p eip⃗·(x⃗−y⃗) = γ0δ3(x⃗− y⃗) , (4.425)

where γ⃗
def≡ (γ1, γ2, γ3). Now, the definition (4.416) leads to(
{a, bT}M

)
nm

= {a, bT}nk︸ ︷︷ ︸
{an, bk}

Mkm = {an, bkMkm︸ ︷︷ ︸
(bTM)m

} = {a, bTM}nm ; (4.426)

where an and bm are operators while Mnm is a c-number; namely,

{a, bT}M = {a, bTM} , and similarly, M{a, bT} = {Ma, bT} . (4.427)

Thus, we have

{ψ(t, x⃗), ψ†(t, y⃗)︸ ︷︷ ︸
ψ̄γ0

} = {ψ(t, x⃗), ψ̄(t, y⃗)}︸ ︷︷ ︸
γ0δ3(x⃗− y⃗)

γ0 = Iδ3(x⃗− y⃗) . (4.428)
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Since π = iψ†, this is equivalent to {ψ(t, x⃗), π(t, y⃗)} = iIδ3(x⃗ − y⃗) which is the
equal-time quantization condition.

Thus, the Lorentz invariance of the quantization procedure is proven if we can
show that 

{ψn(x), ψm(y)} = 0

{ψ̄n(x), ψ̄m(y)} = 0

{ψ(x), ψ̄(y)} = −iS(x− y)
(4.429)

in one frame leads to the same relations in another frame where the field in the
new frame are related to the original field by the spinor representation of Lorentz
transformation:

ψ′(x′) = S(Λ)ψ(x) , ψ′(y′) = S(Λ)ψ(y) , (4.430)

where x′ = Λx and y′ = Λy (Λ: proper and orthochronous). The first two relations
are trivial:

{ψ′n(x′), ψ′m(y′)} = {Snkψk(x), Smlψl(y)} = SnkSml{ψk(x), ψl(y)} = 0 , (4.431)

and similarly {ψ̄′n(x′), ψ̄′m(y′)} = 0. Using (4.427),

{ψ′(x′), ψ̄′(y′)} = {Sψ(x), ψ̄(y)S̄} = S {ψ(x), ψ̄(y)}︸ ︷︷ ︸
(i∂/x +m)i∆(x− y)

S̄

= (i∂xµ Sγ
µS̄︸ ︷︷ ︸

Λν
µγν

+m) i∆(x− y)︸ ︷︷ ︸
i∆(x′ − y′)

= (i∂x′νγ
ν +m)i∆(x′ − y′)

= −iS(x′ − y′) , (4.432)

where we have used the Lorentz invariance of the function i∆: i∆(x′) = i∆(x),
the property SγµS̄ = Λν

µγν (3.274), and ∂x′ν = Λν
µ∂xµ. Thus, the same set of

anticommutation relations are satisfied in the new frame, and the Lorentz invariance
of the quantization procedure is proven.

Incidentally, ∆+(x), and thus i∆(x) = ∆+(x) − ∆+(−x), is a solution of the
Klein-Gordon equation:

(∂2 +m2)∆+(x) =
1

(2π)3

∫ d3p

2p0
(∂2 +m2)︸ ︷︷ ︸

(−p2 +m2) = 0

e−ip·x = 0 , (4.433)

and −iS(x) is a solution of the Dirac equation:

(i∂/ −m)(−iS(x)) = (i∂/ −m)(i∂/ +m)︸ ︷︷ ︸
(− ∂/∂/︸︷︷︸

∂2

−m2)

i∆(x)

= −(∂2 +m2)i∆(x) = 0 . (4.434)
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Problems

4.1 Momentum expansion.
In the momentum expansion of a hermitian Klein-Gordon field

ϕ(x) =
∑
p⃗

(
ap⃗ ep⃗(x) + a†p⃗ e

∗
p⃗(x)

)
,

suppose one takes the normalization of the normal mode functions as

ep⃗(x)
def≡ e−ip·x√

2cpV

where cp is some real function of |p⃗|. This defines the normalization of the operators

ap⃗ and a†p⃗. Assume that the standard equal-time commutation relations among ϕ and
π hold:

[ϕ(t, x⃗), π(t, x⃗ ′)] = iδ(x⃗− x⃗ ′) , [ϕ(t, x⃗), ϕ(t, x⃗ ′)] = [π(t, x⃗), π(t, x⃗ ′)] = 0 .

(a) Obtain the orthonormality relations of the normal mode functions; namely, cal-

culate
∫
d3x e∗p⃗(x)i

↔
∂0ep⃗ ′(x) and

∫
d3x ep⃗(x)i

↔
∂0ep⃗ ′(x).

(b) Express ap⃗ and a†p⃗ in terms of ϕ and π. Note that the relation π = ϕ̇ is a result
of the Heisenberg’s equation of motion for ϕ which results from the commutation
relations among ϕ and π and not affected by the normalization of the normal modes.
(c) Require that the equal-time commutation relations among ϕ and π lead to [ap⃗, a

†
p⃗ ′] =

δp⃗,p⃗ ′, and find the correct normalization factor cp.

4.2 Lorentz invariance of quantization procedure.
In the text, we have proven the Lorentz invariance of the quantization of a spin-0 field
by showing that the commutation relations among creation and annihilation operators
in one frame lead to those in the other frame. It is of course possible to show that
the equal-time commutation relations among field and its conjugate filed lead to those
in the other frame. Take a hermitian spin-0 field ϕ(x). The field in another frame,
ϕ′(x′), is given by the scalar field condition:

ϕ′(x′) = ϕ(x) (x′ = Λx) ,

where Λ is a proper and orthochronous Lorentz transformation. The conjugate field
in each frame is defined as the time derivative of the field in each frame:

π(x) ≡ ∂

∂x0
ϕ(x) , π′(x′) ≡ ∂

∂x0′
ϕ′(x′) .
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(a) Start from the commutation relation

[ϕ(x), ϕ(y)] = i∆(x− y) = ∆+(x− y)−∆+(y − x)

with

∆+(z) =
1

(2π)3

∫ d3p

2p0
e−ip·z ,

and show that this leads to the commutation relations

[ϕ(x), ϕ(y)]x0=y0 = 0 , [π(x), π(y)]x0=y0 = 0 , [ϕ(x), π(y)]x0=y0 = iδ3(x⃗− y⃗) .

Do not use annihilation and creation operators.
(b) Complete the proof that the above equal-time commutation relations among the field
and its conjugate field lead to those in another frame with the same form; namely,

[ϕ′(x′), ϕ′(y′)]x′0=y′0 = 0 , [π′(x′), π′(y′)]x′0=y′0 = 0 , [ϕ′(x′), π′(y′)]x′0=y′0 = iδ3(x⃗′−y⃗′) .

4.3 Lagrangian density for the Dirac field.
The Lagrangian density for the Dirac field ψ is given by

L = ψ̄(i∂/ −m)ψ .

In the text, we have derived the Dirac equation directly from the action principle.
This time, apply the Euler-Lagrange equation

∂L
∂ϕk

= ∂µ
∂L

∂(∂µϕk)

to each component of ψ; namely take ψa (a = 1, . . . , 4) as ϕk, to derive the Dirac’s
equation the Dirac equation for ψ̄:

ψ̄(i
←
∂/ +m) = 0 ,

and apply it for ψ†a (a = 1, . . . , 4) to obtain

(i∂/ −m)ψ = 0 .

Use the same Lagrangian density given above for both cases, and also do not resort
to the Dirac or other explicit representation.

4.4 Continous-p⃗ formalisms for Dirac field.
For continuous momentum, the normal mode functions of the Dirac field are given by

fp⃗,s⃗(x) ≡
up⃗,s⃗e

−ip·x√
(2π)32p0

, gp⃗,s⃗(x) ≡
vp⃗,s⃗e

ip·x√
(2π)32p0

,
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and the momentum expansion is

ψ(x) =
∑
s⃗

∫
d3p(ap⃗,s⃗fp⃗,s⃗(x) + b†p⃗,s⃗gp⃗,s⃗(x)) .

First, show that the following normalizations hold:∫
d3xf †p⃗,s⃗(x)fp⃗ ′,s⃗ ′(x) =

∫
d3xg†p⃗,s⃗(x)gp⃗ ′,s⃗ ′(x) = δ3(p⃗− p⃗ ′)δs⃗,s⃗ ′∫

d3xf †p⃗,s⃗(x)gp⃗ ′,s⃗ ′(x) =
∫
d3xg†p⃗,s⃗(x)fp⃗ ′,s⃗ ′(x) = 0

.

Then, repeat the derivation of

{ψ(x), ψ̄(y)} = −iS(x− y) , with − iS(x) def≡ (i∂/ +m)i∆(x) .

Use the anticommutation relations

{ap⃗,s⃗ , a†p⃗ ′,s⃗ ′} = {bp⃗,s⃗ , b†p⃗ ′,s⃗ ′} = δ3(p⃗− p⃗ ′)δs⃗,s⃗ ′

all others = 0 .



Chapter 5

Interacting Fields

So far, we have dealt only with free fields. Even though we have seen many remarkable
features such as the spin of fermions, microscopic causality and the Lorentz invariance
of quantized fields, and so on, all measurable effects occur through interactions of
fields primarily as decays and scatterings which we will discuss in this chapter.

Before going into details, let’s take a rough look at what we will be dealing with.
As an example, take the creation of Higgs particle by annihilation of a fermion pair:

f + f̄ → H , (5.1)

where the fermion could be any lepton or quark, and the Higgs is a neutral spin-0
particle that is an important ingredient in the standard model of elementary particles.
We can roughly picture this interaction in terms of non-quantized fields as follows:
at the beginning we have two overlapping plane waves, one for f and the other for f̄ .
Now, suppose that the overlap of the waves acts as source of the Higgs field. Namely,
at every point of the overlap, Higgs field is created and propagates outward and they
linearly add up (Huygens’ principle). As the end result of the sum of all the waves
propagating from every point of overlap, we will have a macroscopic wave of Higgs
field coming out of the region of the overlap.

Of course, no macroscopic Higgs wave should be generated unless the invariant
mass of the incoming fermion pair happens to be the mass of the Higgs (i.e. 4-
momentum conservation):

(pf + pf̄ )
2 =M2 , (5.2)

where pf and pf̄ are 4-momenta of the fermion and antifermion, respectively, and M
is the mass of the Higgs particle. Such a constraint, as we will see, is automatically
built into the wave picture: in short, the microscopic spherical waves from the sources
do not add up constructively to form a macroscopic wave unless the above condition
is met. Another constraint is that the spins of the fermion pair should properly add
up to form a spin-0 particle. This specifies how the four components of the fermion
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Figure 5.1: Rough graphical representations of the Higgs creation f f̄ → H and the
Higgs decay H → f f̄ .

fields should be combined to define the ‘overlap’, and largely determines the form of
the interaction term in the Lagrangian. As we will see later, the existence of such a
term in the Lagrangian in turn indicates that the Higgs field itself acts as a source of
a fermion pair. It then represents a decay of the Higgs particle to a fermion pair:

H → f f̄ , (5.3)

which we will take in the following as an example to introduce the framework and
techniques for evaluating interaction rates.

The above picture is not complete; we need to treat it in the framework of quan-
tized field theory. What we are interested in is the probability amplitude for a given
initial state be found in a certain final state, and it can in principle be obtained once
we know the Hamiltonian of the system. In the Schrödinger picture, we would prepare
the initial state and let it evolve according to the Schrödinger equation of motion and
then take the inner product of the evolved state and the final state of interest. In
the Heisenberg picture, we would find the state that represents the given initial-state
at t = −∞ and the state that represents the desired final-state at t = +∞ and take
their inner product. Here, we will adopt an intermediate picture, called the interac-
tion picture, where the rapid oscillations of free fields that do not change the physical
content (such as particle types and 4-momenta) are contained in the field operators
and the states evolve relatively slowly reflecting the change in the physical content.
Then the transition amplitude is given by taking the inner product of the evolved
state and the given final state as in the Schrödinger picture. Let us now start from
examining what form of interaction is possible for the Higgs-fermion coupling.

5.1 Lagrangian for the decay H → ff̄

The ‘overlap’ of two fermion fields ψ1 and ψ2 can be written in general as

ψ̄1Γψ2 , (5.4)
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where Γ is an arbitrary 4 × 4 matrix. We have seen that such quantity can be
expressed as a linear combination of bilinear covariants which transform under Lorentz
transformation in well-defined ways:

ψ̄1ψ2, ψ̄1γ
µψ2, ψ̄1σ

µνψ2, ψ̄1γ5γ
µψ2, ψ̄1γ5ψ2 . (5.5)

As we have seen in (4.92), in order for the equation of motion to be Lorentz-invariant,
the Lagrangian should be a Lorentz scalar. The simplest choices are

ϕ ψ̄1ψ2, or ϕ ψ̄1γ5ψ2 , (5.6)

where ϕ is the spin-0 Higgs field. Note that the bilinear covariant has the same
transformation property under proper and orthochronous transformation as the Higgs
field; namely, it is a scalar or a pseudoscalar. This is because when the system is
viewed in a different Lorentz frame, the relevant overlap should transform in the
same way as the field created by the source in order for the same wave-source picture
to be valid in the new frame. As we will see in a later chapter, which of the two forms
to take depends on the relative orbital angular momentum L of the fermion pair:
L=odd for the scaler and L=even for the pseudoscalar. Here, we assume the proper
overlap is a scalar. Since the fermion and its antiparticle are represented by the same
field (as e− and e+ are representated by a single Dirac field ψ), the interaction term
is then

Lint = λϕ ψ̄ψ . (5.7)

where λ is a real constant that specifies the strength of the source for a given overlap,
and is called the coupling constant. Note that the interaction term is hermitian; if
it were not hermitian, then its hermitian conjugate would have to be added to make
the whole hermitian.

What is the dimension of the coupling constant λ? To find it, we need to know
the dimensions of the fields ϕ and ψ. Since c = 1, mass (m) and energy-momentum
(pµ) have the same dimension:

dim(m) = dim(P µ)
def≡ E (µ = 0, 1, 2, 3) . (5.8)

Since p ·x appears in exponents of exponentials (e−ip·x), p ·x should be dimensionless;
thus, xµ should have dimension E−1:

dim(xµ) = E−1 (µ = 0, 1, 2, 3) . (5.9)

The dimension of total Lagrangian L =
∫
d3xL is E since L = T − V ; then the

Lagrangian density L should have dimension E4:

dim(d3xL) = E → dim(L) = E4 . (5.10)
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The term m2ϕ2 in the Klein-Gordon Lagrangian L = 1
2
(∂µϕ∂

µϕ − m2ϕ2) indicates
that

dim(m2ϕ2) = E4 → dim(ϕ) = E (ϕ : scalar field) , (5.11)

and the term mψ̄ψ in L = ψ̄(i∂/ −m)ψ gives the dimension of fermion field:

dim(mψ̄ψ) = E4 → dim(ψ) = E
3
2 (ψ : fermion field) . (5.12)

Then, in order for the interaction terms to have dimension E4, λ has to be dimen-
sionless:

dim(λϕ ψ̄ψ) = E4 → dim(λ) = E0 . (5.13)

The Lagrangian density of the system is sum of free-field terms and the interaction
term:

L = LH + Lf + Lint ,

LH =
1

2
(∂µϕ∂

µϕ−M2ϕ2) , Lf = ψ̄(i∂/ −m)ψ ,

Lint = λϕ ψ̄ψ .

(5.14)

The equation of motion for the scalar field can be obtained from the Lagrangian
density using the Euler-Lagrange equation:

∂L
∂ϕ︸︷︷︸

−M2ϕ+λψ̄ψ

= ∂µ
∂L

∂(∂µϕ)︸ ︷︷ ︸
∂2ϕ

→ (∂2 +M2)ϕ = λ ψ̄ψ , (5.15)

which is probably a more familiar form that shows that the quantity ψ̄ψ is acting as
a source of the scalar field.

The conjugate fields are the same as before:

π ≡ ∂L
∂ϕ̇

= ϕ̇ , πf
n ≡

∂L
∂ψ̇n

= iψ†n , (5.16)

where the superscript f of πf indicates that it is the field conjugate to the fermion
field. The Hamiltonian density of the system is then

H ≡
∑
k

πkϕ̇k − L

= (πϕ̇− LH) + (
∑
n

πf
nψ̇n − Lf )− Lint

= HH +Hf +Hint , (5.17)

where k runs over all fields. The free-field Hamiltonians HH and Hf are the same as
before, and

Hint = −Lint , (5.18)
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which is true in general as long as there is no time derivative of fields in Lint, in which
case the definition of the conjugate fields would be altered and thus H would have
extra terms.

Quantization proceeds as usual; namely, fields are now considered to be operators
in the Heisenberg picture, and commutation and anticommutation relations are im-
posed as before among the fields. The fermion field and the scalar field are assumed to
commute (not anticommute). Then, all time dependences are given by Heisenberg’s
equations of motion using the total Hamiltonian obtained above, and in principle we
should be able to calculate the probability for a given initial configuration to end up
as a given final configuration.

5.2 Interaction Picture and the Dyson Series

We have been using the Heisenberg picture in which all time dependences are in the
operators and the states do not change with time. An alternative picture is the
Schrödinger picture in which all time dependences are in the states and the operators
do not vary with time. To deal with interactions, however, it is convenient to take
an intermediate picture in which the operators (i.e., fields) vary according to the
free-field Hamiltonian, and the states change according to the interaction part of the
Hamiltonian - called the interaction picture. As we will see, these pictures are related
by unitary transformations of states and operators:

|a′⟩ = V |a⟩ , O′ = V OV † . (5.19)

where V is a time-dependent unitary operator. Since all measurements are given
by matrix elements of some operators sandwiched between states, ⟨a|O|b⟩, the three
approaches are effectively identical since matrix elements are invariant under unitary
transformations:

⟨a′|O′|b′⟩ = ⟨a|V †V OV †V |b⟩ = ⟨a|O|b⟩ . (5.20)

We start by reviewing the relations among the three pictures.

Interaction picture
The following discussion is valid for any closed quantum mechanical system; we keep
in mind, however, that in our case the operators are fields (ϕ ψ̄ψ, ϕ2, etc.) and the
states belong to the Hilbert space (a†p⃗|0⟩, b

†
p⃗,s⃗|0⟩, etc.).

In the Heisenberg picture, the time dependences of any state |a⟩ and any operator
OH are given by

˙|a⟩H = 0 , ȮH = i[HH , OH ] (Heisenberg picture) , (5.21)
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where the subscript H indicates the Heisenberg picture. In general, operators in
Heisenberg picture depend on time, but the Hamiltonian itself does not since

ḢH = i[HH , HH ] = 0 . (5.22)

Transition to the Schrödinger picture is achieved by the transformation

|a⟩S
def≡ V |a⟩H , OS

def≡ V OHV
† , V

def≡ e−iHH t , (5.23)

where V is unitary sinceHH is hermitian, and the subscript S indicates the Schrödinger
picture. Since HH commutes with V = e−iHH t =

∑
n(−iHHt)

n/n !, we have

HS ≡ V HH︸ ︷︷ ︸
commute

V † = HH V V
†︸ ︷︷ ︸

1

= HH . (5.24)

Since HH does not depend on time, we can use (∂/∂x)exA = AexA (1.107) to obtain

V̇ = (−iHH)V = V (−iHH) . (5.25)

Taking the time derivative of |a⟩S = V |a⟩H and noting that ˙|a⟩H = 0 and HH = HS,
we get

˙|a⟩S = V̇ |a⟩H = (−iHH V )|a⟩H︸ ︷︷ ︸
|a⟩S

= −iHH |a⟩S = −iHS|a⟩S . (5.26)

Similarly, taking the time derivative of OS = V OHV
†,

ȮS = V̇ OHV
† + V OH V̇ † + V ȮHV

†

= V (−iHH)OHV
† + V OH(iHHV

†)︸ ︷︷ ︸
V i[OH , HH ]V

†

+V ȮH︸︷︷︸
i[HH , OH ]

V † = 0 . (5.27)

Thus, in the Schrödinger picture, the time dependences are given by

˙|a⟩S = −iHS|a⟩S , ȮS = 0 (Schrödinger picture) , (5.28)

namely, the operators are now constants and states change with time.
Now, we move to the interaction picture by starting from the Schrödinger picture

and dividing the Hamiltonian into two parts

HS = H0
S + hS . (5.29)

where the two pieces are hermitian and do not depend on time. In general they do
not commute. Later, H0

S is taken to be the free field part and hS the interaction part,



5.2. INTERACTION PICTURE AND THE DYSON SERIES 209

but at present the division is arbitrary. Then, we apply a transformation by a unitary
operator V 0 = eiH

0
St:

|a⟩I
def≡ V 0|a⟩S , OI

def≡ V 0OSV
0† , V 0 def≡ eiH

0
St , (5.30)

where the subscript I indicates the interaction picture. Since Ḣ0
S = 0, we can use

(1.107) to get
V̇ 0 = iH0

SV
0 = V 0iH0

S . (5.31)

Then, the time derivative of |a⟩I = V 0|a⟩S becomes

˙|a⟩I = V̇ 0︸︷︷︸
V 0iH0

S

|a⟩S + V 0 ˙|a⟩S︸︷︷︸
−iHS|a⟩S by (5.28)

= iV 0

−hS︷ ︸︸ ︷
(H0

S −HS)︷ ︸︸ ︷
V 0†V 0

|a⟩S = −i V 0hSV
0†︸ ︷︷ ︸

hI

V 0|a⟩S︸ ︷︷ ︸
|a⟩I

(5.32)

and the time derivative of OI = V 0OSV
0† is (using ȮS = 0)

ȮI = V̇ 0OSV
0† + V 0OSV̇

0†

= (iH0
S V

0)OSV
0†︸ ︷︷ ︸

OI

+V 0OS

(
V 0†︸ ︷︷ ︸

OI

(−iH0
S)
)

= i[H0
S , OI ] = i[H0

I , OI ] (5.33)

In the last step, we have used

H0
I ≡ V 0H0

S︸ ︷︷ ︸
commute

V 0† = H0
S . (5.34)

Thus, the time dependences in the interaction picture are

˙|a⟩I = −ihI |a⟩I , ȮI = i[H0
I , OI ] (interaction picture) , (5.35)

At this point, we take the free-field part of the Hamiltonian as H0, and the
interaction part as h. If there is no explicit time derivatives in these terms, they have
the same form in all three pictures. For example,

hH =
∫
d3xϕHψ̄HψH ,

hS = V
∫
d3xϕH(V

†V )ψ̄H(V
†V )ψHV

† =
∫
d3xϕSψ̄SψS ,

hI = V 0
∫
d3xϕS(V

0†V 0)ψ̄S(V
0†V 0)ψSV

0† =
∫
d3xϕIψ̄IψI .

(5.36)
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If there are time derivatives in h, the time dependences of the unitary operators V
and V 0 can in principle generate extra terms and break the above form invariance.
The time derivatives of fields, however, are usually replaced by the conjugate fields in
the Hamiltonian (for example, ϕ̇ is replaced by π) and thus h does not contain time
derivatives of fields even when Lint does.

In the interaction picture, fields have the same time dependence as that of free
fields, and thus they can be expanded using the same normal-mode functions as
before with creation and annihilation operators that do not depend on time. To
see this more clearly, let’s work it out for the H-ff̄ Lagrangian (5.14). We have
imposed the commutation relations in the Heisenberg picture; we note, however, that
the commutation relations are invariant under change of pictures:

[AH , BH ] = CH → V ×
(
AH︷ ︸︸ ︷
V †V

BH −BH︷ ︸︸ ︷
V †V

AH = CH

)
× V †

→ [AS, BS] = CS ,
similarly−→ [AI , BI ] = CI . (5.37)

Similarly, anticommutation relations are also invariant under change of pictures.
Thus, for example, the commutation relations for the scalar field in the interaction
picture are

[ϕI(t, x⃗) , πI(t, x⃗
′)] = iδ3(x⃗− x⃗ ′) , all others = 0 . (5.38)

The free-field Hamiltonian in the interaction picture has the same form as in the
Heisenberg picture as seen in (5.36):

H0
I ≡

∫
d3xH0

I , H0
I =

1

2
(π2

I + (∇⃗ϕI)
2 +m2ϕ2

I) . (5.39)

Then, following exactly the same steps as in the case of free fields, the commutation
relations and the equation of motion ȮI = i[H0

I , OI ] leads to

πI = ϕ̇I , (∂2 +m2)ϕI = 0 . (5.40)

Thus, it satisfies the free field Klein-Gordon equation, and again following exactly
the same procedure as before, the field ϕI can be momentum-expanded as

ϕI(x) =
∑
p⃗

(ap⃗Iep⃗(x) + a†p⃗Ie
∗
p⃗(x)) , (5.41)

where ap⃗’s are constants of motion, ep⃗(x) is the same normal-mode function as before,
and the commutation relations among fields lead to those among ap⃗’s:

[ap⃗I , a
†
p⃗ ′I ] = δp⃗,p⃗ ′ , [ap⃗I , ap⃗ ′I ] = [a†p⃗I , a

†
p⃗ ′I ] = 0 . (5.42)

We then define the lowest energy state as the vacuum |0⟩ and identify a†p⃗|0⟩ as the
state where there is one scalar particle with momentum p⃗ in the entire universe. The
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situation is the same for fermion fields. Note that the corresponding commutation
relations among a’s in other pictures also hold since commutators are ‘invariant’ as
we have seen.

The advantage of the interaction picture is that the operator fields carry the rapid
phase oscillations of the type e−ip·x which do not change the physical quantities such
as particle type, energies and momenta, spins, etc., and the states evolve much slower
representing changes in physical contents. For the rest of the chapter, we will stay in
the interaction picture and drop the subscript I. The differential equation for states

˙|a⟩ = −ih(t)|a⟩ , (5.43)

can then be solved for a small h. Suppose we have an initial state |i⟩ at t = 0. Then,
the change in a small time dt is −ih(t)dt |i⟩, and as long as the sum total of change
is much smaller than |i⟩, it will linearly add up over some finite time T (even though
h itself in general oscillates rapidly covering many periods in the duration T ):

|a(T )⟩ ≈ |i⟩ − i
( ∫ T

0
h(t)dt

)
|i⟩ , (5.44)

Assuming that initial and final states are orthogonal and normalized as

⟨i|i⟩ = 1 , ⟨f |f⟩ = 1 , (5.45)

the amplitude to find a given state |f⟩ at time T is given by

⟨f |a(T )⟩ = −i⟨f |
∫ T

0
h(t)dt |i⟩ = −i

∫ T

0
dt
∫
d3x⟨f |Hint(x)|i⟩ , (5.46)

where we have used h(t) ≡
∫
d3xHint(x). This is the first order transition matrix

element. In order to find the answer to all orders, we have to proceed more system-
atically.

U and S operators
Each of the basis states of the Hilbert space at time t0, a

†
p⃗|0⟩, a

†
p⃗,s⃗b
†
p⃗ ′,s⃗ ′|0⟩ etc., will

evolve according to ˙|a⟩ = −ih|a⟩, and at a later time t they will become some linear
combinations of the original basis states with some complex coefficients. These sets
of coefficients form a gigantic matrix and define an operator which transforms any
state at time t0 to a state at a later time t:

|a(t)⟩ = U(t, t0)|a(t0)⟩ , (5.47)

which is sometimes called the evolution operator, or the U operator (or the U matrix).
Clearly, U(t0, t0) is the identity

U(t0, t0) = I . (5.48)
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Substituting |a(t)⟩ = U(t, t0)|a(t0)⟩ in ˙|a⟩ = −ih|a⟩,

U̇(t, t0)|a(t0)⟩ = −ihU(t, t0)|a(t0)⟩ . (5.49)

Since this holds for any state |a(t0)⟩, we have an operator equation for U(t, t0):

U̇(t, t0) = −ihU(t, t0) . (5.50)

At t0, U(t0, t0) = I is obviously unitary: U †(t0, t0)U(t0, t0) = 1. Taking the hermitian
conjugate of above, and using h† = h

U̇ † = iU †h† = iU †h . (5.51)

Then, U †U is seen to be constant of motion:

d

dt
(U †U) = U̇ †︸︷︷︸

iU †h

U + U † U̇︸︷︷︸
−ihU

= 0 . (5.52)

Thus, U †U = 1 at any time; namely, U(t, t0) is always unitary.
The S operator (or S matrix) is defined by taking the limit t0 → −∞ and t→∞:

S
def≡ lim

t0→−∞
t→∞

U(t, t0) ; (5.53)

namely, it evolves the ‘initial states’ to the ‘final states’. By ‘infinite time’, we ac-
tually mean some time duration T long enough to cover many oscillations of fields.
In fact, we will later find that transition probabilities calculated perturbatively are
proportional to T , and if T is truly taken to be infinity, the transition probabilities
will diverge or linear approximation will break down.

Now, since U is unitary, so is S:

S†S = I . (5.54)

As an initial state |i⟩ will evolve to S|i⟩ at t = ∞, the transition amplitude i → f
is given by ⟨f |S|i⟩ and the probability to find the final state in |f⟩ is then |⟨f |S|i⟩|2.
The unitarity of S then reads

⟨i| × S†︷ ︸︸ ︷∑
f

|f⟩⟨f |

S = I × |i⟩ →
∑
f

|⟨f |S|i⟩|2 = 1 , (5.55)

where the sum is over all possible final states that are assumed to form a complete
orthonormal set. Thus, the unitarity of S means that probability is conserved.
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The next step is to solve the differential equation U̇(t, t0) = −ihU(t, t0) for a given
interaction h. Our goal is to express U , and thus S, as a perturbation series in powers
of h. In doing so, we have to be careful about the operator nature of h. Recall the
definition of differentiation and integration of a matrix function:

dA(t)

dt
≡ A(t+ dt)− A(t)

dt
, (5.56)

and ∫ t1

t0
dtA(t) ≡

N∑
n=1

A(t0 + ndt)dt (t1 − t0 ≡ Ndt) . (5.57)

Strictly following these definitions, we see that

d

dt

∫ t

t0
dt′A(t′) ≡ 1

dt

( ∫ t+dt

t0
dt′A(t′)−

∫ t

t0
dt′A(t′)

)
[by (5.57) ] =

1

dt
A(t)dt = A(t) ;

→ d

dt

∫ t

t0
dt′A(t′) = A(t) . (5.58)

Then, if in general
d

dt
eA(t) = Ȧ(t)eA(t) (?) , (5.59)

the solution of U̇ = −ihU would be given by

U(t, t0) = e
−i
∫ t

t0
dt′h(t′)

, (5.60)

as can be readily verified using (5.58). The relation (5.59), however, does not hold
unless [A, Ȧ] = 0 : ( d

dt
eA(t)

)
dt = eA(t+dt)︸ ︷︷ ︸

e(A(t)+Ȧ(t)dt) by (5.56)

−eA(t)

(if [A, Ȧ] = 0 ) = eA(t)eȦ(t)dt − eA(t) [ used (1.108) ]

= eA(t)
(
eȦ(t)dt − 1︸ ︷︷ ︸
Ȧ(t)dt

)

= Ȧ(t)eA(t)dt . (5.61)

Earlier, we have used (∂/∂x)exA = AexA for a constant operator A which is consistent
with the above observation since

[xA,
d

dx
(xA)] = [xA,A] = 0 . (5.62)
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In general, however, the condition is not satisfied as can be seen in [ϕ(t, x⃗), ϕ̇(t, x⃗ ′)] ̸=
0. We will now show by direct substitution that the solution is given by

U(t, t0) = 1 + (−i)
∫ t

t0
dt1h(t1) + . . .

+ (−i)n
∫ t

t0
dt1

∫ t1

t0
dt2 · · ·

∫ tn−1

t0
dtn h(t1)h(t2) · · ·h(tn) + . . . (5.63)

Taking the time derivative of the above and using (5.58),

U̇(t, t0) = (−i)h(t) + . . .+ (−i)n
∫ t

t0
dt2 · · ·

∫ tn−1

t0
dtn h(t)h(t2) · · ·h(tn) + . . . (5.64)

Taking h(t) in the integrand out in front and relabeling (ti → ti−1),

U̇(t, t0) = −ih(t)
(
1 + . . .+ (−i)n−1

∫ t

t0
dt1 · · ·

∫ tn−2

t0
dtn−1 h(t1) · · ·h(tn−1) + . . .

)
= −ihU(t, t0) , (5.65)

which shows that the series (5.63) is indeed a solution of U̇ = −ihU .
It will be convenient later if we express the solution using the same integration

range (t0, t) for all integrals. To do so, we note

In
def≡

t∫
t0

dt1

t1∫
t0

dt2 · · ·
tn−1∫
t0

dtn h(t1) · · ·h(tn) =
∫

Vn(t1>···>tn)

dt1 · · · dtn h(t1) · · ·h(tn) , (5.66)

where Vn is the n-dimensional cube defined by t0 < ti < t (i = 1, . . . , n), and the
integration range Vn(t1 > · · · > tn) is its sub-volume limited to (t1 > · · · > tn). Rela-
beling (t1, . . . , tn) → (ti1 , . . . , tin), where (i1, . . . , in) is any permutation of (1, . . . , n),

In =
∫

Vn(ti1>...>tin )

dti1 · · · dtin h(ti1) · · ·h(tin)

=
∫

Vn(ti1>...>tin )

dt1 · · · dtn T
(
h(t1) · · ·h(tn)

)
, (5.67)

where we have defined time-ordered product by reordering of operators in the descend-
ing order of times:

T
(
A1(t1) · · ·An(tn)

)
def≡ Ai1(ti1) · · ·Ain(tin) (ti1 ≥ · · · ≥ tin) , (5.68)

where Ai(t)’s could in general be different functions of time. For completeness, op-
erators with the same time are defined to keep the original order. This procedure
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is understood to be a simple re-ordering of operators that are functions of time as
they are written, and one should not redefine the functions before the time-ordering
is done. For example,

A(1.5)B(2.0) = A′(2.5)B(2.0) if A(t)
def≡ A′(t+ 1) , (5.69)

but
T (A(1.5)B(2.0)) = B(2.0)A(1.5) flips the ordering,

T (A′(2.5)B(2.0)) = A′(2.5)B(2.0) does not ,
(5.70)

and the results are in general different.
In the case at hand, we have Ai(t) = h(t) for all i. Noting that sum of the

regions Vn(ti1 > . . . > tin) with all possible permutations (n ! of them) is just Vn ,
and that for each permutation, In is expressed as (5.67) with the same integrand
T (A1(t1) · · ·An(tn)), we have

n !In =
∑
all

perm.

∫
Vn(ti1>...>tin )

dt1 · · · dtn T
(
h(t1) · · ·h(tn)

)

=
∫
Vn

dt1 · · · dtn T
(
h(t1) · · ·h(tn)

)
,

→ In =
1

n !

∫ t

t0
dt1 · · ·

∫ t

t0
dtn T

(
h(t1) · · ·h(tn)

)
. (5.71)

Thus, the solution (5.63) is now written as

U(t, t0) = 1 +
∞∑
n=1

(−i)n

n !

∫ t

t0
dt1 · · ·

∫ t

t0
dtn T

(
h(t1) · · ·h(tn)

)
. (5.72)

Let’s compare this with the ‘wrong’ solution (5.60) which can be expanded as

e
−i
∫ t

t0
h(t′)dt′

= 1 +
∞∑
n=1

(−i)n

n !

(∫ t

t0
h(t′)dt′

)n

= 1 +
∞∑
n=1

(−i)n

n !

∫ t

t0
dt1 · · ·

∫ t

t0
dtn h(t1) · · ·h(tn) . (5.73)

We see that the only difference is the time-ordering on each term.
The S matrix is then obtained by taking the limit t→∞ and t0 → −∞.

S = 1 +
∞∑
n=1

(−i)n

n !

∫ ∞
−∞
dt1 · · ·

∫ ∞
−∞
dtn T

(
h(t1) · · ·h(tn)

)
, (5.74)

which is known as the Dyson series. The advantage of such an expansion is that often
the interaction term is proportional to a small coupling constant and the higher-order
terms become progressively insignificant.
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Incidentally, the time-ordered product can be defined for cases where fermion fields
are included:

T (A1(t1) · · ·An(tn))
def≡ sPAi1(ti1) · · ·Ain(tin) (ti1 ≥ · · · ≥ tin) , (5.75)

where Ai(t) are time-dependent operators and sP is +1(−1) if the number of swaps of
fermion operators needed for the re-ordering is even (odd). With this definition, the
difference between before and after the time-ordering becomes a c-number as in the
case of normal ordering. In deriving the Dyson series, we needed sP = +1 in (5.67)
which is actually the case even if fermion fields are involved since fermion fields always
appear in pairs in the interaction term h.

5.3 Evaluation of the decay rate H → ff̄

Taking only the first-order term in the Dyson series,

S = −i
∞∫
−∞

dt h(t) = −i
∞∫
−∞

dt
∫
d3xHint , (5.76)

which is the same as the earlier result (5.46) if T is taken to be large (‘infinity’).
Assuming that there is no time derivatives in the interaction term, we have Hint =
−Lint (5.18), and

S = i
∫
d4xLint (first order) . (5.77)

In our case, Lint = λϕ ψ̄ψ (5.14), where normal ordering is implicit, and thus,

Sfi = ⟨f |S|i⟩ = iλ
∫
d4x ⟨f |ϕ ψ̄ψ|i⟩ . (5.78)

Let’s define the spins and 4-momenta of the particles involved as

H : P = (P 0, P⃗ ) , P 0 =

√
P⃗

2
+M2 ,

f : s⃗1 , p1 = (p01 , p⃗1) , p
0
1 =

√
p⃗ 2
1 +m2 ,

f̄ : s⃗2 , p2 = (p02 , p⃗2) , p
0
2 =

√
p⃗ 2
2 +m2 .

(5.79)

Then, the initial and final states are

|i⟩ = a†
P⃗
|0⟩ ,

|f⟩ = a†p⃗1,s⃗1b
†
p⃗2,s⃗2
|0⟩ ,

(5.80)



5.3. EVALUATION OF THE DECAY RATE H → FF̄ 217

where if annihilation or creation operators have only a momentum subscript, they are
understood to be for H, and if they have momentum and spin subscripts, then they
are for f or f̄ .

We will now use momentum expansions of fields to write the matrix element
Sfi in terms of creation and annihilation operators. Since Sfi is just a number, all
creation and annihilation operators should disappear in the end and we will be left
with numbers such as eP⃗ , f̄p⃗,s⃗, and gp⃗,s⃗. With momentum expansions, we have

⟨f |ϕ ψ̄ψ|i⟩ =

⟨f |︷ ︸︸ ︷
⟨0|bp⃗2,s⃗2ap⃗1,s⃗1

×

ϕ︷ ︸︸ ︷∑
q⃗

(aq⃗eq⃗ + a†q⃗e
∗
q⃗)

ψ̄︷ ︸︸ ︷∑
p⃗,s⃗

(a†p⃗,s⃗f̄p⃗,s⃗ + bp⃗,s⃗ḡp⃗,s⃗)

ψ︷ ︸︸ ︷∑
p⃗ ′,s⃗ ′

(ap⃗ ′,s⃗ ′fp⃗ ′,s⃗ ′ + b†p⃗ ′,s⃗ ′gp⃗ ′,s⃗ ′)

|i⟩︷ ︸︸ ︷
a†
P⃗
|0⟩ . (5.81)

There are many terms in ϕ ψ̄ψ, but there is only one term that survives - the term
with matching annihilation and creation operators that counter those in |i⟩ and ⟨f |.
First, all terms that contain a†q⃗ vanish since they commute with fermion operators

on their left and face the vacuum ⟨0|. Also, all terms with aq⃗ (q⃗ ̸= P⃗ ) vanish since
they commute with all operators on their right to face |0⟩, leaving aP⃗ eP⃗ as the only

term in ϕ that survives. Similarly, the only term that survives in ψ is b†p⃗2,s⃗2gp⃗2,s⃗2 and

the only term that survives in ψ̄ is a†p⃗1,s⃗1 f̄p⃗1,s⃗1 . One subtlety may be the vanishing of

terms with bp⃗,s⃗ in ψ̄ which need to go beyond b†p⃗ ′,s⃗ ′ of ψ to face |0⟩. Actually, bp⃗,s⃗’s are
already to the right of b†p⃗ ′,s⃗ ′’s because of the implicit normal ordering. Even if normal

ordering is not assumed, when bp⃗,s⃗ is moved past b†p⃗ ′,s⃗ ′ it leaves behind δp⃗,p⃗ ′δs⃗,s⃗ ′ and
such term vanishes anyway since the annihilation operator ap⃗1,s⃗1 in ⟨f | will face |0⟩
to the right.

We thus have

⟨f |ϕ ψ̄ψ|i⟩ = ⟨0|bp⃗2,s⃗2ap⃗1,s⃗1(aP⃗ eP⃗ )(a
†
p⃗1,s⃗1

f̄p⃗1,s⃗1)(b
†
p⃗2,s⃗2

gp⃗2,s⃗2)a
†
P⃗
|0⟩

= ⟨0|bp⃗2,s⃗2ap⃗1,s⃗1aP⃗ a
†
p⃗1,s⃗1

b†p⃗2,s⃗2a
†
P⃗
|0⟩︸ ︷︷ ︸

1 : norm of a†p⃗1,s⃗1b
†
p⃗2,s⃗2

a†
P⃗
|0⟩

eP⃗ (f̄p⃗1,s⃗1gp⃗2,s⃗2)

= eP⃗ (f̄p⃗1,s⃗1gp⃗2,s⃗2) , (5.82)

which is now explicitly just a number (a function of x). In the above, the fact
that the vacuum expectation value of the operators came out to be 1 and not −1
is a coincidence. If we had defined the final state as b†a†|0⟩ rather than a†b†|0⟩,
for example, it would have been −1. Such sign, however, is an overall sign of the
amplitude, and does not affect the rate of the interaction. When there are more than
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one terms that contribute to the interaction, one needs to pay attention to the relative
signs of the amplitudes.

The transition amplitude Sfi is then

Sfi = iλ
∫
d4x eP⃗ (x) f̄p⃗1,s⃗1(x)gp⃗2,s⃗2(x)

= iλ
∫
d4x

e−iP ·x√
2P 0V

ūp⃗1,s⃗1e
ip1·x√

2p01V

vp⃗2,s⃗2e
ip2·x√

2p02V

=
iλ ūp⃗1,s⃗1vp⃗2,s⃗2√

(2P 0V )(2p01V )(2p02V )

∫
d4x ei(p1+p2−P )·x︸ ︷︷ ︸

(2π)4δ4(p1 + p2 − P )

. (5.83)

The four-dimensional delta function arose from the phase terms of the normal-mode
functions, and indicates that the transition amplitude is zero unless the energy-
momentum conservation P = p1 + p2 is satisfied.

Let’s define the Lorentz-invariant matrix elementM by

Sfi ≡
(2π)4δ4

(
p1 + p2 − P

)
√
(2P 0V )(2p01V )(2p02V )

M , (5.84)

whereM is
M = iλ ūp⃗1,s⃗1vp⃗2,s⃗2 , (5.85)

which is a scalar bilinear covariant and thus Lorentz-invariant. The probability to
find the final state f is then the square of the amplitude:

|Sfi|2 =

[
(2π)4δ4(p1 + p2 − P )

]2
(2P 0V )(2p01V )(2p02V )

|M|2 . (5.86)

What is this square of the delta function? This oddity came about because we
pretended that we are integrating over infinite space and time even though we are
actually dealing with finite space V and finite time T . Thus, let’s recover the origin
of the delta functions (for one of the two δ’s) and write[

(2π)4δ4(p1 + p2 − P )
]2

= (2π)4δ4(p1 + p2 − P )
∫
T
dt
∫
V
d3x ei(p1+p2−P )·x︸ ︷︷ ︸

TV : (P = p1 + p2)

= TV (2π)4δ4(p1 + p2 − P ) , (5.87)

where the delta function allowed us to set P = p1 + p2 in the integrand. Thus, the
transition probability is

|Sfi|2 =
(2π)4δ4(p1 + p2 − P )TV
(2P 0V )(2p01V )(2p02V )

|M|2 . (5.88)
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This is the probability to find the final state with particular discrete momenta p⃗1 and
p⃗2.

What we usually need is the probability to find the final-state momenta in some
ranges d3p1 and d

3p2 which are small but still contain many discrete values of p⃗1 and
p⃗2, which should be equal to the corresponding decay rate dΓ times T . The number
of grid points in the volume d3p is d3p/dv where dv = (2π/L)3 = (2π)3/V is the
volume per grid point. Since the volume d3p is small, the transition probabilities in
that volume are essentially the same. Thus, the summation can be replaced by a
multiplication by the number of grid points:∑

p⃗i∈d3pi

→ V

(2π)3
d3pi (i = 1, 2) . (5.89)

The transition probability dΓT is then obtained by summing over all final states with
p⃗1 ∈ d3p1 and p⃗2 ∈ d3p2:

dΓT =
∑

p⃗1∈d3p1

∑
p⃗2∈d3p2

|Sfi|2

=
V

(2π)3
d3p1

V

(2π)3
d3p2

(2π)4δ4(p1 + p2 − P )V T
(2P 0V )(2p01V )(2p02V )

|M|2 ; (5.90)

namely, the decay rate is given by

dΓ =
(2π)4

2P 0
δ4(p1 + p2 − P )

d3p1
(2π)32p01

d3p2
(2π)32p02

|M|2 , (5.91)

or

dΓ =
(2π)4

2P 0
dΦ2|M|2 , (5.92)

with the 2-body Lorentz-invariant phase space dΦ2 defined as

dΦ2
def≡ δ4(p1 + p2 − P )

d3p1
(2π)32p01

d3p2
(2π)32p02

. (5.93)

In deriving this formula, we did not require that the mass of the two final-state
particles are the same; thus, it is valid for the case the masses are different, in which

case we have p0i ≡
√
p⃗2i +m2

i (i = 1, 2).
The total decay rate is obtained by integrating over all final states (‘phase space’):

Γ ≡ (2π)4

2P 0

∫
dΦ2|M|2. (5.94)

That dΦ2 is Lorentz-invariant can be seen by the identity (4.292). What do we mean
by the Lorentz-invariance of differential expressions? It means that if a Lorentz-
invariant function is integrated with the differential piece dΦ2, then the resulting
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quantity will have the same numerical value in any frame. Since M is Lorentz-
invariant, when integrated over all phase-space, the result

∫
dΦn|M|2 will be Lorentz-

invariant. Thus, the above expression for Γ indicates that the decay rate is inversely
proportional to the energy, which is just the time dilation effect due to boost.

We now perform the integration over the phase space in the rest frame of the
parent particle. Since H is spinless, there is no preferred spacial direction, and thus
the decay should be uniform over 4π steradians in the rest frame of H. Later, we will
indeed see that |M|2 does not depend on direction of p⃗1 or p⃗2 in the C.M. frame. Using
the identity (4.292), we can change d3p1 to d

4p1 and eliminate the 4-dimentional delta
function by integrating over p1. Keeping the two final state masses to be different
and denoting the integrand as X,

∫
dΦ2X =

∫
δ4(p1 + p2 − P )

d3p1
(2π)32p01︸ ︷︷ ︸

δ(p21 −m2
1)θ(p

0
1)
d4p1
(2π)3

by (4.292)

d3p2
(2π)32p02

X

=
∫
δ(p21 −m2

1)θ(p
0
1)

d3p2
(2π)62p02

X
∣∣∣
p1=P−p2

=
∫
δ((P − p2)2 −m2

1)θ(P
0 − p02)

d3p2
(2π)62p02

X

=
∫
δ((M2 +m2

2 − 2Mp02)−m2
1)θ(M − p02)

d3p2
(2π)62p02

X , (5.95)

where in the last step we have used P = (M, 0⃗). Since the integrand does not depend
on the direction of p⃗2, we can write

d3p2 = 4πp̆22 dp̆2 = 4πp̆2 p
0
2dp

0
2 (p̆2 ≡ |p⃗2|) , (5.96)

where we have denoted |p⃗| as p̆ in order to simplify the notation during the compu-
tation, and used

p02
2
= p̆22 +m2

2 → p02dp
0
2 = p̆2dp̆2 . (5.97)

We can then complete the integral using the property of the delta function (4.114):

∫
dΦ2X =

∫
δ(M2 +m2

2 − 2Mp02 −m2
1)︸ ︷︷ ︸

1

2M
δ
(
p02 −

M2 +m2
2 −m2

1

2M

)
by (4.114)

θ(M − p02)
4πp̆2 p

0
2dp

0
2

(2π)62p02︸ ︷︷ ︸
p̆2dp

0
2

(2π)5

X

=
p̆2

(2π)52M
X (5.98)
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where p̆2 =
√
p02

2 −m2
2 with p02 = (M2 +m2

2 −m2
1)/2M , and θ(M − p02) = +1 since

p02 as given is always smaller than M (the energy of the daughter particle is always
smaller than that of the parent). Thus, the total decay rate in the C.M. system for
a uniform decay is given by (with X = (2π)4|M|2/2P 0)

Γ =
|p⃗|

8πM2
|M|2 , (5.99)

where we have defined |p⃗1| = |p⃗2| ≡ |p⃗|.
We now move on to the evaluation of |M|2. Since we know the explicit forms

of u, v spinors, in principle we can calculate M = iλ ūp⃗1,s⃗1vp⃗2,s⃗2 for given momenta
and spins. There is, however, much quicker and also representation-independent way.
Suppose we are not measuring the spins of the final state. Then, decay rates to all
possible spin states (there are 4 of them for given p⃗1 and p⃗2) should be incoherently
summed:

Γ =
|p⃗|

8πM2

∑
s⃗1,s⃗2

|M|2 . (5.100)

As we will see, when the matrix element squared is summed over the spins, we obtain
a trace of certain 4 × 4 matrix in the spinor space which can be evaluated using
representation-independent techniques:∑

s⃗1,s⃗2

|M|2 = λ2
∑
s⃗1,s⃗2

(ūp⃗1,s⃗1vp⃗2,s⃗2)
∗︸ ︷︷ ︸

v̄p⃗2,s⃗2up⃗1,s⃗1

(ūp⃗1,s⃗1vp⃗2,s⃗2)

= λ2
∑
s⃗2

v̄p⃗2,s⃗2 (
∑
s⃗1

up⃗1,s⃗1ūp⃗1,s⃗1)︸ ︷︷ ︸
(p/1 +m)

vp⃗2,s⃗2

(write out components) = λ2
∑
s⃗2

(v̄p⃗2,s⃗2)n(p/1 +m)nm(vp⃗2,s⃗2)m

= λ2
∑
s⃗2

(vp⃗2,s⃗2)m(v̄p⃗2,s⃗2)n︸ ︷︷ ︸
(p/2 −m)mn

(p/1 +m)nm

= λ2
[
(p/2 −m)(p/1 +m)

]
mm

= λ2Tr
[
(p/2 −m)(p/1 +m)

]
. (5.101)

In general, the spin sum over the form ūp⃗,s⃗Mup⃗,s⃗ or v̄p⃗,s⃗Mvp⃗,s⃗, where M is any 4× 4
matrix, results in a trace: following the last four lines above with p/1 +m → M , we
obtain ∑

s⃗

ūp⃗,s⃗Mup⃗,s⃗ = Tr [(p/ +m)M ] ,∑
s⃗

v̄p⃗,s⃗Mvp⃗,s⃗ = Tr [(p/ −m)M ] .
(5.102)
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The expression (5.101) can be readily evaluated using the trace theorems (Exer-
cise 5.1). Since traces of an odd number of gamma matrices are zero,∑

s⃗1,s⃗2

|M|2 = λ2
[
Trp/2p/1︸ ︷︷ ︸
4p2 · p1

−m2TrI︸︷︷︸
4

]

= 4λ2(p2 · p1 −m2) . (5.103)

In the Higgs C.M. frame, we have p1 ≡ (E, p⃗) and p2 = (E,−p⃗); thus,

p2 · p1 −m2 = E2 + p⃗ 2 −m2 = 2p⃗ 2 . (5.104)

Then, using this in (5.100), we finally obtain

Γ =
λ2|p⃗ |3

πM2
. (5.105)

We can now evaluate the actual decay rate of the Higgs decay to a bottom quark
and its antiquark. The mass of bottom quark mb is approximately 4.5 GeV while the
Higgs mass is measured to be 126 GeV. Then the momentum of the bottom quark
|p⃗| is ∼ 62.8 GeV/c. In the standard model, the coupling constant λ is given by

λ =
gmb

2mW

, (5.106)

where g ∼ 0.65 is a universal coupling constant of the standard model and mW ∼ 80
GeV is the W boson mass. The numerical value of λ is thus ∼ 0.018. There is
one more complication; namely, quarks come in three colors, and each one is created
with the same decay rate (5.105) thus increasing the rate by factor three. Putting all
together, the decay rate H → bb̄ would be

Γ(H → bb̄) =
3λ2|p⃗ |3

πM2
∼ 5.0MeV . (5.107)

Let’s reflect upon the procedures we just followed. We started from the first-
order expression of the S operator and sandwiched it between the initial and final
states which led to a space-time integral of ⟨f |Lint|i⟩. When momentum expansions
were used for the fields appearing in Lint, only the term that contained the creation
and annihilation operators that exactly matched those of the initial and final states
survived. In short, the interaction term had to annihilate the particles in the initial
state and create the particles in the final state. More specifically, for the creation
operator of the initial state a†

P⃗
, the term had to contain the annihilation operator

aP⃗ and the associated normal-mode function eP⃗ (x) survived into Sfi. Similarly, the
fermion (antifermion) in the final state came with the annihilation operator ap⃗1,s⃗1
(bp⃗2,s⃗2) and the surviving term in the interaction had to contain the matching creation
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operator a†p⃗1,s⃗1 (b†p⃗2,s⃗2) which contributed the normal-mode function f̄p⃗1,s⃗1 (gp⃗2,s⃗2) to
Sfi.

These contributions of the initial and final state particles to Sfi are valid for a
general transition from an arbitrary number of initial state particles to an arbitrary
number of final state particles. We did assume that the creation operators a†p⃗,s⃗ of

fermion and the annihilation operators bp⃗,s⃗ of antifermion appear in the form ψ̄ (and
not as ψ† which can be written as ψ̄γ0 in any case) as is the case for any bilinear
covariant. These can be readily extended to scalars in the final state and fermions
and antifermions in the initial state. Thus, the contributions to Sfi from the initial
and final states are:

ep⃗(x) for a scalar in |i⟩ (ap⃗ ep⃗(x) to match a†p⃗|0⟩ .)
e∗p⃗(x) for a scalar in |f⟩ (a†p⃗ e

∗
p⃗(x) to match ⟨0|ap⃗ .)

fp⃗,s⃗(x) for a fermion in |i⟩ (ap⃗,s⃗ fp⃗,s⃗(x) to match a†p⃗,s⃗|0⟩ .)
f̄p⃗,s⃗(x) for a fermion in |f⟩ (a†p⃗,s⃗ f̄p⃗,s⃗(x) to match ⟨0|ap⃗,s⃗ .)

ḡp⃗,s⃗(x) for an antifermion in |i⟩ (bp⃗,s⃗ ḡp⃗,s⃗(x) to match b†p⃗,s⃗|0⟩ .)
gp⃗,s⃗(x) for an antifermion in |f⟩ (b†p⃗,s⃗ gp⃗,s⃗(x) to match ⟨0|bp⃗,s⃗ .)

(5.108)

In this list, we note that annilation operators, namely the particles in the initial state,
are always associted with a positive energy oscillation e−ip·x, and creation operators,
namely the particles in the final state, are always associated with a negative energy os-
cillation eip·x, regardless of the type of particle. Thus, if the initial state momenta are
pi(i = 1, . . . ,m) and the final state momenta are pf (f = 1, . . . , n), upon integration
over space-time, we will have a delta function corresponding to energy-momentum
conservation (2π)4δ4(

∑
i pi −

∑
f pf ). In a general transition pi(i = 1, . . . ,m) to

pf (f = 1, . . . , n), the delta function for the energy momentum conservation and the
normalization factors 1/

√
2p0V can be separated out in Sfi and the rest defined as

the Lorentz-invariant matrix elementM:

Sfi ≡
(2π)4δ4

(∑
i pi −

∑
f pf

)
√∏

i(2p
0
iV )

∏
f (2p

0
fV )

M . (5.109)

As we will see later, this form holds also when spin-1 particles are involved.
The contributions of the inital and final state particles to the Lorentz-invariant

matrix element are then

initial state final state

scalar 1 1

fermion up⃗,s⃗ ūp⃗,s⃗
antifermion v̄p⃗,s⃗ vp⃗,s⃗

(5.110)
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For a n-body decay P → p1, . . . , pn with massesM → m1, . . . ,mn, the same procedure
as in the case of 2-body decay can be followed to obtain

dΓ =
(2π)4

2P 0
dΦn|M|2

dΦn
def≡ δ4(

∑
f

pf − P )
∏
f

d3pf
(2π)32p0f

(5.111)

where dΦn is the Lorentz-invariant n-body phase space and p0i is a function of p⃗i as

usual: p0i ≡
√
p⃗ 2
i +m2

i (i = 1, . . . , n).

In the case of the decay H → ff̄ , the u, v spinors are combined following the form
of the interaction Lagrangian L = λϕψ̄ψ with the constant vertex factor given by i
(which came from the Dyson series) times whatever the coupling constant is in L.
This can be graphically written as below, and one can immediately write down the
Lorentz-invariant matrix element:

f
−

Η
iλ

f

_
up s

1 1 

v

2
p s

2

M = iλ ūp⃗1,s⃗1vp⃗2,s⃗2 . (5.112)

The rules (5.110) together with the vertex factor are part of the calculational rules
called the Feynman rules, and the diagram is called the Feynman diagram. In the
diagram above, time flows from left to right, but this rule is not strictly followed.

Often the arrow of antifermion is reversed as in the figure above to emphasize that
the spinor combination ūp⃗1,s⃗1vs⃗2,s⃗2 forms a bilinear covariant (or a general ‘current’).
In the framework of the non-quantized hole theory, one may interpret that the reversal
of the arrow arises because an antifermion corresponds to a negative-energy fermion
with momentum and spin that are opposite to those of the physical anti-fermion. In
our framework of quantum fields, however, there is no need to resort to such negative
energy states. The fermion and antifermion in the final state naturally formed a
bilinear covariant because, in the momentum expansion of fields, creation operators
of a fermion were associated with ū spinors and the creation operators of antifermion
with v spinors.

Exercise 5.1 Traces of gamma matrices.
Let’s prove some of the most often used relations in actual calculation of rates. These
traces show up when spin average is taken for fermions. Do NOT rely on any specific
representation of γ matrices.
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(a) Prove that
Tr1 = 4 , Tr(a/b/) = 4a · b . (5.113)

(b) Prove the following trace relation that reduces number of γ matrixes in traces by
two:

Tr(a/1a/2 · · · a/2n) =
2n∑
i=2

(−1)ia1 · aiTr(a/2 · · · a/ i−1a/ i+1 · · · a/2n)

= a1 · a2Tr(a/3a/4 · · · a/2n)− a1 · a3Tr(a/2a/4 · · · a/2n)
+ · · ·+ a1 · a2nTr(a/2a/3 · · · a/2n−1) . (5.114)

(hint: Take the γ matrix on a1 and shift it all the way over to the right using the
anticommutation relation.)
(c) Using the result of (b) to show that

Tr(a/b/c/d/) = 4
[
(a · b)(c · d)− (a · c)(b · d) + (a · d)(b · c)

]
, (5.115)

or equivalently
Tr(γµγνγαγβ) = 4(gµνgαβ − gµαgνβ + gµβgνα) . (5.116)

(d) Prove that the trace of a product of odd number of γ matrices (γµ;µ = 0, 1, 2, 3)
is zero including the case of single γ matrix:

Tr(γµ1 . . . γµ2n+1) = 0 (n = 0, 1, 2 . . .) . (5.117)

This means that
Tr(a/1 · · · a/2n+1) = 0 (n = 0, 1, 2 . . .) . (5.118)

(hint: Multiply γ5
2 = 1 at the end of the trace, and move one γ5 to the left hand

most in two ways: one using Tr(AB) = Tr(BA) and the other by shifting it using
anticommutation rule of γ matrices.)
(e) Furthermore show that

Trγ5 = 0 , Tr(a/b/γ5) = 0 . (5.119)

(f) Prove that
Tr(γ5γ

αγβγγγδ) = 4i ϵαβγδ . (5.120)

(hint: note that Tr(γ25) = Tr1 = 4. Replace one of the γ5’s by iγ
0γ1γ2γ3.)

(g) And finally,

Tr(γµ1γµ2 . . . γµ2n) = Tr(γµ2n . . . γµ2γµ1) (reverse order) . (5.121)
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Exercise 5.2 More on γ matrixes.
Prove the following relations:

γµγµ = 4

γµγαγµ = −2γα

γµγαγβγµ = 4gαβ

γµγαγβγδγµ = −2γδγβγα . (5.122)

[comment: These relations lead to

γµa/γµ = −2a/
γµa/b/γµ = 4a · b
γµa/b/c/γµ = −2c/b/a/ . (5.123)

Note that the index µ is summed in all of the above.]

5.4 Muon decay

The muon decay µ− → νµe
−ν̄e, which proceeds with essentially 100% branching

fraction, is an example of weak interaction which is mediated by W and Z vector
bosons. All particles appearing in the initial and final states are fermions: µ− is
a charged fermion of mass m = 0.106 GeV, and νµ and ν̄e are the muon nutrino
and electron antineutrino both assumed to be massless. The mass of the electron
(∼ 0.0005 GeV) is much smaller than that of the muon, and thus we will ignore the
electron mass in the following calculation. For now we will assume that the interaction
Lagrangian is given by

Lint =
GF√
2

(
ψ̄νµγα(1− γ5)ψµ

)(
ψ̄eγ

α(1− γ5)ψνe

)
+ h.c. (5.124)

where ψµ is the muon field, ψe is the electron field, ψνµ and ψνe are the neutrino
fields. The Lorentz index α is contracted. This form was first suggested by Fermi,
and the constant GF is called the Fermi coupling constant. Since dim (L) = E4

and dim (ψ) = E3/2 (see p205), the dimension of the coupling constant should be
dim (GF ) = E−2. This is actually a low-energy approximation of a more fundamental
interaction involving W vector boson that we will study later. In fact, we will find
that the Fermi coupling constant is given by

GF =
g2

4
√
2m2

W

, (5.125)
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where g is the dimensionless universal coupling constant and mW is the W boson
mass, the same quantities we have seen in (5.106). Here, we will take the measured
muon lifetime as an input and extract the value of GF .

We could simply apply the Feynman rules (5.110), but let us review the derivation
from the first principles. The first-order Sfi is given by

µ

(   )

(   )

(   )

(   )p

p'

q

q'

e

ν

ν

_
e

µ

m

Sfi = i
GF√
2

∫
d4x ⟨f | ψ̄νµγα(1− γ5)ψµ

× ψ̄eγ
α(1− γ5)ψνe |i⟩ .

(5.126)

We did not use the hermitian-conjugate part of (5.124) since, as we will see, the term
we took contains all the operators needed to annihilate the iniital state and create the
final state; the hermitian-conjugate part would be responsible for the decay of µ+.
Upon momentum-expanding the fields, only the term that annihilates the initial-state
muon and creates the final-state particles will survive. The integration over x will
give the delta-function for the energy-momentum conservation, and we obtain

Sfi =
(2π)4δ4(p′ + q + q′ − p)√

(2p0V )(2p′0V )(2q0V )(2q′0V )
M (5.127)

with

M = i
GF√
2
(uνµγα(1− γ5)uµ)(ueγα(1− γ5)vνe), (5.128)

which could also be directly obtained from the Feynman rules where it is understood
that the u, v spinors are combined with the γ matrices to form currents corresponding
to those in Lint.

Summing over all final states with p⃗ ′ ∈ d3p′, q⃗ ∈ d3q, and q⃗ ′ ∈ d3q′, the corre-
sponding decay rate is [see (5.111)]

dΓ =
(2π)4

2p0
dΦ3|M|2 (5.129)

where the Lorentz-invariant 3-body phase space is given by

dΦ3 ≡ δ4(p′ + q + q′ − p) d3p′

(2π)32p′0
d3q

(2π)32q0
d3q′

(2π)32q′0
. (5.130)

Assuming that the parent particle is unpolarized, the 3-body phase space can be
integrated over all variables except for E1 and E2, which are the energies of any two
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of the three final-state particles in the C.M. frame of the parent, to obtain (left as an
exercise)

dΦ3 =
dE1dE2

4(2π)7
, (5.131)

which, together with (5.129), gives the differential decay rate in the C.M frame:

dΓ =
dE1dE2

64π3m
|M|2 (3-body, parent unpolarized) (5.132)

where m is the mass of the parent (p0 = m in the C.M. frame). This formula gives
the decay rate into an area element dE1dE2 where E1 and E2 are the energies of any
two of the three daughters. The probability density of the decay in the 2-dimensional
space of E1 vs E2 is proportional to |M|2, and such density plot, called the Dalitz
plot, provides a powerful tool to study the decay matrix element.

Exercise 5.3 Three-body phase space.

(a) Take the expression of the 3-body Lorentz-invariant phase space (5.130) and show
that it reduces to (5.131) when evaluated in the C.M. system (Ei ≡ p0i ). The particles
1,2,3 have masses m1,m2,m3 and 4-momenta p1, p2, p3, respectively. Assume that
the parent particle is spinless (or unpolarized ) thus there is no special direction in the
C.M. frame; namely, the matrix element does not depend on the direction of the first
particle you pick. The matrix element, however, is in general a function of the angle
between 1 and 2 among other variables. [hint: Namely, you can set d3p1 = 4πp̆21dp̆, but
then, you cannot do the same for p⃗2; it should be d3p2 = 2πp̆22dp̆2d cos θ12 (p̆i ≡ |p⃗i|).]
(b) Show that invariant masses of 2,3 and that of 3,1 are linearly related to E1 and
E2 by

E1 =
M2 +m2

1 − S23

2M
, E2 =

M2 +m2
2 − S31

2M
,

where Sij = (pi+pj)
2 and M is the mass of the parent particle (or the invariant mass

of the entire system in the case of scattering). Then rewrite dΦ3 in terms of S23 and
S31. Since S23 and S31 are Lorentz-invariant quantities, the resulting expression is
valid in any frame. [hint: Energy-momentum conservation gives P − p1 = p12 with
p12 = p1 + p2. Square both sides and use P = (M, 0⃗).]

The Lorentz-invariant matrix element given in (5.128) is for specific spin polar-
izations of the initial- and final-state particles. In calculating the decay rate, we sum
|M|2 over all possible spins in the final state. Also, we assume that the parent is
unpolarized, and thus we take the average over two possible spin states of the parent.
Namely, we sum up all the spins of all initial and final state particles and then divide
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by two. The result is the ‘spin-averaged’ matrix element squared - denoted as |M|2:

|M|2 =
1

2

∑
spins

|M|2

=
1

2

G2
F

2

∑
spins

(uνµγα(1− γ5)uµ)∗(ueγα(1− γ5)vνe)∗

× (uνµγβ(1− γ5)uµ)(ueγβ(1− γ5)vνe)

=
G2

F

4

∑
µ,νµ
spins

(uνµγα(1− γ5)uµ)∗(uνµγβ(1− γ5)uµ)

×
∑
e,νe
spins

(ueγ
α(1− γ5)vνe)∗(ueγβ(1− γ5)vνe) . (5.133)

Noting that γα(1− γ5) is self-adjoint:

γα(1− γ5) = (1− γ5︸︷︷︸
−γ5

) γα︸︷︷︸
γα

= (1 + γ5)γ
α = γα(1− γ5) , (5.134)

and using the spin-sum formulas
∑

spin uνµuνµ = p/ ′ +
/\
mνµ (mνµ = 0) etc. as well as

(5.102), the spin average leads to traces:

|M|2 =
G2

F

4

∑
µ,νµ
spins

uµγα(1− γ5)uνµuνµ︸ ︷︷ ︸
→ p/ ′

γβ(1− γ5)uµ

×
∑
e,νe
spins

vνeγ
α(1− γ5) ueue︸ ︷︷ ︸

→ q/

γβ(1− γ5)vνe

=
G2

F

4
Tr (p/ +m)γα(1− γ5)p/ ′γβ(1− γ5)

×Tr q/ ′γα(1− γ5)q/γβ(1− γ5) (5.135)

Since γ5 = iγ0γ1γ2γ3 contains four γµ’s, the term linear inm in the first trace vanishes
becuase of the odd number of γµ’s in the trace. Noting that γ5 commutes with p/ ′γβ,
we have

Tr (p/ +
/\
m)γα (1− γ5)p/ ′γβ︸ ︷︷ ︸

p/ ′γβ(1− γ5)

(1− γ5) = Trp/γαp/
′γβ (1− γ5)2︸ ︷︷ ︸

2(1− γ5)

. (5.136)

Similarly,

Tr q/γα(1− γ5)q/ ′γβ(1− γ5) = 2Trq/ ′γαq/γβ(1− γ5) . (5.137)
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Thus,
|M|2 = G2

FTrp/γαp/
′γβ(1− γ5)× Trq/ ′γαq/γβ(1− γ5) . (5.138)

Using the trace theorems

Trγµγαγνγβ = 4(gµαgνβ − gµνgαβ + gµβgνα) (5.139)

Trγ5γµγαγνγβ = 4iϵµανβ , (5.140)

we have

Trp/γαp/
′γβ(1− γ5)
= pµp′ν(Trγµγαγνγβ − Trγ5γµγαγνγβ)

= 4pµp′ν(gµαgνβ − gµνgαβ + gµβgνα − iϵµανβ) . (5.141)

Applying the same procedure to the second trace also, we obtain

Trp/γαp/
′γβ(1− γ5) = 4(pαp

′
β − p · p′gαβ + pβp

′
α − ipµp′νϵµανβ) (5.142)

Trq/ ′γαq/γβ(1− γ5) = 4(q′αqβ − q′ · q gαβ + q′βqα − iq′ρqσϵρασβ) . (5.143)

In each of the traces, the first three terms are symmetric under the exchange α↔ β
while the last term is antisymmetric. Thus, when we take the product of the two
traces, the cross terms between symmetric and antisymmetric terms vanish; thus,

|M|2 = 16G2
F

[
(pαp

′
β − p · p′gαβ + pβp

′
α)(q

′αqβ − q′ · q gαβ + q′βqα)

−pµp′νq′ρqσϵµανβϵρασβ
]
. (5.144)

The first term is[
(pαp

′
β + pβp

′
α)− p · p′gαβ

][
(q′αqβ + q′βqα)− q′ · q gαβ]

= (pαp
′
β + pβp

′
α)(q

′αqβ + q′βqα)︸ ︷︷ ︸
2p · q′ p′ · q + 2p · q p′ · q′

− �
��Z
ZZ4p · p′ q′ · q + �

��Z
ZZp · p′ q′ · q gαβgαβ︸ ︷︷ ︸

4

= 2(p · q′ p′ · q + p · q p′ · q′) , (5.145)

while the second term uses an identity for a product of two ϵµναβ’s:

−pµp′νq′ρqσ ϵµανβϵρασβ︸ ︷︷ ︸
ϵµναβϵ

ρσαβ= −2(gρµgσν − gσµgρν)

= 2(p · q′ p′ · q − p · q p′ · q′) . (5.146)

Finally, we obtain
|M|2 = 64G2

F p · q′ p′ · q . (5.147)
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Using 4-momentum conservation p = p′ + q + q′, we can relate p′ · q and p · q′:

(p− q′)2 = (p′ + q)2 → p2︸︷︷︸
m2

+ q′2︸︷︷︸
0

−2p · q′ = p′2︸︷︷︸
0

+ q2︸︷︷︸
0

+2p′ · q

→ p′ · q = m2

2
− p · q′ . (5.148)

In the C.M. frame of the parent, we have

p = (m, 0⃗ ) → p · q′ = mEν̄e (C.M. frame) ; (5.149)

thus, the spin-averaged |M|2 can be written as

|M|2 = 64G2
F mEν̄e

(m2

2
−mEν̄e

)
. (5.150)

We can now use the 3-body decay rate formula (5.132) to obtain the differential
decay rate. The formula is valid for any two energies, E1 and E2, of the final state
as long as the parent is unpolarized. It is reassuring that indeed the expression of
|M|2 obtained above does not depend on spacial direction: it depends only on the
energy of the electron antineutrino. It is then natural to take it as one of the energies:
E1 = Eν̄e . What shall we take for the other energy? Actually, it does not matter;
we could take E2 = Eνµ or E2 = Ee and both should give the correct distribution.
This means that e− and νµ have exactly the same energy distribution (in the limit of
me = 0). Let’s take E2 = Ee. Then, we obtain

dΓ =
G2

Fm

π3
Eν̄e

(m
2
− Eν̄e

)
dEν̄edEe . (5.151)

When a particle of massm at rest decays to three massless particles, the maximum
energy of any of the daughters is m/2, which can be seen as follows: first, p =
p1 + p2 + p3 gives

(p− p1)2︸ ︷︷ ︸
m2 − 2mE1

= (p2 + p3)
2 ≡ s23 → E1 =

m2 − s23
2m

, (5.152)

where the invariant mass squared of the particle 2 and 3, s23, is given by

s23 = p22 + p23︸ ︷︷ ︸
0

+2p2p3 = 2E2E3(1− cos θ23) . (5.153)

Namely, the energy of a given daughter (E1) is larger when the invariant mass squared
of the system recoiling against it (s23) is smaller, and s23 is minimum, in fact zero,



232 CHAPTER 5. INTERACTING FIELDS

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x[ν e]

x[e]

Allowed region

0 0.2 0.4 0.6 0.8 1
x

0

0.5

1

1.5

2

Figure 5.2: The probability density distribution (the Dalitz plot) of the decay µ− →
νµe
−ν̄e. The density is proportional to the decay probability. The kinematically

allowed region is xν̄e + xe ≥ 1. The plot on the right shows the projections of the
allowed region on to xν̄e (solid line) and xe (dashed line).

when the angle between the particles 2 and 3 is zero regardless of E2 and E3. Setting
s23 = 0 in (5.152) the maximum energy is E1 = m/2. Define the dimensionless
parameters xi (i = ν̄e, e, νµ) by

Ei ≡
m

2
xi , 0 ≤ xi ≤ 1 (i = ν̄e, e, νµ) . (5.154)

Then, the decay rate is written as

dΓ =
G2

Fm
5

16π3
xν̄e(1− xν̄e)dxν̄edxe , (5.155)

which gives the probability distribution in the plane of xν̄e vs xe (Figure 5.2).
Not all points in 0 ≤ xν̄e ≤ 1 and 0 ≤ xe ≤ 1 are kinematically allowed. When

xν̄e = xe = 0, for example, all energy has to be carried by νµ to conserve energy,
but it cannot have any energy without violating momentum conservation. Energy
conservation gives the allowed region:

Eν̄e + Ee + Eνµ = m → xν̄e + xe + xνµ = 2 ,

→ xν̄e + xe = 2− xνµ︸︷︷︸
≤ 1

→ xν̄e + xe ≥ 1 (5.156)

which is shown in Figure 5.2. Taking only the allowed region, and projecting it on to
xν̄e and xe axes, we obtain the energy distributions for ν̄e and e

−, respectively. Since
νµ should have the same energy distribution as e− as discussed earlier, we see that
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fermions (e− and νµ) have a distribution that peaks at the maximum energy, and the
antifermion (ν̄e) has a distribution that peaks near the center. If the parent is an
antifermion, the distributions of fermions and antifermions will be reversed.

The total decay rate is obtained by integrating (5.155) inside the allowed region.
Figure 5.2 shows that the integral in the the allowed region is the same as that in the
non-allowed region; thus,

Γ =
∫

xν̄e+xe>1

dΓ =
∫

xν̄e+xe<1

dΓ =
1

2

∫
dΓ

=
G2

Fm
5

32π3

∫ 1

0
dxe︸ ︷︷ ︸
1

∫ 1

0
dxν̄exν̄e(1− xν̄e)︸ ︷︷ ︸

1/6

; (5.157)

thus, the total decay rate is

Γ(µ− → νµe
−ν̄e) =

G2
Fm

5

192π3
. (5.158)

The experimental lifetime τµ can be converted to the decay rate:

τµ = 2.20× 10−6 (sec)

→ Γ =
h̄

τµ
=

6.5822× 10−25 (GeV·sec)
2.20× 10−6 (sec)

= 2.99× 10−19 (GeV) . (5.159)

Together with m = 0.106 GeV, we then obtain GF = 1.15 × 10−5 GeV−2. In order
to obtain a more accurate value, one needs to include higher-order processes where
photons are emitted from or absorbed by charged particles. The correction amounts
to a 0.42% reduction in the theoretical decay rate. The most up-to-date value is

GF = 1.16639(2)× 10−5 (GeV−2) . (5.160)

Spin polarizations
The interaction (5.124) is a product of two currents each of which has the form a
vector current minus an axial vector current:

ψ̄′γα(1− γ5)ψ = ψ̄′γαψ︸ ︷︷ ︸
V

− ψ̄′γαγ5ψ︸ ︷︷ ︸
A

. (5.161)

This V −A form of the interaction and the resulting Lorentz-invariant matrix element
(5.128) tells us how the final-state particles are polarized. Let’s writeM as

M∝ (uνµγαPLuµ)(ueγ
αPLvνe) , (5.162)
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where PL ≡ (1 − γ5)/2 was defined in (3.370), where we have seen that PL (PR)
acts as the helicity − (+) projection operator for fermions and as the helicity + (−)
projection operator for antifermions in the massless limit or, equivalently, in the high-
energy limit.

Suppose the spinor vνe represents an antineutrino with negative helicity. Since PR

acts as the negative helicity projection operator for antifermions, vνe should satisfy

vνe = PR vνe (ν̄e helicity −), (5.163)

thenM vanishes due to PLPR = 0 (3.352):

(ueγ
αPL vνe︸︷︷︸

PR vνe

) = (ueγ
α PLPR︸ ︷︷ ︸

0

vνe) = 0 . (5.164)

This means that ν̄e cannot be created with negative helicity. Since the spin of ν̄e
should be either helicity + or−, the vanishing amplitude for negative helicity indicates
that ν̄e in the muon decay is in a pure helicity + state. Now, suppose the spinor ue
represents an electron with positive helicity. Then, to the extent we can ignore the
mass of electron,

ue = PR ue (e− helicity +). (5.165)

Then, using ūe = PRue = ūePR = ūePL and PLγ
α = γαPR, we see thatM vanishes

again:

( ue︸︷︷︸
ūePL

γαPLvνe) = (ue PLγ
αPL︸ ︷︷ ︸

γαPRPL = 0

vνe) = 0 . (5.166)

Namely, the electron is created with negative helicity. Similarly, we see that the muon
neutrino is purely left-handed. Thus, a massless fermion created by a V −A current
is always left-handed (i.e. negative helicity), and a massless antifermion created by a
V − A current is always right-handed (i.e. positive helicity).

One can use the helicity projection operator to calculate the decay rate where a
given (massless) fermion has particular helicity. As an example, let’s take the Higgs
decay H → ff̄ where the mass of the fermion is small compared to its momentum,
and calculate the decay rate where the antifermion, represented by v2 ≡ vp⃗2,s⃗2 , is
left-handed. We can still take advantage of the trace technique in the following way:
First, assume that the spin quantization axis is taken as s⃗ = p̂ such that the two
possible polarizations correspond to positive and negative helicities. In evaluating
the spin sum of |M|2 = λ2|ū1v2|2 in (5.101), we can place PR in front of v2 and then
sum over the spins of f and f̄ . Then the matrix element should vanish unless the v2
represents a left-handed antifermion, and the resulting decay rate should correspond
to the case where the antifermion is left-handed. With u1 ≡ up⃗1,s⃗1 and ignoring the
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fermion mass, we have∑
spins

|M|2 (f̄ left-handed)

= λ2
∑
spins

|ū1PR v2|2 = λ2
∑
spins

v̄2PL u1ū1︸ ︷︷ ︸
→ p/1

PR v2

= λ2Trp/2 PLp/1︸ ︷︷ ︸
p/1PR

PR = λ2Trp/2p/1 P
2
R︸︷︷︸
PR

= λ2Trp/2p/1
1 + γ5

2
=
λ2

2

(
Trp/2p/1 + Trp/2p/1γ5︸ ︷︷ ︸

0

)

=
λ2

2
Trp/2p/1 . (5.167)

This is exactly one half of the sum without any helicity restriction (5.101) withm = 0.
Thus, we see that f̄ is left-handed 50% of the time. Similarly, one can see that it is
right-handed 50% of the time. In addition, a technique similar to the muon decay
case immediately tells us that the two daughters have to be both left-handed or both
right-handed. For example, if f is left-handed and f̄ is right-handed, we can replace
u1 by PLu1 and v2 by PLv2, and the matrix element becomes

M∝ ū1v2 = PLu1PLv2 = ū1PRPLv2 = 0 . (5.168)

Thus, each daughter is unpolarized when viewed individually, but there is a correlation
between the polarizations of the two.

How can we calculate the rate where a fermion is polarized in some arbitrary
direction, or if the fermion is heavy, for that matter? Fortunately, we have a spin
projection operator for massive fermion or antifermion along any direction. All we
need is then to place the spin projection operator (3.279) in front of the spinor in
question

wp⃗,±s⃗ → Σ±(s)wp⃗,±s⃗ ,
(
Σ±(s) ≡

1± γ5s/
2

and wp⃗,s⃗ = up⃗,s⃗ or vp⃗,s⃗
)

(5.169)

and then execute the spin sum, where sµ is the boosted unit vector (0, s⃗) which defines
the spin quantization axis in the rest frame of the particle, and the ± sign corresponds
to the physical spin component along s⃗ in the rest frame of the particle. Note that
the same projection operator works for both fermion and antifermion. For example,
if we want the decay rate in which the antifermion is polarized as represented by s2,
we evaluate for a finite m∑

spins

|M|2 = λ2
∑
spins

|ū1Σ+(s2) v2|2
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= λ2Tr(p/1 +m)Σ+(s2)(p/2 −m) Σ̄+(s2)︸ ︷︷ ︸
Σ+(s2)

( [p/2,Σ+(s2)] = 0→) = λ2Tr(p/1 +m)(p/2 −m) Σ2
+(s2)︸ ︷︷ ︸

Σ+(s2) =
1 + γ5s/2

2

=
λ2

2
Tr(p/1 +m)(p/2 −m) , (5.170)

where in the last step we have noted, using Tr(odd number of γ) = 0 and Tra/b/γ5 = 0,

Tr(p/1 +m)(p/2 −m)γ5s/2 = m(Trp/2γ5s/2 − Trp/1γ5s/2) = 0 . (5.171)

This is again exactly one half of (5.101). Thus, we see that in H → ff̄ , the rate
is always 1/2 of the total if the spin of f or f̄ is restricted to one polarization, and
this is so regardless of the spin direction and even when the daughters are massive.
Namely, the fermion and the antifermion in H → ff̄ are unpolarized when examined
individually regardless of the fermion mass.

5.5 Spin-1 Fields

We will now introduce spin-1 fields. Examples are the vector bosonsW± and Z which
mediate the weak interaction, and in the massless limit we have photon which medi-
ates the electro-magnetic interaction. These are examples of gauge bosons which are
responsible for so-called gauge interactions between fermions and sometimes refered
to as ‘force particles’. A pair of fermions can form a spin-1 bound state (as well as
other integer spins), and this section applies to those bound-state particles also. As
we will see, the simple massless limit for spin-1 particle encounters difficulties, and
the rigorous treatment requires an understanding of a symmetry introduced by the
masslessness called the gauge invariance which will be discussed in later chapters.
Here, we will start from the Lagrangian formulation of free massive spin-1 field.

Lagrangian for a free massive spin-1 field
Let’s start from searching for non-quantized fields that can represent a spin-1 particle.
We have seen that single component real field can represent a single spin-0 particle
corresponding to the fact that a spin-0 particle at rest has only one degree of freedom.
A spin-1 particle at rest, on the other hand, have three degrees of freedom:

|jm⟩ = |1,+1⟩ , |1, 0⟩ , |1,−1⟩ , (5.172)

where j is the absolute value of the spin and m is the component along some axis.
Then, we expect that we need three components of real field to represent it. Also,
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the three components have to transform under rotation in a way consistent with a
spin-1 particle. We recall that under a rotation the Dirac field transformed as

ψ′(x′) = Uψ(x) U = e−i
Σi
2
θi , (5.173)

and the generator J⃗ = Σ⃗/2 satisfied the commutation relations of angular momentum

[Ji, Jj] = iϵijkJk and J⃗2 = j(j + 1) with j = 1/2 (3.160). In our case, we need

three components that transform under rotation by e−iθ⃗·J⃗ where [Ji, Jj] = iϵijkJk
and J⃗2 = j(j + 1) = 1(1 + 1) = 2. Actually we already have such quantity - the
space components of a 4-vector. In fact, we have seen that a rotation in the ordinary

three-dimensional space can be written as e−iθ⃗·J⃗ with (Ji)jk = i(Li)
j
k (3.162):

J1 = i

 0 0 0
0 0 −1
0 1 0

 , J2 = i

 0 0 1
0 0 0
−1 0 0

 , J3 = i

 0 −1 0
1 0 0
0 0 0

 , (5.174)

and that J⃗ defined as such satisfy the commutation relations of angular momentum
operator. Recalling that (Li)

j
k = −ϵijk (1.96), the components (Ji)jk is nothing but

(−i) times the structure consant ϵijk:

(Ji)jk = −iϵijk . (5.175)

It is a general feature of Lie algebra that a representation of generators can be con-
sturcted directly out of the structure constants, and such representation is called the
adjoint representation. For the absolute value of the spin, explicit evaluation using
(5.174) indeed shows that it is spin one:

J⃗2 = 2 = j(j + 1) → j = 1 . (5.176)

Thus, in order to represent a spin-1 particle, we take a real 4-vector field which
transforms under Lorentz transformation as

A′µ(x′) = Λµ
νA

ν(x) (x′ = Λx) . (5.177)

There are, however, four degrees of freedom for Aµ (µ = 0, 1, 2, 3) while we need
only three. We will try to remove the one extra degree of freedom by imposing a
Lorentz-invariant condition

∂µA
µ(x) = 0 . (5.178)

Let’s try to see what this means by applying it to plane waves

Aµ(x) ∝ e±ip·x . (5.179)
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The condition ∂µA
µ(x) = 0 is then written as

pµA
µ(x) = 0 . (5.180)

If the plane wave Aµ represents a particle at rest, this condition becomes

p = (m, 0⃗ ) → mA0(x) = 0 → A0(x) = 0 (if m ̸= 0, at rest) . (5.181)

Thus, the condition ∂µA
µ(x) = 0 removes one degree of freedom out of the 4-vector

such that for a particle at rest the time component A0 is zero while keeping the 4-
vector nature of the field intact. The condition ∂µA

µ(x) = 0 is called the Lorentz
condition which is a transversality condition in the four-dimensional space-time.

How about the equation of motion and the Lagrangian density that leads to it? In
order to be consistent with the relativistic energy-momentum relation p0

2
= p⃗ 2+m2,

each plane wave solution, and thus any free-field solution, should satisfy the Klein-
Gordon equation

(∂2 +m2)Aµ(x) = 0 (µ = 0, 1, 2, 3) . (5.182)

If we can regard each component as independent, then the total Lagrangian density
would be simply the sum of the Klein-Gordon Lagrangian density for each component:

L ?
=

3∑
µ=0

1

2
(∂νA

µ∂νAµ −m2Aµ2 ) , (5.183)

One problem is that this is not a Lorentz scaler. Since we have taken Aµ as a 4-vector,
the paired µ indexes should be properly contracted in order to form a Lorentz scaler.
And another problem is that this has four dynamical degrees of freedom instead of
three.

One way to remove one dynamical degree of freedom is to eliminate the time
derivative of one component so that the corresponding conjugate field vanishes. This
can be accomplished in a Lorentz-invariant way by forming the antisymmetric com-
bination

F µν def≡ ∂νAµ − ∂µAν , F µν = −F νµ (5.184)

which has no Ȧ0 in it:
F 00 = ∂0A0 − ∂0A0 = 0 , (5.185)

and try the following form

L = −1

4
FµνF

µν +
m2

2
AµA

µ . (5.186)

Note that the sign of the space part of the mass term m2Ai2 is the same as that in
(5.183).
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Let’s derive the equation of motion from the above Lagrangian. First, the ‘kinetic
term’ FµνF

µν can be written as

FµνF
µν = Fµν(∂

νAµ − ∂µAν)

= Fµν∂
νAµ − Fµν︸︷︷︸

−Fνµ

∂µAν

= 2Fµν∂
νAµ = 2(∂νAµ − ∂µAν)∂

νAµ ; (5.187)

namely,

L =
1

2

[
(∂µAν − ∂νAµ)∂

νAµ +m2AµA
µ
]

(5.188)

The Euler-Lagrange equation of motion is

∂L
∂Aα

= ∂β
∂L

∂(∂βAα)
(α = 0, 1, 2, 3) . (5.189)

Using the Lagrangian (5.188), the left-hand side is

∂L
∂Aα

= m2Aα (5.190)

and with some care,

∂L
∂(∂βAα)

=
1

2

∂

∂(∂βAα)

[
(∂µAν − ∂νAµ)∂

νAµ
]

=
1

2

∂

∂(∂βAα)
∂µAν∂

νAµ − 1

2

∂

∂(∂βAα)
∂νAµ∂

νAµ

= ∂αAβ − ∂βAα

= F βα = −Fαβ . (5.191)

Thus, we obtain

∂βF
αβ +m2Aα = 0 , (5.192)

which is the equation of motion for a massive spin-1 particle and called the Proca
equation. Taking ∂α of this and assuming that m is non-zero,

∂α∂βF
αβ︸ ︷︷ ︸

→ 0 since

{
∂α∂β = ∂β∂α
Fαβ = −F βα

+m2∂αA
α = 0 → ∂αA

α = 0 (m ̸= 0) , (5.193)
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which is nothing but the Lorentz condition (5.178). Writing out Fαβ in (5.192) and
using ∂αA

α = 0,

0 = ∂βF
αβ +m2Aα

= ∂β(∂
βAα − ∂αAβ) +m2Aα

= ∂2Aα − ∂α ∂βAβ︸ ︷︷ ︸
0

+m2Aα

→ (∂2 +m2)Aα = 0 . (5.194)

Thus, the Lagrangian density (5.186) leads to the Klein-Gordon equation for each
component and one degree of freedom is removed in a way consistent with the Lorentz
condition. The Proca equation can then be thought of as a 4-component Klein-Gordon
equation with the Lorentz condition built into it.

The fields conjugate to Aα can be obtained by simply setting β = 0 in (5.191):

πα ≡ ∂L
∂Ȧα

= F 0α , (5.195)

or
π0 = 0 , πi = F 0i . (5.196)

Thus, as promised, there is no conjugate field for A0. In fact, A0 can be derived from
the rest from the fields in the Hamiltonian formalism: setting α = 0 in the Proca
equation (5.192) and using F 00 = 0, we have

m2A0 = −∂i F 0i︸︷︷︸
πi

= −∇⃗ · π⃗ , (5.197)

where we note that ∇⃗·π⃗ is the difference of neighboring values of π⃗ and not considered
to be a new independent field.

Momentum expansion and quantization
Now we will momentum-expand an arbitrary solution of the Proca equation Aµ(x),
namely, a real 4-component field that simultaneously satisfies the Klein-Gordon equa-
tion and the Lorentz condition. Following the same procedure as in the case of the
real spin-0 field (4.173), each component of Aµ(x), which satisfies the Klein-Gordon
equation, can be uniquely expanded using the normal-mode functions ep⃗(x) and e

∗
p⃗(x).

Thus, we have

Aµ(x) =
∑
p⃗

(
Aµ

p⃗ep⃗(x) + Aµ∗
p⃗ e
∗
p⃗(x)

)
(µ = 0, 1, 2, 3) . (5.198)

At this point, Aµ
p⃗ is a complex 4-vector. The Lorentz condition ∂µA

µ(x) = 0 then
becomes

∂µA
µ(x) = −i

∑
p⃗

(
pµA

µ
p⃗ep⃗(x)− pµA

µ∗
p⃗ e
∗
p⃗(x)

)
= 0 , (5.199)



5.5. SPIN-1 FIELDS 241

where p0 ≡
√
p⃗ 2 +m2 as before. Applying

∫
d3xe∗p⃗(x)i

↔
∂0 and using the orthonormal-

ity (4.181), the Lorentz condition translates to

pµA
µ
p⃗ = 0 (for all p⃗) . (5.200)

The 4-component quantity Aµ
p⃗ that satisfies this condition has three degrees of free-

dom, and we want to expand it using some three orthonormal 4-vectors. The situation
is similar to the momentum expansion of the Dirac field where any complex 4-spinor
was uniquely written in terms of the orthonormal set (up⃗,±s⃗, v−p⃗,±s⃗).

We will find the unique expansion of Aµ
p⃗ as follows: We first boost pµ and Aµ

into the frame where pµ is at rest, namely pµ = (m, 0⃗ ). In that frame, the condition
pµA

µ
p⃗ = 0 becomes

mA0
p⃗ = 0 → Aµ

p⃗ = (0, A⃗p⃗) (rest frame) . (5.201)

Then, the 3-vector A⃗p⃗ can be expanded using three orthogonal unit vectors ϵ̂p⃗1, ϵ̂p⃗2,
and ϵ̂p⃗3. As in the case of the spin direction vector s⃗ of spin-1/2 field, the orientation
of the basis vectors ϵ̂p⃗1,2,3 are arbitrary (exept that the three vectors are orthogonal
to each other, of course); it could be the x, y, z directions for all p⃗, or it can depend
on p⃗. Since helicity is a useful quantity, however, let’s take one of the basis vectors,
say ϵ̂p⃗3, to be in the p⃗ direction. To define the basis vectors uniquely, we may further
define ϵ̂p⃗2 to be in the direction of p⃗× ẑ, and then ϵ̂p⃗1 is taken so that the three unit
vectors ϵ̂p⃗i (i = 1, 2, 3) form a right-handed coordinate system. In the following, the
specific way to define the azimuthal orientations of ϵ̂p⃗1 and ϵ̂p⃗2 is not important as

long as ϵ̂p⃗3 is in the p⃗ direction. Thus, A⃗p⃗ in the rest frame can be uniquely expanded
as

A⃗p⃗ =
3∑

λ=1

ap⃗λϵ̂p⃗λ (rest frame) , (5.202)

or including the time component (which is zero),

Aµ
p⃗ =

3∑
λ=1

ap⃗λϵ
µ
p⃗λ , (5.203)

with
ϵµp⃗λ = (0, ϵ̂p⃗λ) (λ = 1, 2, 3 , rest frame) . (5.204)

The original Aµ
p⃗ is obtained by boosting (5.203) back to the original frame, which

can be accomplished simply by boosting ϵµp⃗λ in the expansion while keeping the same
expansion coefficients ap⃗λ. The boost is given by(

ϵ0′

ϵ′∥

)
=
(
γ η
η γ

)(
ϵ0

ϵ∥

)
ϵ⃗ ′⊥ = ϵ⃗⊥

, with ηµ ≡ (γ, η⃗) ≡
(p0
m
,
p⃗

m

)
. (5.205)
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In terms of ϵ0, ϵ∥, andϵ⃗⊥, the three polarization vectors to be boosted are

ϵµp⃗1 : ϵ
0 = 0, ϵ∥ = 0, ϵ⃗⊥ = ϵ̂p⃗1

ϵµp⃗2 : ϵ
0 = 0, ϵ∥ = 0, ϵ⃗⊥ = ϵ̂p⃗2

ϵµp⃗3 : ϵ
0 = 0, ϵ∥ = 1, ϵ⃗⊥ = 0⃗

. (5.206)

The boosted 4-vectors in the original frame are then (dropping the primes)

ϵµp⃗1 = (0, ϵ̂p⃗1) ,

ϵµp⃗2 = (0, ϵ̂p⃗2) ,

ϵµp⃗3 = (η, γ p̂) ,

(5.207)

forming a basis called the linear basis. These 4-vectors are sometimes called the
polarization 4-vectors.

The original Aµ
p⃗ is thus uniquely expanded as (5.203) where ϵµp⃗λ are taken to be

the boosted polarization vectors given above. Then, the expansion of Aµ(x) (5.198)
is now written as

Aµ(x) =
∑
p⃗λ

(
ap⃗λϵ

µ
p⃗λ ep⃗(x) + a∗p⃗λϵ

µ∗
p⃗λ e

∗
p⃗(x)

)
(5.208)

or

Aµ(x) =
∑
p⃗λ

(
ap⃗λh

µ
p⃗λ(x) + a†p⃗λh

µ∗
p⃗λ(x)

)
(5.209)

with
hµp⃗λ(x)

def≡ ϵµp⃗λep⃗(x) . (5.210)

We have written a†p⃗λ instead of a∗p⃗λ anticipating the quantization of the field. At this
point, the polarization vectors ϵµp⃗λ are real and the their complex conjugation in the
second term of (5.208) are irrelevant; however, they are needed for the helicity basis
which we will now discuss.

Alternatively, one can define the helicity basis polarization 4-vectors as

ϵµp⃗+
def≡ − 1√

2
(ϵµp⃗1 + iϵµp⃗2) = (0,− 1√

2
(ϵ̂p⃗1 + iϵ̂p⃗2))

ϵµp⃗0
def≡ ϵµp⃗3 = (η, γ p̂)

ϵµp⃗−
def≡ + 1√

2
(ϵµp⃗1 − iϵ

µ
p⃗2) = (0,+ 1√

2
(ϵ̂p⃗1 − iϵ̂p⃗2)) .

(5.211)

In the helicity basis, the corresponding expansion coefficients become

ap⃗+ = − 1√
2
(ap⃗1 − iap⃗2)

ap⃗0 = ap⃗3
ap⃗− = + 1√

2
(ap⃗1 + iap⃗2) ,

(5.212)



5.5. SPIN-1 FIELDS 243

which can be verified as follows. In the momentum expansion (5.208), the sum over
the linear basis becomes the same as the sum over the helicity basis:

ap⃗+ϵ
µ
p⃗+ + ap⃗−ϵ

µ
p⃗− = ap⃗1ϵ

µ
p⃗1 + ap⃗2ϵ

µ
p⃗2 , ap⃗0ϵ

µ
p⃗0 = ap⃗3ϵ

µ
p⃗3 ,

→
∑

λ=1,2,3

ap⃗λϵ
µ
p⃗λ =

∑
λ=+,0,−

ap⃗λϵ
µ
p⃗λ . (5.213)

Thus, the momentum expansion (5.209) is valid for λ = +, 0,− (helicity basis) as
well as for λ = 1, 2, 3 (linear basis). Also, the relations

ϵp⃗λ · ϵ∗p⃗λ′ = −δλλ′ , p · ϵp⃗λ = 0 , (5.214)

hold for λ = 1, 2, 3 and +, 0,−, which can be trivially proven for the linear basis in
the rest frame which can then be extended to the helicity basis using (5.211).

Using the orthonormality conditions of ep⃗(x) (4.181) and ϵp⃗λ · ϵ∗p⃗λ′ = −δλλ′ , it is
strightforward to show the following orthonomality conditions for the spin-1 normal
mode functions hµp⃗λ(x):

∫
d3xhµ∗p⃗λ(x)i

↔
∂0hp⃗ ′λ′

µ(x) = −δp⃗p⃗ ′δλλ′ ,
∫
d3xhµp⃗λ(x)i

↔
∂0hp⃗ ′λ′

µ(x) = 0 ,∫
d3xhµp⃗λ(x)i

↔
∂0h

∗
p⃗ ′λ′

µ
(x) = δp⃗p⃗ ′δλλ′ ,

∫
d3xh∗µp⃗λ(x)i

↔
∂0h

∗
p⃗ ′λ′

µ
(x) = 0 .

(5.215)

Exercise 5.4 Prove the above orthonormal relations.

We can see that the helicity-basis polarization vectors correspond to the angular
momentum eigenstates |j,m⟩ = |1, 1⟩, |1, 0⟩, and |1,−1⟩ in the rest frame, where the
spin axis is taken as ϵ̂p⃗3 (namely, J3 represents the helicity). First we note that, in
the rest frame of the particle, the space components of the polarization 4-vectors are
(the time components are zero)

ϵ⃗p⃗+ = − 1√
2
(ϵ̂p⃗1 + iϵ̂p⃗2)

ϵ⃗p⃗0 = ϵ̂p⃗3
ϵ⃗p⃗− = + 1√

2
(ϵ̂p⃗1 − iϵ̂p⃗2)

(rest frame : p⃗ = 0) . (5.216)

On the other hand, using the explicit expressions for J⃗ (5.174), we see that the
eigenstate |1, 0⟩ is given by (0, 0, 1):

J3

 0
0
1

 = i

 0 −1 0
1 0 0
0 0 0


 0
0
1

 = 0 → |1, 0⟩ =

 0
0
1

 . (5.217)
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The states |1, 1⟩ and |1,−1⟩ can be constructed from |1, 0⟩ by applying the raising
and lowering operators:

J± ≡ J1 ± iJ2 =

 0 0 ∓1
0 0 −i
±1 i 0

 , (5.218)

whose action on |j,m⟩ is given in general by√
j(j + 1)−m(m± 1)|j,m± 1⟩ = J±|j,m⟩ .

For |j,m⟩ = |1, 0⟩, we have j(j + 1)−m(m± 1) = 2, and thus

√
2|1,±1⟩ = J±|1, 0⟩ = J±

 0
0
1

 =

∓1−i
0

 → |1,±1⟩ = 1√
2

∓1−i
0

 . (5.219)

Namely, |1, 1⟩, |1, 0⟩, and |1,−1⟩ are represented in the three-dimensional space by

|1, 1⟩ = − 1√
2

 1
i
0

 , |1, 0⟩ =

 0
0
1

 , |1,−1⟩ = 1√
2

 1
−i
0

 . (5.220)

These are nothing but the polarization vectors ϵ̂p⃗+, ϵ̂p⃗0, and ϵ̂p⃗− given in (5.216) where
the coordinate axes are ϵ̂p⃗i (i = 1, 2, 3).

In dealing with massive spin-1 particles we often encounter a polarization sum of
the form ∑

λ

ϵµp⃗λϵ
ν∗
p⃗λ , (5.221)

where the polarization vectors refer to a given particle (not different particles). This
is the spin-1 equivalent of

∑
s⃗ up⃗,s⃗ūp⃗,s⃗ and

∑
s⃗ vp⃗,s⃗v̄p⃗,s⃗. To evaluate this, we first note

that it is a Lorentz tensor; thus, we can evaluate it in the rest frame (p⃗ = 0) and
express it in a Lorentz-covariant form, then it will be valid in any frame. In the rest
frame and using the linear basis, we have

µ : 0, 1, 2, 3

ηµ
0⃗

= (1, 0, 0, 0)

ϵµ
0⃗1

= (0, 1, 0, 0)

ϵµ
0⃗2

= (0, 0, 1, 0)

ϵµ
0⃗3

= (0, 0, 0, 1) ,

(5.222)

where η0⃗ is ηµ ≡ pµ/m evaluated in the rest frame. If we regard each column as a
4-vector and take the inner product of µ-th column and ν-th column, we see that the
following expression holds numerically:

(µ−th column) · (ν−th column) = ηµ
0⃗
ην
0⃗
−

∑
λ=1,2,3

ϵµ
0⃗λ
ϵν
0⃗λ

= gµν
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→
∑

λ=1,2,3

ϵµ
0⃗λ
ϵν
0⃗λ

= −gµν + ηµ
0⃗
ην
0⃗
. (5.223)

Now the above equation on the right should be valid in any frame. Let’s check it
explicitly. We multiply both sides by Λα

µΛ
β
ν and sum over µ and ν, where Λ is the

boost that takes the rest mass m to pµ:∑
λ=1,2,3

Λα
µϵ

µ

0⃗λ︸ ︷︷ ︸
ϵαp⃗λ

Λβ
νϵ

ν
0⃗λ︸ ︷︷ ︸

ϵβp⃗λ

= −Λα
µΛ

β
νg

µν︸ ︷︷ ︸
gαβ

+Λα
µη

µ

0⃗︸ ︷︷ ︸
ηα

Λβ
νη

ν
0⃗︸ ︷︷ ︸

ηβ

; (5.224)

namely, ∑
λ=1,2,3

ϵµp⃗λϵ
ν
p⃗λ = −gµν + ηµην . (5.225)

Using the definition of the helicity basis (5.211), we can show that the helicity basis
version is related to the linear basis version by∑

λ=+,0,−
ϵµp⃗λϵ

ν∗
p⃗λ =

∑
λ=1,2,3

ϵµp⃗λϵ
ν
p⃗λ . (5.226)

Then, together with ηµ = pµ/m, the relation

∑
λ

ϵµp⃗λϵ
ν∗
p⃗λ = −gµν + pµpν

m2
(λ = 1, 2, 3 or +, 0,−) (5.227)

works for both the linear basis and the helicity basis.
Now, we quantize the field by regarding the expansion coefficients as operators

and introducing quantization conditions among them. Since the spin is an integer,
we have to use commutators instead of anticommutators.

[ap⃗λ, a
†
p⃗ ′λ′ ] = δp⃗,p⃗ ′δλ,λ′ ,

[ap⃗λ, ap⃗ ′λ′ ] = [a†p⃗λ, a
†
p⃗ ′λ′ ] = 0 ,

(5.228)

where one can use either linear or helicity bases, and both are consistent. With
the help of the polarization sum formula above, this set of commutators leads to
equal-time commutators among fields given by

[Ai(t, x⃗), π
j(t, x⃗ ′)] = igi

jδ3(x⃗− x⃗ ′) ,
[Ai(t, x⃗), A

j(t, x⃗ ′)] = [πi(t, x⃗), π
j(t, x⃗ ′)] = 0 .

(5.229)

Exercise 5.5 Quantization of massive spin-1 field.
(a) Use the commutation relations of creation and annihilation operators (5.228) and
the momentum expansion (5.209), where λ = +, 0,− or 1, 2, 3, to derive the equal-
time commutation relations (5.229).
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(b) Show that the commutation relation between Aµ(x) and Aν(x′) at two space-time
points x and x′ is given by

[Aµ(x), Aν(x′)] =
(
− gµν − ∂µx∂

ν
x

m2

)
i∆(x− x′) . (5.230)

Is the microscopic causality satisfied?
(hint: The conjugate field can be written as

πi = −i
∑
p⃗,λ

(ap⃗,λF
i
p⃗,λ − a

†
p⃗,λF

i∗
p⃗,λ) with F i

p⃗,λ ≡ pih0p⃗,λ − p0hip⃗,λ . (5.231)

You will need the polarization sum formula
∑

λ ϵ
µ
p⃗λϵ

ν∗
p⃗λ = −gµν + pµpν/m2.)

Charged spin-1 field
Just as we combined two real scalar fields of same mass to form a single complex
field that represents a ‘charged’ scalar particle, we can combine two real vector fields
of same mass to form a single complex vector field that describes a charged spin-1
particle. Such a field can be used when particle and antiparticle are distinct such as
the W± bosons. Thus, we combine two real vector fields of the same mass, A1

µ and
A2

µ, as

Aµ(x) =
1√
2

(
A1

µ(x) + iA2
µ(x)

)
. (5.232)

The Lagrangian density of the whole is simply the sum of the Lagrangian density of
A1

µ and that of A2
µ:

L = L1 + L2 = −
1

4
F i
µνF

iµν +
m2

2
Ai

µA
iµ (5.233)

where the sum over i is implied, and

F i
µν

def≡ ∂νA
i
µ − ∂µAi

ν (i = 1, 2) (real) . (5.234)

Defining the antisymmetric tensor Fµν for the complex field Aµ in the same way,

Fµν
def≡ ∂νAµ − ∂µAν (complex) , (5.235)

we have

Fµν =
1√
2

[
∂ν(A

1
µ + iA2

µ)− ∂µ(A1
ν + iA2

ν)
]
=

1√
2
(F 1

µν + iF 2
µν) . (5.236)

The kinetic term can then be written as

F ∗µνF
µν =

1

2
(F 1

µν − iF 2
µν)(F

1µν + iF 2µν) =
1

2
F i
µνF

iµν . (5.237)
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Similarly, we have

A∗µA
µ =

1

2
(A1

µ − iA2
µ)(A

1µ + iA2µ) =
1

2
Ai

µA
iµ . (5.238)

Thus, the total Lagrangian density can be written using the complex field as

L = −1

2
F ∗µνF

µν +m2A∗µA
µ . (5.239)

The momentum expansion of the complex (namely, non-hermitian) vector field pro-
ceeds similarly to the charged scalar field case. We define

ap⃗λ
def≡ 1√

2
(a1p⃗λ + ia2p⃗λ)

bp⃗λ
def≡ 1√

2
(a1p⃗λ − ia2p⃗λ)

(5.240)

where aip⃗λ are the annihilation operators for the vector field Ai
µ(x). Then, using the

expansion (5.209), the non-hermitian field Aµ is written as

Aµ(x) =
∑
p⃗λ

(
ap⃗λh

µ
p⃗λ(x) + b†p⃗λh

µ∗
p⃗λ(x)

)
, (5.241)

where the normal-mode functions hµp⃗λ(x) have been defined in (5.210). Assuming that
operators belonging to different fields commute, the commutation relations among the
creation and annihilation operators of the real fields are

[aip⃗λ, a
j†
p⃗ ′λ′ ] = δijδp⃗,p⃗ ′δλ,λ′ ,

all others = 0 .
(5.242)

From this, one obtains

[ap⃗λ, a
†
p⃗ ′λ′ ] = [bp⃗λ, b

†
p⃗ ′λ′ ] = δp⃗,p⃗ ′δλ,λ′ ,

all others = 0 .
(5.243)

As in the case of a charged scalar field, a†p⃗λ is regarded as a creation operator

of a particle and b†p⃗λ as that of its antiparticle. This interpretation is justified by
the conserved quantity Q corresponding to the invariance of the Lagrangian density
under the phase transformation

A′µ(x) = eiθAµ(x) and A′∗µ (x) = e−iθA∗µ(x) , (5.244)
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where all 4 components of Aµ are phase-rotated by the same amount. Following the
same procedure that lead to the conserved current for a single complex field (4.260),
the conserved current for 4 complex fields Aµ is

∂µj
µ = 0 , jµ ≡ i

(
∂L

∂(∂µA∗α)
A∗α −

∂L
∂(∂µAα)

Aα

)
. (5.245)

The conserved quantity Q is then given by the space integral of the time component
of the conserved current:

Q̇ = 0 , Q =
∫
d3x j0 . (5.246)

Using the Lagrangian (5.239) and the expansion of Aµ (5.241), one obtains (see the
exercise below)

Q =
∑
p⃗λ

(a†p⃗λap⃗λ − b
†
p⃗λbp⃗λ) (5.247)

which shows that an a-particle carries charge +1 and a b-particle carries charge −1
regardless of momentum and spin. Again, only the relative sign is important and the
overall sign is arbitrary at this point.

Exercise 5.6 Conserved charge of a complex vector field.
(a) Show that the conserved current (5.245) for the Lagrangian (5.239) is given by

jµ = i(Fαµ∗Aα − FαµA∗α) .

(b) Then, show that the conserved quantity Q can be written as

Q =
∫
d3x [A∗αi

↔
∂
0Aα − i∂k(A0A∗k − A0∗Ak)] ,

where we note that the second term becomes a surface integral and vanishes.
(hint: Recall the Lorentz condition ∂µA

µ = 0.)
(c) Use the momentum expansion of Aµ and the orthonormality relations (5.215) to
verify Q = −∑p⃗λ(a

†
p⃗λap⃗λ − b

†
p⃗λbp⃗λ) (normal ordering on Q is implicit).

W-fermion coupling
Weak decays are mostly caused by couplings between the massive charged spin-1
particle W± and fermion currents. Decays such as W+ → e+νe, π

+ → µ+νµ, and
µ− → νµe

−ν̄e are some examples. Often, W -fermion couplings are hidden inside
effective couplings. For example, even though π+ is a spin-0 particle, quarks (which
are fermions) inside couple toW+ which then creates the µ+νµ pair. In µ− → νµe

−ν̄e,
the current µ− → νµ couples to W− which then creates the e−ν̄e pair.

The W+ particle can be described by the charged spin-1 field introduced in the
previous section. The W − eνe coupling is a V − A coupling given by

Lint =
g√
2

(
ν̄eγµPLe

)
W µ + h.c.

(
PL ≡

1− γ5
2

)
, (5.248)
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where W µ(x) is the charged vector field for W± (W+ = particle, W− = antiparticle)
and νe(x) and e(x) are the short hands for ψνe(x) and ψe(x), respectively. The
constant g is the universal coupling constant g ∼ 0.65.

In the standard model, leptons appear in three ‘generations’:

Q = 0
Q = −1

(
νe

e−

) (
νµ

µ−

) (
ντ

τ−

)
, (5.249)

where Q is the electrical charge and all particles shown are fermions as opposed to an-
tifermions (namely, each has its own antifermion). They have exactly the same types
of interactions, including weak interactions, with only difference being the charged
lepton masses

me = 0.000511GeV , mµ = 0.106GeV , mτ = 1.78GeV . (5.250)

At this time, we assume that all neutrinos are massless. In a later chapter, we will
discuss the case of massive neutrinos. Thus,W -lepton coupling in the standard model
is written as

Lint =
g√
2

(
ν̄iγµPLℓi

)
W µ + h.c. (i = 1, 2, 3) , (5.251)

with
(ν1, ν2, ν3) ≡ (νe, νµ, ντ ) , (ℓ1, ℓ2, ℓ3) ≡ (e, µ, τ) , (5.252)

and the sum over i = 1, 2, 3 is implied. There is no off-diagonal couplings such as
(ν̄eγµ(1− γ5)µ)W µ, which is a consequance of the assumed masslessness of neutrinos
(strictly speaking, that they have the same mass).

Quarks also come in three generations,

Q = +2/3
Q = −1/3

(
u

d

) (
c

s

) (
t

b

)
, (5.253)

and couple to W in a similar way:

Lint =
g√
2
Vij
(
ŪiγµPLDj

)
W µ + h.c. (i = 1, 2, 3) , (5.254)

where
(U1, U2, U3) ≡ (u, c, t) , (D1, D2, D3) ≡ (d, s, b) , (5.255)

and sum over i, j = 1, 2, 3 is implied. The set of constants Vij is called the Cabibbo-
Kobayashi-Masukawa matrix (the CKM matrix) and the element Vij specifies the
strength of coupling between the Ui-Dj current andW in units of theW -eνe coupling.
It turns out that V is unitary (the standard model requires it theoretically, but it is
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also consistent with experiment) and that the diagonal elements Vii are nearly unity
while cross-generational couplings are suppressed but finite. Approximately, the sizes
of |Vij| are given by

|Vij| ∼

 1 λ λ3

λ 1 λ2

λ3 λ2 1

 , (5.256)

where λ ∼ 0.22 is called the Cabibbo factor. Also, it is believed that there are
relative complex phases between Vij which result in violation of CP symmetry as will
be discussed in a later chapter. For example, the W -tb coupling is given by

Lint =
g√
2
Vtb︸︷︷︸
∼ 1

(
t̄γµPLb

)
W µ + h.c. (5.257)

Actually, quarks come in three colors, and the same interaction above repeats for
each color. That is, the current ŪiγµPLDj is understood to be

ŪiγµPLDj ≡
∑
a

Ūa
i γµPLD

a
j (5.258)

where the sum is over a = red, blue, and green. The W -quark coupling does not
change color, namely there is no coupling with color-changing currents.

W decays
We will first calculate the decay W+ → e+νe. Other decays such as W+ → µ+νµ are
treated in essentially the same way. The interaction responsible is given by (5.248) :

W

v
e

_

e

uv+

εµ

(    )

(    )

(    )

k

p

q

Lint =
g√
2
(ν̄eγµPLe)W

µ . (5.259)

The 4-momenta of W+, e+, and νe are k, p and q, respectively, and ϵµ represents
the polarization of W+. The masses of e+ and νe are assumed to be zero. What
is the Lorentz-invariant matrix element? The situation is nearly identical to that of
H → bb̄. This time we have

⟨f |Lint|i⟩ = ⟨0|beaνe
g√
2
(ν̄eγµPLe)W

µa†W |0⟩ (5.260)

where the subscripts e, νe, and W for the creation or annihilation operators indicate
that they are for the corresponding particles of the initial and final states. The rule



5.5. SPIN-1 FIELDS 251

for the final state fermion or antifermion stays the same; namely, νe will pick up ūνe
and e+ will pick up ve. When the vector field W µ is expanded as

W µ =
∑
p⃗λ

(
ap⃗λh

µ
p⃗λ + b†p⃗λh

µ∗
p⃗λ

)
, (5.261)

the annihilation operator ak⃗λ that matches a†W (≡ a†
k⃗λ
) of the initial state comes with

the factor hµ
k⃗λ
(x) = ϵµ

k⃗λ
ek⃗(x). The ek⃗(x) factor will become part of the delta function

for energy-momentum conservation and the normalization in the definition ofM and
ϵµ
k⃗λ

will be included inM:

Sfi = i
∫
d4x⟨f |Lint|i⟩ =

(2π)4δ4(p+ q − k)√
(2p0V )(2q0V )(2k0V )

M (5.262)

with
M = i

g√
2
(ūνeγµPLve)ϵ

µ (5.263)

where ϵµ ≡ ϵµ
k⃗λ
. If the initial state is W−, then the matching annihilation operator

bk⃗λ is in W µ† which appears in the hermitian conjugate term, and the normal-mode
function associated is again hµ

k⃗λ
(x). We note that regardless of particle or antiparticle,

an annihilation operator is associated with hµp⃗λ and a creation operator with hµ∗p⃗λ.
Thus, the rule is to include inM the factor ϵµ for a spin-1 particle in the initial state,
and the factor ϵµ∗ for the final state regardless of particle or antiparticle:

initial state final state

spin-1 ϵµp⃗λ ϵµ∗p⃗λ

(for particle or antiparticle)

. (5.264)

Let’s proceed to calculate the decay rate of W+ → e+νe. Since the e+νe pair is
created by a V −A current, e+ is right-handed (to the extent that me is small) and νe
is left-handed. We will, however, sum over the spins of e+ and νe to take advantage
of the trace techniques. We assume that the initial stateW+ is unpolarized, and thus
take average over the three possible helicity states or equivalently the three linear
polarizations. Thus, we will evaluate the sum of |M|2 over all spins and divide by
three to obtain the spin-averaged (unpolarized) |M|2: with mW ≡ m and me =
mνe = 0,

|M|2 =
1

3

∑
spins

|M|2

=
g2

3 · 2
∑
spins

(ūνeγµPLve ϵ
µ)∗(ūνeγνPLve ϵ

ν)
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=
g2

6

∑
spins

v̄ePRγµuνeūνeγνPLve
∑
spins

ϵµ∗ϵν

︸ ︷︷ ︸
−gµν + kµkν

m2

=
g2

6

[
−
∑
spins

v̄ePRγµuνeūνeγ
µPLve

+
1

m2

∑
spins

v̄ePRk/uνeūνek/PLve

]
. (5.265)

Now, the second term vanishes as follows: the Dirac equations in momentum space
for uνe and ve are (with me = mνe = 0)

p/ve = 0 , q/uνe = 0 ; (5.266)

thus, using k = p+ q, we have

v̄ePRk/uνe = v̄ePR(p/ + q/)uνe︸ ︷︷ ︸
0

= v̄e PRp/︸ ︷︷ ︸
p/PL

uνe = p/ve︸︷︷︸
0

PLuνe = 0 . (5.267)

Incidentally, a similar calculation shows that

[w̄p⃗,s⃗γµ(a+ bγ5)w
′
p⃗ ′,s⃗ ′]kµ = 0 (w,w′ = u or v, massless) (5.268)

where a and b are arbitrary constants and k is any linear combination of p and p′.
Thus, discarding the second term in (5.265) and executing the spin sums, we have

|M|2 = −g
2

6

∑
spins

v̄ePR γµ uνeūνe︸ ︷︷ ︸
→ q/

γµ

︸ ︷︷ ︸
−2q/

PLve =
g2

3
Trp/ PRq/︸ ︷︷ ︸

q/PL

PL

︸ ︷︷ ︸
q/PL

=
g2

6
Trp/q/(1︸ ︷︷ ︸
4p · q

−
/\
γ5) =

2g2

3
p · q , (5.269)

where we have used γµa/γ
µ = −2a/ , P 2

L = PL, Tra/b/γ5 = 0, and Tra/b/ = 4a · b.
Squaring k = p+ q and using me = mν = 0, we get m2 = 2p · q, or

p · q = m2

2
. (5.270)

Using the 2-body decay rate formula Γ = (|p⃗|/8πm2)|M|2, we obtain,

Γ(W+ → e+νe) =
g2

48π
m . (5.271)
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With g = 0.65 and m = 80 GeV, we obtain Γ(W+ → e+νe) = 0.224 GeV. The total
decay rate of W is obtained by summing up the partial decay rates over all possible
final states, which are

mode : e+νe µ+νµ τ+ντ ud̄ us̄ ub̄ cd̄ cs̄ cb̄

Γ : 1 1 1 |Vud|2 |Vus|2 |Vub|2 |Vcd|2 |Vcs|2 |Vcb|2
(5.272)

where the decay rates are given in the unit of Γ(W+ → e+νe). The W boson can also
couple to td̄, ts̄, and tb̄; the mass of t (∼ 175 GeV), however, is heavier than that of
W , and thus such decays are prohibited. We have assumed that the fermion masses
are small, which is a good assumption since the heaviest in the list is mb ∼ 5 GeV
which is still much smaller than mW ∼ 80 GeV. Recalling that quarks come in three
colors, and using the unitarity of the CKM matrix∑

i

V ∗ijVik = δjk , (5.273)

the total decay rate is

Γtot = Γ(W+ → e+νe)
(
3
↑

e, µ, τ

+ 3(|Vud|2 + |Vus|2 + |Vub|2︸ ︷︷ ︸
1

+ |Vcd|2 + |Vcs|2 + |Vcb|2︸ ︷︷ ︸
1

)

= 2.02 GeV . (5.274)

The experimental value is Γtot = 2.08 ± 0.07 GeV. Since the value of g is deter-
mined from elsewhere - as we will determine from the decay µ− → νµe

−ν̄e later - the
agreement is quite remarkable. This also supports that quarks indeed come in three
colors.

5.6 νµe
− → µ−νe scattering

Next, we will consider another W -mediated interaction: the scattering of an muon
neutrino on an atomic electron νµe

− → µ−νe. Two main purposes of this exercise are
to introduce scattering cross section and W -propagator. Let’s start from the first.

Scattering cross section
Consider a general scattering interaction a + b → 1 + 2 + . . . + n, where a is the
projectile particle, b is the target particle, and 1, 2, . . . , n are the final-state particles.
The concept of scattering cross section is just about the simplest way to define the
‘likelihood’ that a projectile interacts with a target. When single projectile particle is
traveling with velocity v in a uniform target medium where the density of the target
is n particles per unit volume, the probability to ‘encounter’ a target particle would
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Figure 5.3: When a target center is located within the cylinder of cross section σ = πr2

and length vT centered around the trajectory of the projectile, the point projectile
will hit the target.

be proportional to the time duration T , to the velocity v, and to the density of the
target n (assuming that the probability is much less than unity). When these trivial
factors are removed, then what is left as the measure of the rate of the interaction is
the scattering cross section which happens to have the dimension of area.

As a simple example, consider the classical case where each target is a sphere of
radius r which is at rest in the laboratory frame, and the radius of the projectile is
small enough to be neglected. The probability that the projectile will hit a target
in time T is the probability that a center of target is located inside the cylinder of
cross section σ = πr2 and length vT centered around the trajectory of the projectile
(Figure 5.3). If the probability is small enough, we can neglect the chance of finding
multiple targets in the cylinder. Then, the probability, or the expected number of
collisions N0, is given by

N0 = n× (volume of the cylinder) = nσvT . (5.275)

This formula is valid even when the target medium is also moving as long as the
velocity of the projectile (v⃗a) and that of target (v⃗b) are parallel to each other. In
such case, n is still measured in the laboratory frame, and the velocity v is understood
to be the relative velocity of projectile and target measured in the laboratory frame:

v
def≡ |v⃗a − v⃗b| . (5.276)

Now, suppose that there are ρ projectiles in unit volume measured in the laboratory
frame. Then, there are ρV projectiles in a volume V on average, and for each projec-
tile, the probability to interact in time T is N0 = nσvT . Thus, the probability N to
see an interaction in the volume V in the time duration T is

N = ρV N0 = ρV nσvT . (5.277)
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For a general scattering a+ b→ 1 + 2 + . . .+ n where the target does not have a
classical target area, the relation (5.277) defines the cross section σ. In the classical
example above, the cross section did not depend on the relative velocity v; in general,
however, cross section may depend on v or the momenta of the particles involved.

The differential cross section dσ for the final-state particles to scatter into the
momentum ranges p⃗f ∈ d3pf (f = 1, . . . , n) is then defined by

dN = ρV n dσvT , (5.278)

where dN is the probability to find the final state in the specified momentum ranges.
On the other hand, the same quantity dN is given by summing |Sfi|2 over the corre-

sponding final states. Since the initial state |i⟩ = a†aa
†
b|0⟩ corresponds to having one

projectile partile and one target particle in the entire volume V , we have

ρ =
1

V
: projectile density , n =

1

V
: target density . (5.279)

Thus,

dN =
∑

p⃗f∈d3pf

|Sfi|2 = ρV n dσ vT = dσ
vT

V
. (5.280)

Using the definition of the Lorentz-invariant matrix elementM (5.109)

Sfi ≡
(2π)4δ4(pa + pb −

∑
f pf )√

(2p0aV )(2p0bV )
∏

f (2p
0
fV )
M , (5.281)

and the identity (5.89), we have

dσ =
V

vT

∑
p⃗f∈d3pf

|Sfi|2

=
V

vT

(2π)4δ4(pa + pb −
∑

f pf )V T by (5.87)︷ ︸︸ ︷
[(2π)4δ4(pa + pb −

∑
f pf )]

2

(2p0aV )(2p0bV )
∏

f (2p
0
fV )

|M|2
∏
f

V

(2π)3
d3pf

=
(2π)4

2p0a2p
0
b v
|M|2δ4(pa + pb −

∑
f

pf )
∏
f

d3pf
(2π)32p0f

, (5.282)

or

dσ =
(2π)4

4EaEb v
|M|2dΦn (5.283)

where the n-body Lorentz-invariant phase space is given by (5.111) with P = pa + pb
(the total 4-momentum of the system), and v is the relative velocity between projectile
and target as defined in (5.276).
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The factor EaEbv is sometimes called the ‘flux factor’, and they can be written in
two typical cases as

a bp
a

(b at rest) EaEbv =

mb︷︸︸︷
Eb

|p⃗a|︷︸︸︷
Eav = mb|p⃗a| (5.284)

a p bp− (C.M.) EaEbv = EaEb(|va|+ |vb|) =
|p⃗a|︷ ︸︸ ︷
Ea|va|Eb + Ea

|p⃗b|︷ ︸︸ ︷
Eb|vb|

=

M : invariant mass︷ ︸︸ ︷
(Ea + Eb) |p⃗| =M |p⃗| .

(5.285)
Following the calculation of the two-body phase space in the C.M. frame (5.98), but
this time without integrating over the direction of p⃗1, we obtain (left as an exercise)

p
a

p
b
= p

a−

p
1

p
2
=− p

1

θ

dΩ

dΦ2 =
|p⃗1|

(2π)64M
dΩ (C.M.) , (5.286)

where M = Ea +Eb is the invariant mass or the total energy in the C.M. frame, and
dΩ = dϕd cos θ is the angular element of p⃗1 where (θ, ϕ) is the polar coordinates of
p⃗1 with respect to p⃗a. Together with the cross section formula (5.283) and EaEbv =
M |p⃗a|, we have

dσ

dΩ
=
|M|2

(8πM)2
|p⃗1|
|p⃗a|

(a+ b→ 1 + 2, C.M.) . (5.287)

If the above cross section does not depend on the azimuthal angle ϕ, then it is a
function only of θ only, or

t
def≡ (p1 − pa)2 = m2

1 +m2
a − 2(E1Ea − |p⃗1||p⃗a| cos θ) . (5.288)

Changing the variable from θ to t, we obtain (left as an exercise)

dσ

dt
=

|M|2

16πλ(M2,m2
a,m

2
b)

(a+ b→ 1 + 2) (5.289)
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with

λ(x, y, z)
def≡ x2 + y2 + z2 − 2xy − 2yz − 2zx , (5.290)

and this formula is valid in any frame. For completeness, we give a general 2-body
formula for the case b is at rest:

dσ

dΩ1

=
|p⃗1||M|2

64π2mb|p⃗a|
[
mb + Ea(1− βa

β1
cos θ1)

] (a+ b→ 1 + 2, b at rest) . (5.291)

where dΩ1 = dϕ1d cos θ1 is the angular element of p⃗1 with respect to the direction of
p⃗a.

Exercise 5.7 Verify (5.286), (5.289), and (5.291).

Let’s get back to the scattering νµe
− → µ−νe. This process occurs through W

exchange between eνe current and νµµ current. The responsible interaction is a part
of the general W -lepton couplings (5.251):

e

µ

νµ

νe

W
Lint =

g√
2

(
iα(x) + jα(x)

)
Wα(x) + h.c.

with

{
iα = ν̄eγαPLe

jα = ν̄µγαPL µ
,

(5.292)

where we have defined iα to be the eνe current and jα the νµµ current. The initial
and final states are

|i⟩ = a†ea
†
νµ|0⟩ , |f⟩ = a†νea

†
µ|0⟩ ; (5.293)

thus, the non-vanishing term in Sfi = ⟨f |S|i⟩ should contain the product of four
creation and annihilation operators a†µa

†
νeaνµae. When the fields are momentum-

expanded in Lint, however, each term contains a product of only two fermion opera-
tors; so the first-order term in the Dyson series vanishes. Let’s try the second-order
term

S =
(−i)2

2

∫
dt dt′ T (h(t)h(t′))

= −1

2

∫
dt dt′ T

( ∫
d3xHint(t, x⃗)

∫
d3x′Hint(t

′, x⃗ ′)
)

(using the linearity of T -product)

= −1

2

∫
d4x d4x′ T (Hint(x)Hint(x

′)) . (5.294)
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Since there is no time derivatives in Lint, we have Lint = −Hint; then the S-matrix
element is

Sfi = −
1

2

∫
d4x d4x′⟨f |T (Lint(x)Lint(x

′)|i⟩ (second order) . (5.295)

Using the interaction Lagrangian (5.292) and writing out the hermitian conjugate
parts, we have

⟨f |T (LintL′int)|i⟩

=
g2

2
⟨0|aµaνeT

( [
( iα + jα)W

α + (i†α + j†α )Wα†
]

×
[
( i′β + j′β)W

β′ + (i′†β + j′†β )W β′†
] )

a†ea
†
νµ|0⟩ , (5.296)

where the primed quantities are understood to be functions of x′:

iα ≡ iα(x) , j′β ≡ jβ(x
′) etc. (5.297)

There are many terms, but which will survive? Out of the required a†µa
†
νeaνµae, the

pair a†νeae is found in iα = ν̄eγαPLe, and the pair a†µaνµ is found in j†α = µ̄γαPL νµ.
Thus, the surviving terms should contain both iα and j†α where they could be functions
of x or x′ and the indices could be α or β. There are two such terms:

⟨f |T (LintL′int)|i⟩

=
g2

2
⟨0|aµaνe

[
T (iαW

αj′†βW
β′†)︸ ︷︷ ︸

(a)

+T (j†αW
α†i′βW

β′)︸ ︷︷ ︸
(b)

]
a†ea
†
νµ |0⟩ . (5.298)

Now, the two T -products gives identical results when integrated over x and x′, which
can be seen as follows: with f(x) ≡ iαW

α and g(x) ≡ j†αW
α†,

(a) = T
(
f(x)g(x′)

) x↔ x′−→ T
(
f(x′)g(x)

)
= T

(
g(x)f(x′)

)
= (b) , (5.299)

where we noted that the ordering of f(x′) and g(x) inside the T -product is irrelevant
since the ordering is uniquely defined by which of x0 and x0′ is larger after all. Thus,
(a) and (b) are related by the exchange x ↔ x′, and thus give the same value when
integrated over x and x′. We will thus evaluate the first term only and then multiply
the result by two which will cancel the factor 1/2 of (5.295).

Remark
The n-th order term of the Dyson series is (by the same derivation that led to the
second order expression)

S =
(−i)n

n !

∫
d4x1 . . . d

4xnT
(
Hint(x1) . . .Hint(xn)

)
, (5.300)
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where terms related by permutation of (x1, . . . , xn) give identical results as we have
seen for the second order case. There are n ! such terms and it cancels the factor 1/n !
in the expression above. Thus, we can ignore the factor 1/n ! of the Dyson series if we
evaluate only one term out of those related by the permutation of (x1, . . . , xn). When
same field appears m times (m > 1) in Lint, where ϕ and ϕ† of a charged field are
considered different since they contain different creation and annihilation operators,
then this protocol (usually) under-counts the number of combinations by factor of m !
for each space-time integration. For example, if the interaction is Lint = λϕ4, then
the first order matrix element for 1 + 2→ 3 + 4 would be

Sfi = iλ
∫
d4x ⟨0|ap⃗3ap⃗4ϕ4(x)a†p⃗1a

†
p⃗2
|0⟩ (5.301)

where there are m ! ways to match ap⃗3ap⃗4 and a
†
p⃗1
a†p⃗2 with those in ϕ4 each giving iden-

tical result. Such a factor is usually taken into account by re-defining (augumenting)
the coupling constant by the factor m !: e.g.

Lint =
1

4 !
λϕ4 . λ (5.302)

Then, if we take the vertex factor to be simply λ and proceed with the Feynman rules,
the factor 4 ! above will be properly accounted for. There are exceptions, however,
which occur when there are extra symmetries in the diagram. Such symmetry factors
will be dealt with when we encounter them.

Note that if one operator, say Ak(tk), commutes with all others in a time-ordered
product T (A1(t1) . . . An(tn)), then it can come out of the time-ordered product:

T
(
A1(t1) . . . An(tn)

)
= Ai1(ti1) . . . Ain(tin) (ti1 ≥ . . . ≥ tin)

= Ak(tk) Ai1(ti1) . . .�
��Z
ZZAk(tk) . . . Ain(tin) (ti1 ≥ . . . ≥ tin)

= Ak(tk) T
(
Ai1(ti1) . . .�

��Z
ZZAk(tk) . . . Ain(tin)

)
. (5.303)

In T (iαW
αj′†βW

β′†), iα and j′†β commute with each other and with W fields; thus, iα

and j′†β can come out of the T -product. Then, the first term in (5.298) is

⟨0|aµaνeiαj
′†
β T (W

αW β′†)a†ea
†
νµ |0⟩

= ⟨0|T (WαW β′†)︷ ︸︸ ︷
1 =

∑
i

|i⟩⟨i|

aµaνeiαj
′†
β a
†
ea
†
νµ|0⟩

= ⟨0|T (WαW β′†)|0⟩⟨0|aµaνeiαj
′†
β a
†
ea
†
νµ|0⟩ . (5.304)
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We have inserted 1 =
∑

i |i⟩⟨i|, where i runs over all basis states, of which only |0⟩⟨0|
survives as can be seen as follows: There are only spin-1 fields to its left (call it A)
and only fermion fields to its right (call it B). Then, in the matrix element

⟨0|A|i⟩⟨i|B|0⟩ , (5.305)

if |i⟩ contains any spin-1 particle, the corresponding annihilation operator in ⟨i| faces
the vacuum to its right and the matrix element vanishes. Similarly, if |i⟩ contains any
fermion, then the corresponding creation operator faces the vacuum to its left and
the matrix element vanishes. Thus, the state |i⟩ cannot contain any spin-1 particle
nor fermion leaving the vacuum state as the only non-zero possibility. By the same
technique, we can write the second factor in (5.304) as a product of two currents:

⟨0|aµaνeiαj
′†
β a
†
ea
†
νµ|0⟩ = ⟨0|aνeiαa†e︷ ︸︸ ︷

1 =
∑
i

|i⟩⟨i|

aµj
′†
β a
†
νµ |0⟩

= ⟨0|aνeiαa†e|0⟩⟨0|aµj
′†
β a
†
νµ |0⟩

= ⟨νe|iα|e⟩⟨µ|j′†β |νµ⟩ , (5.306)

where we have written

|νµ⟩
def≡ a†νµ|0⟩ , |µ⟩ def≡ a†µ|0⟩ , etc. (5.307)

Thus, Sfi is now

Sfi = −
g2

2

∫
d4x d4x′⟨0|T (WαW β′†)|0⟩ ⟨νe|iα|e⟩ ⟨µ|j′†β |νµ⟩ . (5.308)

As we will see below, this form of transition amplitude has an intuitive physical
interpretation. If we divide the W field into the creation and annihilation parts

Wα = Wα
a +Wα†

b with


Wα

a ≡
∑
p⃗λ

ap⃗λh
α
p⃗λ

Wα
b ≡

∑
p⃗λ

bp⃗λh
α
p⃗λ

, (5.309)

then, using the definition of the time-ordered product,

⟨0|T (WαW β′†)|0⟩
= ⟨0|WαW β′†|0⟩θ(x0 − x0′) + ⟨0|W β′†Wα|0⟩θ(x0′ − x0)
= ⟨0|Wα

a W
β′†
a |0⟩θ(x0 − x0′) + ⟨0|W

β′
b W

α†
b |0⟩θ(x0′ − x0) , (5.310)

where in the last line, we have kept only the terms in which creation operators faces
the vacuum on their right or annihilation operators faces the vacuum on their left.
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Recalling that, in the case of scalar field, ⟨0|ϕa(x
′)ϕ†a(x)|0⟩ can be interpreted as the

amplitude for the particle to be created at x and found at x′, we then naturally
interpret ⟨0|T (WαW β′†)|0⟩ as the amplitude to(

create β-component of W+ at x′ and

annihilate α-component of W+ at x

)
if x0 > x0′,(

create α-component of W− at x and

annihilate β-component of W− at x′

)
if x0′ > x0.

(5.311)

Then, the amplitude Sfi can be graphically interpreted as below:

x

x'

x'

x

t
W W

+ -

νµ νµ

µ- µ-νe νe

e- e-

α

β

β

α
i  (x)α

i  (x)α
j  (x')β

†

x > x'0 0
x' > x

0 0( ))(

j  (x')β
†

(5.312)

One sees that when x0 > x0′, W+ is emitted from the νν → µ− current at x′ and
absorbed by the e− → νe current at x. When x0 < x0′, W− is emitted from the
e− → νe current at x and absorbed by the νµ → µ− current at x′. Note that at
each vertex, the charge is conserved. Also, the α-component of the e− → νe current
couples to the α-component of W , and the β-component of the νµ → µ− current
couples to the β-component of W . The amplitude is then summed over α and β
and integrated over x and x′. The propagation amplitude ⟨0|T (Wα(x)W β†(x′))|0⟩ is
called the Feynman propagator for a spin-1 particle.

Let’s evaluate the Feynman propagator ⟨0|T (Wα(x)W β†(x′))|0⟩ so that we can
actually calculate the transition amplitude Sfi. The first term in (5.310) (apart from
the θ function) is

⟨0|Wα
a (x)W

β†
a (x′)|0⟩ = ⟨0|

∑
p⃗λ

ap⃗λh
α
p⃗λ(x)

∑
p⃗ ′λ′

a†p⃗ ′λ′h
β∗
p⃗ ′λ′(x′)|0⟩

=
∑
p⃗λ
p⃗ ′λ′

hαp⃗λ(x)h
β∗
p⃗ ′λ′(x′) ⟨0|ap⃗λa†p⃗ ′λ′|0⟩︸ ︷︷ ︸

δp⃗,p⃗ ′δλ,λ′

=
∑
p⃗︸︷︷︸

V
(2π)3

∫
d3p

−gαβ + pαpβ

m2︷ ︸︸ ︷∑
λ

ϵαp⃗λϵ
β∗
p⃗λ ep⃗(x)e

∗
p⃗(x
′)︸ ︷︷ ︸

e−ip·(x−x
′)

2p0V
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=
1

(2π)3

∫ d3p

2p0

(
− gαβ + pαpβ

m2

)
e−ip·(x−x

′) . (5.313)

We obtain the second term by the exchanges a ↔ b, α ↔ β, and x ↔ x′, which
amounts to the simple sign change of the exponent:

⟨0|W β′
b W

α†
b |0⟩ =

1

(2π)3

∫ d3p

2p0

(
− gαβ + pαpβ

m2

)
eip·(x−x

′) . (5.314)

Thus, ⟨0|T
(
Wα(x)W β†(x′)

)
|0⟩ is a function of z ≡ x−x′, which we denote by iDαβ

F (z).

Combining (5.313) and (5.314),

iDαβ
F (z)

def≡ ⟨0|T
(
Wα(x)W β†(x′)

)
|0⟩ (5.315)

=
∫ d3p

(2π)32p0

[(
− gαβ + pαpβ

m2

)
e−ip·zθ(z0) +

(
− gαβ + pαpβ

m2

)
eip·z︸ ︷︷ ︸

relabel p⃗→ −p⃗ :
(
− gαβ + pαpβ

m2

)
eip

0z0+ip⃗·⃗z

θ(−z0)
]

=
∫ d3p

(2π)3
eip⃗·⃗z

2p0

[(
− gαβ + pαpβ

m2

)
e−ip

0z0θ(z0) +
(
− gαβ + pαpβ

m2

)
eip

0z0θ(−z0)
]
.

Note that the indeces α and β changed from superscripts to subscripts on pαpβ upon

relabeling p⃗ → −p⃗ and that p0 is constrained to
√
p⃗ 2 +m2. The θ functions can be

nicely taken care of using complex analysis. To do so, we will first prove the identity

I ≡
∫ ∞
−∞

dη

2π

f(η)e−iηt

η2 − E2 + iϵ
=
−i
2E

(
f(E)e−iEtθ(t) + f(−E)eiEtθ(−t)

)
(5.316)

where t, E, ϵ are real, E, ϵ > 0, ϵ is small, and η is an integration variable to which
we will now apply the technique of contour integral. We assume that f(E) is a
polynomial of E and does not have poles. Then, the integrand has two poles: (E−iϵ′)
and −(E − iϵ′):

E   i
ε'

E+i
ε'

Im

Reη

η

t>0

t<0

−

−

1

η2 − E2 + iϵ
=

1

η2 − (E − iϵ′)2

=
1

(η − (E − iϵ′))(η + (E − iϵ′))
,

(5.317)
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where ϵ′ ∼ ϵ/2E > 0. What we want is the integral on the real axis from −∞ to
∞. If we choose the contour such that the integral on the semicircle vanish, then the
valule of the countour integral becomes the integration along the real axis. We note
that

e−iηt = e−i(Re η)te(Im η)t → 0 when

{
t > 0 and Im η → −∞, or
t < 0 and Im η → +∞ .

(5.318)

Thus, when t > 0 we have to take the lower loop which picks up the pole at E−iϵ′, and
when t > 0, we have to take the upper loop which picks up the pole at −E+ iϵ′. The
clockwise (anti-clockwise) contour integral of some function F (η) around a first-order
pole η0 is −(+)2πiRes(η0) where the residue is given by

Res(η0) = F (η)(η − η0)
∣∣∣
η=η0

. (5.319)

For our case, the function F (η) is

F (η) =
1

2π

f(η)e−iηt

(η − (E − iϵ′))(η + (E − iϵ′))
. (5.320)

The integral I is then

(t > 0) −2πiRes(E − iϵ′) = −2πi 1

2π

f(η)e−iηt

η + (E − iϵ′)
∣∣∣
η=E−iϵ′

=
−i
2E

f(E)e−iEt ,

(t < 0) 2πiRes(−E + iϵ′) = 2πi
1

2π

f(η)e−iηt

η − (E − iϵ′)
∣∣∣
η=−E+iϵ′

=
−i
2E

f(−E)eiEt ,

(5.321)
which establishes (5.316).

Now, we define

f(p0)
def≡ −gαβ + pαpβ

m2
, (5.322)

which is a function of p0 when α = 0 or β = 0, where pi (i = 1, 2, 3) are considered
to be constant. Then, the following holds for all values of α and β:

f(−p0) = −gαβ + pαpβ
m2

, (5.323)

where we have lowered the indexes α and β in the second term, which can be verified
explicitly for each value of α and β. Using this definition of f(p0) with E = p0 and
t = z0, the identity (5.316) can then be applied to the Feynman propagator (5.315):

iDαβ
F (z) =

∫ d3p

(2π)3
eip⃗·⃗z

2p0

(
f(p0)e−ip

0z0θ(z0) + f(−p0)eip0z0θ(−z0)
)
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=
∫ d3p

(2π)3
eip⃗·⃗z i

∫ ∞
−∞

dη

2π

f(η)e−iηz
0

η2 − p0
2︸︷︷︸

p⃗ 2 +m2

+iϵ

= i
∫ d3p dη

(2π)4
f(η)e−iηz

0
eip⃗·⃗z

η2 − p⃗ 2 −m2 + iϵ
. (5.324)

In the second line above, note that p0 is a constant as long as the integration with
respect to η is concerned, and happens to have the value defined by p0 =

√
p⃗2 +m2.

At this point, there is no p0 in sight, not even in f(η) where p0 has been replaced
by η in the definition (5.322). Since η is a dummy integration variable, we can
call it any way we wish. We choose to call it p0, which is no longer constrained to

p0 =
√
p⃗ 2 +m2. Then,

iDαβ
F (z) = i

∫ d3p dp0

(2π)4
f(p0)e−ip

0z0eip⃗·⃗z

p02 − p⃗ 2 −m2 + iϵ

= i
∫ d4p

(2π)4
−gαβ + pαpβ

m2

p2 −m2 + iϵ
e−ip·z , (5.325)

where we have used the definitions

d4p
def≡ d3p dp0 p2

def≡ p0
2 − p⃗ 2 . (5.326)

Thus, the spin-1 Feynman propagator is now

iDαβ
F (x− x′) def≡ ⟨0|T

(
Wα(x)W β†(x′)

)
|0⟩ =

∫ d4p

(2π)4
iDαβ

F (p)e−ip·(x−x
′)

with iDαβ
F (p) = i

−gαβ + pαpβ

m2

p2 −m2 + iϵ
.

(5.327)

We emphasize again that p0 is an integration variable and not constrained to p0 =√
p⃗ 2 +m2. The numerator of the propagator in momentum space iDαβ

F (p) came from
the spin sum over the propagating W particle, and the denominator is a measure of
how off-mass-shell1 the 4-moomentum of the propagating particle is: the more off-
mass-shell the smaller the corresponding amplitude. As we will see, this is a general
feature of propagators (up to gauge invariance as we will see in the next chapter).

We can now use this spin-1 Feynman propagator to calculate Sfi (5.308) for
the scattering νµe

− → µ−νe and extract the Lorentz-invariant matrix element M.

1A particle of mass m is said to be on mass shell when its 4-momentum p satisfies p2 −m2 = 0.
Thus, p2 −m2 is a measure of how close the particle is to the mass shell.
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Roughly speaking, what happens is as follows: after collecting exponentials from the
fermion normal-mode functions and from the Feynman propagator, the integration
over x gives a delta function for the 4-momentum conservation at the W -eνe vertex,
and the integration over x′ results in another delta function for the 4-momentum
conservation at the W -νµµ vertex. Upon performing the integration over the 4-
momentum of the W [which is in iDF (x− x′)], the two delta functions becomes one
that corresponds to the 4-momentum conservation of initial and final states. Then,
the propagator in momentum space Dαβ

F (p) will survive into M together with the
u, v spinors for the external fermion legs.

Using the explicit expressions for the currents iα and jβ (5.292), we have

⟨νe|iα|e⟩ = ⟨0|aνe(ν̄eγαPLe)a
†
e|0⟩ = f̄νeγαPLfe

⟨µ|j′†β |νµ⟩ = ⟨0|aµ(µ̄′γβPLν
′
µ)a
†
νµ|0⟩ = f̄ ′µγβPLf

′
νµ

. (5.328)

Then, assigning the 4-momenta as in Figure 5.4, Sfi (5.308) is now written as

Sfi = −g
2

2

∫
d4x d4x′

⟨0|T (WαW β′†)|0⟩︷ ︸︸ ︷∫ d4p

(2π)4
iDαβ

F (p)e−ip·(x−x
′)

(f̄νeγαPLfe)(f̄
′
µγβPLf

′
νµ)︷ ︸︸ ︷

eik
′·x

√
2k′0V

e−iq·x√
2q0V

eiq
′·x′

√
2q′0V

e−ik·x
′

√
2k0V

×(ūνeγαPLue)(ūµγβPLuνµ)

=
∫ d4p

(2π)4

∫
d4x e−i(p+q−k′)·x ∫ d4x′ei(p+q′−k)·x′

√
2k′0V 2q0V 2q′0V 2k0V

× −g
2

2
(ūνeγαPLue)iD

αβ
F (p)(ūµγβPLuνµ)︸ ︷︷ ︸

≡M

=
∫ d4p

(2π)4
(2π)4δ4(p+ q − k′)︸ ︷︷ ︸

x vertex

(2π)4δ4(p+ q′ − k)︸ ︷︷ ︸
x′ vertex

M√
2k′0V 2q0V 2q′0V 2k0V

=
(2π)4δ4(k + q − k′ − q′)√
2k′0V 2q0V 2q′0V 2k0V

M , (5.329)

which has the standard form of the definition ofM (5.281) and allows us to use the
cross section formulas we have derived. The Lorentz-invariant matrix elementM

M def≡
( ig√

2

)2
(ūνeγαPLue)i

−gαβ + pαpβ

m2

p2 −m2 + iϵ
(ūµγβPLuνµ) (5.330)

can be obtained directly from the Feynman diagram shown in Figure 5.4 by following
the same rules for the external fermions and vertexes as before and assigning the
factor iDαβ

F (p) for the W propagator. Note that the value of p in the propagator is
constrained to p = k′ − q = k − q′ by the delta functions.



266 CHAPTER 5. INTERACTING FIELDS
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Figure 5.4: The Feynman diagram for the scattering νµe
− → µ−νe.

Let’s evaluate the spin-averaged |M|2. We will assume that the initial-state elec-
tron is unpolarized, but the muon neutrino is assumed to be left-handed since the
V − A current is the only known source of neutrinos; namely, when we have a beam
of neutrinos, it is a good assumption that they are left-handed. On the other hand,
the matrix element above vanishes for a right-handed νµ due to the factor PLuνµ .
Consequently, if we simply sum over the spin of νµ without taking average by divid-
ing by two, it will properly evaluate the cross section for left-handed νµ. Thus, we
will sum over all spins and divide by two to account for the unpolarized initial-state
electron. Also, we will ignore the masses of the fermions assuming a high-energy
scattering. Then, the pαpβ term of the W -propagator vanishes by the same reason
as does the pαpβ term of the W spin sum in the W+ → e+νe decay (5.268). The
properly spin-averaged matrix element squared is then

|M|2 = 1

2

(g2
2

)2 1

|p2 −m2 + iϵ|2
∑
spins

|(ūνeγαPLue)(ūµγ
αPLuνµ)|2︸ ︷︷ ︸

∗

(5.331)

We have already performed exactly the same spin sum (*) for the µ− → νµe
−ν̄e decay.

The only difference is that we had a v spinor for νe before instead of a u spinor in
this case; when summed over spin, however, there is no difference between u and v
spinors as long as the particle is massless:∑

s⃗

vp⃗,s⃗ v̄p⃗,s⃗ = p/ −
/\
m = p/ +

/\
m =

∑
s⃗

up⃗,s⃗ ūp⃗,s⃗ (massless) . (5.332)

Comparing with the complex conjugate of (5.128), we see that all that is needed is
to substitute

p→ q′(µ) , q → q(e) , p′ → k(νµ) , q′ → k′(νe) , (5.333)
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in (5.147) and adjust for the spin average factor of 1/2 used there and the difference
between PL and (1− γ5). Thus, we obtain

(∗) = 16(q′ · k′)(k · q) (5.334)

The iϵ term in the propagator has no effect in this case, and |M|2 is now

|M|2 = 1

2

(g2
2

)2 1

(p2 −m2)2
16(q′ · k′)(k · q) = 2g4

(q′ · k′)(k · q)
(p2 −m2)2

. (5.335)

Let’s define the Lorentz-invariant parameters s and t as

s ≡ (k + q)2 = (k′ + q′)2 = 2k · q = 2k′ · q′
t ≡ (k′ − q)2 = (k − q′)2 = p2

(5.336)

where we have used the 4-momentum conservation k + q = k′ + q′ and k2 = q2 =
k′2 = q′2 = 0. Note that s is the invariant mass of the system squared that
we called M2 when we derived the cross section formulas, and t is the same 4-
momentum transfer squared that we defined in (5.288). Using the formula dσ/dt =
|M|2/16πλ(M2,m2

a,m
2
b) with λ(M

2,m2
a,m

2
b) = s2, we have

dσ

dt
=

1

16πs2
2g4

(s/2)2

(t−m2)2
=

g4

32π(t−m2)2
∼ g4

32πm4
, (5.337)

where the last approximation used |t| ≪ m2 which is a good approximation for
most neutrino beams generated by present-day high-energy accelerators as we will
see shortly. The distribution is essentially flat in t. The range of t can be easily
obtained in the C.M. system where all particles in the initial and final states have the
same energy E =M/2. If the angle between the incoming νµ and the outgoing µ− is
θ, then together with s = 4E2,

t = (k − q′)2 = −2k · q′ = −2(E2 − E2 cos θ) = −s
2
(1− cos θ)

→ 0 ≥ t ≥ −s ; (5.338)

namely, t distributes uniformly from 0 to −s. Thus, the total cross section is (recalling
that m is the W mass)

σ(νµe
− → µ−νe) =

g4

32πm4
W

s (|t| ≪ m2
W , massless fermions) . (5.339)

Let’s work out the number of interaction for a hypothetical case of 1013 νµ’s at 200
GeV hitting an iron target of thickness 10 m. With g = 0.65, mW = 80 GeV, and
me = 5.11× 10−4 GeV, we have

s = 2k · q = 2Eνeme = 0.204 GeV2
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→ σ(νµe
− → µ−νe) = 8.8× 10−12 GeV−2 . (5.340)

This value of s calculated above is much smaller than m2
W ∼ 802 (GeV2), thus, as

promised, |t| ≤ s≪ m2
W . The expected number of interaction per projectile is

N = n(cm−3)σ(cm2)L(cm) , (5.341)

where n and L are the density and the length of the target. Thus, we have to convert
the unit of cross section from GeV−2 to cm2. Since σ was evaluated in the unit system
where h̄ = c = 1, and h̄c has the value

h̄c = 1.9732× 10−14 GeV · cm , (5.342)

if we pick the unit of energy to be GeV, then the unit of length (GeV−1) should
correspond to 1.9732×10−14 cm in order to make h̄c unity. Thus, the unit conversion
is

σ(cm2) = σ(GeV−2)× (1.9732× 10−14)2 = 3.4× 10−39cm2 . (5.343)

The electron density of the iron is n = 2.2 × 1024/cm3; then, the total number of
interactions is

(#νµ)N = (#νµ)nσL

= 1013 · 2.2× 1024(cm−3) · 3.4× 10−39(cm2) · 103(cm) ∼ 75 , (5.344)

which is not a bad number to start planning the experiment!

The muon decay revisited - extraction of g
The muon decay µ− → νµe

−νe that we have studied earlier using the effective inter-
action (5.124) occurs through an exchange of W as shown in Figure 5.5, from which
the Lorentz-invariant matrix element can be read off:

M def≡
( ig√

2

)2
(ūνµγαPLuµ)i

−gαβ + kαkβ

m2
W

k2 −m2
W + iϵ

(ūeγβPLvνe) (5.345)

Since M is Lorentz-invariant, let’s roughly evaluate the sizes of parameters in the
muon rest frame. The 4-momentum k = q + q′ is the 4-momentum of the e−ν̄e
system, and the maximum value of |kα| occurs when the momentum of νµ is zero
and all energy of µ− has to be carried by the e−ν̄e system; namely, k0 = mµ in this
configuration and it is the maximum size that any component of k can take. Thus,∣∣∣∣∣kαkβm2

W

∣∣∣∣∣ ,
∣∣∣∣∣ k2m2

W

∣∣∣∣∣ ≤ ( mµ

mW

)2
∼ 10−5 . (5.346)

Thus, to a good accuracy,

−gαβ + kαkβ

m2
W

k2 −m2
W + iϵ

≈ gαβ

m2
W

; (5.347)
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Figure 5.5: The Feynman diagram for the muon decay µ− → νµe
−ν̄e occurring

through a W exchange.

namely,

M =
ig2

2m2
W

(ūνµγαPLuµ)(ūeγ
αPLvνe) . (5.348)

You may be feeling uncomfortable since a Lorentz-invariant quantity is formed only
after the propagator is combined with the currents; namely, we have to compare

(ūνµγαPLuµ)g
αβ(ūeγβPLvνe) and (ūνµγαPLuµ)

kαkβ

m2
W

(ūeγβPLvνe) ,

in order to claim that the term kαkβ/m2
W can be ignored compared to the term

gαβ in the numerator of the propagator. Even though such worry is justified, the
approximation (5.347) works in general unless there is some accidental cancellation.
Actually, an accidental cancellation does happen here since (ūek/PLvνe) happens to
be zero according to (5.268). The effect of the cancellation, however, is to make the
approximation (5.347) more accurate.

Now, the approximate matrix element (5.348) obtained for mµ ≪ mW is exactly
the same matrix element obtained from the effective interaction (5.124) with the
identification

g2

8m2
W

=
GF√
2
. (5.349)

Since we know the value of the Fermi coupling constant GF from the muon life time,
we can extract the value of the universal coupling constant g:

GF = 1.1664× 10−5(GeV−2) → g = 0.65 (5.350)

which is the value we have been using.
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Propagators for spin-1/2 and spin-0 particles

Just as in the case of spin-1 particles, when a spin-1/2 or spin-0 particle is created
and then absorbed in the course of a process - namely, when it does not appear as an
external leg - it has an effect of propagating a particle from some space-time point
x′ to another space-time point x when x0 > x0′ and propagating an antiparticle in
the opposite direction if x0′ > x0. They are again expressed as vacuum expectation
values of time-ordered products of fields as in the spin-1 case and called the Feyn-
man propagators for spin-1/2 and spin-0 particles, respectively. Following the same
procedure as in the spin-1 case, the spin-1/2 Feynman propagator is

iSF nm(x− x′)
def≡ ⟨0|T

(
ψn(x)ψ̄m(x

′)
)
|0⟩ =

∫ d4p

(2π)4
iSF nm(p)e

−ip·(x−x′)

with iSF nm(p) = i
(p/ +m)nm
p2 −m2 + iϵ

,

(5.351)

where p is the 4-momentum that would be carried by the fermion propagating forward
in time (not the anti-fermion). As in the case of the spin-1 propagator, the numerator
(p/ +m) arises from the spin sum of the propagating fermion. The spin-0 Feynman
propagator is

i∆F (x− x′)
def≡ ⟨0|T

(
ϕ(x)ϕ†(x′)

)
|0⟩ =

∫ d4p

(2π)4
i∆F (p)e

−ip·(x−x′)

with i∆F (p) =
i

p2 −m2 + iϵ
,

(5.352)

which is valid for both hermitian and non-hermitian (charged) fields.

Exercise 5.8 Feynman propagators.
(a) For a hermitian spin-0 field ϕ(x), show that the vacuum expectation value of the
time-ordered product of ϕ(x) and ϕ(y) (the Feynman propagator for spin-0 particle)
can be written as

i∆F (x− y) ≡ ⟨0|T (ϕ(x)ϕ(y))|0⟩

=
∫ d3p

(2π)32p0

[
e−ip·(x−y)θ(x0 − y0) + eip·(x−y)θ(y0 − x0)

]
(5.353)

where p0 ≡
√
p⃗2 +m2. Then use the identity

1

2E

(
f(E)e−iEtθ(t) + f(−E)eiEtθ(−t)

)
=
∫ ∞
−∞

dη

2π

i f(η)e−iηt

η2 − E2 + iϵ
(5.354)
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to write it in the form given in (5.352) with ϕ† = ϕ. The Feynman propagator for a
hermitian spin-0 field is the same as that for a charged spin-0 field.
(b) Propagator for Dirac field: Verify

⟨0|ψj(x)ψ̄k(y)|0⟩ =
∫ d3p

(2π)32p0
(p/ +m)jke

−ip·(x−y)

⟨0|ψ̄k(y)ψj(x)|0⟩ =
∫ d3p

(2π)32p0
(p/ −m)jke

ip·(x−y)
(5.355)

Then, show that the Feynman propagator for a spin-1/2 particle is given by

iSF jk(x− y) ≡ ⟨0|T (ψj(x)ψ̄k(y))|0⟩
= ⟨0|ψj(x)ψ̄k(y)|0⟩θ(x0 − y0)− ⟨0|ψ̄k(y)ψj(x)|0⟩θ(y0 − x0)

=
∫ d4p

(2π)4
i(p/ +m)jk
p2 −m2 + iϵ

e−ip·(x−y) . (5.356)

Note the minus sign for the T-product for femion fields.
(c) Verify

(p/ −m)−1 =
p/ +m

p2 −m2
; (5.357)

thus, the spin-1/2 propagator in momentum space is often written as

iSF (p) =
i

p/ −m+ iϵ

def≡ i
p/ +m

p2 −m2 + iϵ
. (5.358)

The exponential factor e−ip·(x−x
′) is common to the propagators for spin-0, spin-

1/2, and spin-1 particle, and when integrated over x and x′, it becomes part of
the delta functions that represent 4-momentum conservation at ‘each end’ of the
propagator. Thus, the rule is that when we have an internal line in Feynman diagram
(i.e. propagator), we assign the following factor:

spin-0: i∆F (p) =
i

p2 −m2 + iϵ
,

spin-1/2: iSF (p) = i
p/ +m

p2 −m2 + iϵ
,

spin-1: iDαβ
F (p) = i

−gαβ + pαpβ

m2

p2 −m2 + iϵ
.

(5.359)

Since the 4-momentum is to be conserved at each end of the propagator, what value
to take for the 4-momentum p in the propagators in momentum space is usually quite
obvious - except for the sign which depends on whether the propagator is thought
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Figure 5.6: The sign of the 4-momentum in a fermion propagator is defined to be the
one carried by fermion propagating forward in time, not by anti-fermion.

of as a particle propagating forward in time or as an anti-particle propagating again
forward in time. The sign of p does not matter for the spin-0 and spin-1 propagators
which are symmetric under p → −p as can be seen in (5.359). On the other hand,
the sign does matter for the spin-1/2 propagator since the relative sign of p and m in
the numerator p/ +m makes a difference.

As an example, consider a case where initial state anti-fermion emits a vector
meson at x and connects there to a fermion propagator (Figure 5.6). The other end
of the propagator (x′) would connect to a fermion line and a vector, etc., but it is
irrelevant for us now. The propagator iSF (x − x′) as defined in (5.351) propagates
an anti-fermion from x to x′ when x′0 > x0 or propagates a fermion from x′ to x
when x′0 < x0 which is exactly what is needed in this case. If the incoming particle
were a fermion instead of anti-fermion, we would have used iSF (x

′ − x) which would
propagate a fermion from x to x′ when x′0 > x0. What p to use in iSF (p) may be
determined by the delta function that arises when integrated over x. The incoming
antifermion should be matched with bq⃗,s⃗ ḡq⃗,s⃗(x), thus it comes with e−iq·x. Similarly,
the outgoing vector comes with eik·x, and iSF (x− x′) contains e−ip·x. Thus we obtain
δ4(q − k + p) upon integration over x; namely, we should use p = k − q which is the
4-momentum of the fermion propagating forward in time (the diagram on the right
of Figure 5.6). If the incoming particle were a fermion, then the only modification in
the exponential factors above comes from iSF (x

′ − x) which now has eip·x instead of
e−ip·x. Thus, the 4-momentum to use in iSF (p) would be p = q−k which again is the
4-momentum of the fermion propagating forward in time (the diagram on the left of
Figure 5.6 where f̄ is changed to f). The rule is then the 4-momentum of a fermion
propagator should be the one carried by a fermion propagating forward in time.

In the massless limit, the spin-0 and spin-1/2 propagators in (5.359) do not en-
counter diffculties; the spin-1 propagator, however, requires some care since the term
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pαpβ/m2 in the numerator diverges. As we will see later, only for certain type of
theories (where the spin-1 particle couples to a conserved current) the term pαpβ/m2

is strictly zero and thus the spin-1 propagator is well-defined in the massless limit.
We will come back to this problem later.

One important feature to note is that even though the time-ordered product is
defined in a given Lorentz frame, the expressions above for the Feynman propagators
appear to be Lorentz-invariant. To see this more clearly, let’s write down the Feynman
propagator for the real spin-0 particle as

⟨0|T
(
ϕ(x)ϕ(x′)

)
|0⟩ = ⟨0|ϕ(x)ϕ(x′)|0⟩θ(x0 − x0′) + ⟨0|ϕ(x′)ϕ(x)|0⟩θ(x0′ − x0)

= ∆+(x− x′)θ(x0 − x0′) + ∆+(x
′ − x)θ(x0′ − x0)

= ∆+(x− x′)θ(x0 − x0′) + ∆∗+(x− x′)θ(x0′ − x0) , (5.360)

where we have used (4.274) and ∆+(−z) = ∆∗+(z). Namely, the Feynman propagator
is obtained from ∆+(z) by taking the complex conjuagate when z0 < 0. Then, a
natural question is whether one obtains a different result if the complex conjugation
is taken in a different frame. If for example we boost in the x-direction by a boost
factor γ, then the function ∆+(z) will still be identical since it depends only on z2,
and the line (actually a plane) z0 = 0 in the original frame corresponds to

z0 = γz0′ − ηz1′ = 0 , (5.361)

which is a straight line going through the origin whose slope angle never exceeds
π/4. Thus, the time-ordering in the original frame amounts to taking the complex
conjugate of ∆+(z) below the tilted line in the boosted frame. Since ∆+(z) in the
space-like region is real (see Figure 4.3), the result does not depend on the slope. Thus,
the Feynman propagator is independent of the frame in which the time-ordering is
taken. This may be surprising since a propagation of a particle from 0 to z in original
frame becomes a propagation of antiparticle from z to 0 in another frame when the
sign of z0 changes under the Lorentz transformation. One sees that the reason why
this does not make any difference is because ∆+(z) is real in the time-like region.

Before ending this chapter, let’s consider what is the meaning of the sign of iϵ. If
one sets the small imaginary part to be −iϵ in (5.316) and follow the derivation of
the identity, one sees that it only changes the sign of t in the two theta functions,
which traces back to the theta functions in the time-ordered product (5.310). Thus,
it corresponds to propagating a particle from x′ to x if x′ is later in time than x and
propagating an antiparticle from x to x′ if x is later in time than x′; namely, if the
sign of iϵ is flipped, it will propagate particle or antiparticle backward in time.
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Problems

5.1 Charged Scaler Field with Electromagnetic Interaction.
In this problem, we will rigorously follow the procedure of canonical quantization to
obtain the interaction Hamiltonian of scalar-photon coupling. We start from the free
field Lagrangian

L0 = ∂µϕ
†∂µϕ−m2ϕ†ϕ

where ϕ is a complex field corresponding to a charged scaler particle which we denote
as H+.
(a) We will treat the fields as classical for now (i.e. not operators). Introduce the
electromagnetic interaction by the minimal substitution

∂µ → ∂µ + ieAµ

where the photon field Aµ is real and e is the electric charge of H+ (e > 0). Write it
in the form

L = L0 + Lint.

and express Lint in terms of ϕ, ϕ†, Aµ and their space-time derivatives. In principle,
we should also have the free field part of the photon field, but we can ignore it for our
purpose now.
(b) Regard the fields ϕ and ϕ† as independent fields and obtain the corresponsing
conjugate fields π and π† using the definition of conjugate fields

πr ≡
∂L
∂ϕ̇r

where r is a general field index. Of course, the conjugate field of ϕ and that of ϕ† are
not necessarily complex conjugate of each other, but you will see that it happens to be
true in this case.
(c) Apply the Euler-Lagrange’s equation of motion

∂µ
∂L

∂(∂µϕ)
=
∂L
∂ϕ

to obtain the euation of motion for ϕ† in the form (∂2 +m2)ϕ† = xxx.
(d) Construct the hamiltonian density following the definition

H ≡
∑
r

πrϕ̇r − L,

and express it in terms of π,ϕ,∇ϕ, Aµ and their complex conjugates. Then write it
as the sum of the free field part and the interaction part:

H = H0 +Hint,
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where H0 has the same form as the free field case when expressed in terms of the
above fields.
(e) At this point, we move to quantized fields; now all the fields are operators in the
Heisenberg picture. The commutation relations between fields are also imposed as
usual:

[ϕ(t, x⃗), π(t, x⃗′)] = iδ3(x⃗− x⃗′), [ϕ†(t, x⃗), π†(t, x⃗′)] = iδ3(x⃗− x⃗′)
(all others = 0).

Obtain the time derivative of ϕ and π from the Heisenberg’s equation of motion

iȮ = [O,H], H =
∫
d3xH.

The former should give the expression for π†, and the latter should give the equation
of motion for ϕ†. Are they the same form as the ones obtained classically above?
(f) Next, we take the interaction picture. Do the fields ϕ(†) and π(†) still satisfy the
same commutaion relations as above? The time dependences of the operators are
now governed by H0. Write down the expressions for ϕ̇ and π̇. The latter gives the
equation of motion; is it the free field Klein-Gordon equation?
(g) Finally, we will find what interaction term to use for the calculation of S matrix.
Write down the interaction Hamiltonian density Hint in the interaction picture; ex-
press it in terms of ϕ, ϕ†, Aµ and their space-time derivatives (i.e. eliminate π(†)).
Is it the same as −Lint?

5.2 Charged Higgs decay to top and bottom quarks.
The charged Higgs particle (H+) is predicted in a large number of models which are
extensions of the standard model. Such particle may decay to a top quark (t) and a
anti-bottom quark (b̄). The charged Higgs is represented by a complex (non-hermitian)
Klein-Gordon field ϕ, and t and b quarks are represented by Dirac fields ψt and ψb,
respectively. Assume that the interaction responsible for the decay is given by

t

b
−

1
(p , s )1

2
(p , s )

2

Η
+

(P) Lint = cϕ ψ̄tψb + cϕ† ψ̄bψt ,

where c is a real constant and the second term is simply the hermitian conjugate of
the first, making the whole Lint hermitian. The strength of the coupling depends on
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models, but a reasonable guess would be

c =
g mb

mW

,

where mb is the b-quark mass (5 GeV ), mW is the W -boson mass (80 GeV ), and g is
the so-called universal coupling constant of the standard model (0.65 ). The top quark
mass mt is 175 GeV, and assume that the mass of the charged Higgs mH is 400 GeV.
(a) Start from the first-order term of the Dyson series

Sfi = i
∫
d4x⟨f |Lint|i⟩ ,

and use the momentum expansions of the fields

ϕ =
∑

p⃗ (ap⃗ ep⃗ + b†p⃗ e
∗
p⃗)

ψt =
∑

p⃗,s⃗ (ap⃗,s⃗fp⃗,s⃗ + b†p⃗,s⃗ gp⃗,s⃗)

ψb =
∑

p⃗,s⃗ (a
′
p⃗,s⃗f

′
p⃗,s⃗ + b′†p⃗,s⃗ g

′
p⃗,s⃗)

to evaluate the S matrix element Sfi. Note that fp⃗,s⃗ and f ′p⃗,s⃗ are different functions

since they correspond to different masses which appear in p0 =
√
p⃗2 +m2. The initial

state (Higgs ) has momentum k, and the final state has momentum and spin p⃗1, s⃗1
and p⃗2, s⃗2 for t and b̄ quarks, respectively.

Show that the Lorentz-invariant matrix elementM is given by

M = ic ūp⃗1,s⃗1v
′
p⃗2,s⃗2

where v′p⃗2,s⃗2 is the v-spinor of the b̄ quark, and up⃗1,s⃗1 is the u-spinor of the t quark.
(hint: One of the terms of the Lagrangian does not contribute since it does not have
creation and annihilation operators to match the initial and final states.)
(b) Square the matrix elementM, sum over the spins, and use the 2-body decay rate
formula to show that the decay rate is given by

Γ = 3
c2|p⃗|
4π

[
1−

(mb +mt

mH

)2]
where p⃗ is the momentum of the t quark in the C.M. system of H+, and the factor 3
is added to account for the three colors of the quarks.
(c) Numerically calculate the decay rate in unit of GeV.

5.3 The weak decay of charged pion.
The decay π+ → µ+ν, where ν is the muon neutrino, is caused by the effective Hamil-
tonian density given by

Hint =
GF√
2
f(∂αϕ)(ψ̄νγ

α(1− γ5)ψµ) + h.c.
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where ϕ is the π+ field (a charged spin-0 field), ψµ and ψν are the muon and neutrino
fields respectively, GF is the Fermi coupling constant, and f is a constant with di-
mension of energy (called the pion decay constant: f = 0.132 GeV). We take µ− and
ν as fermions and µ+ and ν̄ as anti-fermions. The branching fraction of this mode is
essentially 100 %. Masses and 4-momenta of the particles are

mass (GeV) 4-momentum

π+ M = 0.140 q

µ+ m = 0.106 p

ν 0 p′

(a) Use the momentum expansions of the fields in the first-order expression of the S
matrix to show that the Lorentz invariant matrix element is given by

M =
GF√
2
fqα(ūνγ

α(1− γ5)vµ)

where uν and vµ are the u, v spinors for the neutrino and muon, respectively. [Namely,
the Feynman rule for the derivative coupling of a scalar is to replace ∂µ by the 4-
momentum of the particle and add it to the vertex factor.]
(b) Square the matrix element, sum over the spins of muon and neutrino to obtain∑

spins

|M|2 = 4G2
Ff

2m2(p · p′)

(c) Show that the total decay rate of π+ → µ+ν is given by

Γ =
G2

Ff
2

8π
Mm2

(
1− m2

M2

)2
.

Numerically evaluate the lifetime of π+ in seconds.
(d) Discuss the helicities of the muon and neutrino. Note that the muon is rather
heavy relative to its momentum in the C.M. of the pion; thus, the helicity projection
operator PL does not act as the pure left-handed helicity operator. What happens if
µ+ is massless?

5.4 Top quark decay.
The decay of top quark is dominated by t→ bW+ caused by the interaction term given
by

Lint(x) =
g

2
√
2
Vtd ψ̄t(x)γµ(1− γ5)ψb(x)W

µ(x) + h.c.

where ψt and ψb are the Dirac fields representing top and bottom quarks, respectively,
and W µ is the vector field representing the W boson. The universal coupling constant
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g is approximately 0.65, and Vtb = 1 to a good accuracy. Assume that t, b, and W+

are particles as opposed to anti-particles. The masses, momenta, and spins of the
particles are denoted as

mass momentum spin

t m p s

b m′ q s′

W M k ϵµ

(a) Write down the Feynman diagram and directly apply the Feynman rules to obtain
the Lorentz-invariant matrix element

M = i
g√
2
(ūbγ

µPLut)ϵ
∗
µ .

(b) SquareM and sum over final state spins, average over the initial state spin (the
top quark is assumed to be unpolarized) to obtain

|M|2 = g2

2

(
p · q + 2

M2
p · k q · k

)
(c) Show that the decay rate is given by

Γ =
g2|p⃗|
32π

[
1 + x− 2ω +

(1− x)2

ω

]
where

x ≡ m′2

m2
, ω ≡ M2

m2
,

and |p⃗| is the momentum of W (or b) in the C.M. system of t. Numerically evaluate
Γ in unit of GeV. Use m = 175 GeV, m′ = 5 GeV, and M = 80 GeV.

5.5 Decay of a polarized top quark.
In the decay t(p) → b(q)W+(k), the top quark at rest is assumed to be polarized in
the s⃗ direction. The spins of the final state partcles are not measured. A convenient
way to evaluate the decay rate for the polarized top quark is to place the corresponding
spin projection operator

Σ+(s) =
1 + γ5s/

2

in front of the top quark u spinor, and then execute the spin sum on the top quark
spin as well as other spins. In this way, one can take advantage of the powerful trace
techniques. In the top quark rest frame, the polarization 4-vector is s = (0, s⃗).
(a) Show that the two-body differential decay rate (angular distribution) in the parent
rest frame is given by

dΓ

dΩ
=

|p⃗|
32π2m2

|M|2
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where p⃗ is the momentum of one of the daughters, m is the mass of the parent, and
dΩ = dϕ d cos θ is the angular element of the direction of one of the daughters.
(b) Write down the Lorentz-invariant matrix element with the spin projection operator
inserted, then evaluate the spin-averaged |M|2. Does one have to divide by two for
the top quark spin? One should obtain

|M|2 = g2

2

[
2(p · q −mq · s) + m2

M2
(p · q +mq · s)

]
where m is the top quark mass, M is the W mass, the bottom quark mass is assumed
to be zero, and g = 0.65 is the universal coupling constant. (hint: note that the kαkβ

term of the W spin sum does not vanish in this case. The basic idea is to reduce the
number of gamma’s in the traces by variety of tricks we have learned: move PL’s next
to each other and use P 2

L = PL, and similarly for Σ+(s). Take advantage of p/p/ = m2,
q/q/ = 0. Also, you may want to use p · s = 0, γµa/γµ = −2a/, Tra/b/γ5 = 0, and above
all Tr(odd number of γ′s) = 0.)
(c) Obtain the decay distribution dΓ/dΩ in the t rest frame and express it in terms

of ω
def≡ (M/m)2, g, m and θ which is the angle between the top quark spin and the

flight direction of the b quark.
(d) Integrate over the angles and verify that it becomes the unpolarized decay rate
obtained in the previous problem. Does it make sense that the polarized decay rate is
the same as the unpolarized decay rate?

5.6 Polarization of W in top quark decay.
In this problem, we again consider the decay t(p) → b(q)W+(k) but this time paying
attention to the polarization of W .
(a) Obtain the matrix element squared for each of the three helicity states +1, 0,−1
of W (summed/averaged over spins of t and b) as defined in the top quark rest frame.
Evaluate them using the energy-momenta of particles in the W rest frame where t
and b have the same spatial momentum (by the conservation of momentum). Namely,
express them in terms of g, Et, Eb, and |p⃗|. Don’t assume mb is small.
(b) Evaluate the matrix element squared for each W helicity in the limit mb → 0.
Does it make sense?
(c) Numerically obtain the fraction of the helicity 0 component over the total decay
rate. (hint: use the explicit expression of the polarization vector ϵ for each polariza-
tion. By going to the W rest frame, the ϵ becomes a little simpler.)

5.7 The νµe
− scattering by neutral current.

The scattering νµe
− → νµe

− occurs through coupling of the neutral vector boson Z0

to electron (e−) and muon neutrino (νµ). The relevant interaction is given by

L = − g

cos θW
Zµ
[
ν̄γµs

ν
LPLν + ēγµ(s

e
LPL + seRPR)e

]
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where Zµ is the real spin-1 field for the Z0 boson, ν and e are the Dirac fields rep-
resenting muon neutrino and electron, respectively. The constant g is the universal
coupling constant (∼ 0.65), and θW is called the Weinberg angle and related to the
ratio of W+ and Z0 masses:

cos θW =
mW

mZ

∼ 0.88 .

The coefficients sνL and seR,L are real constants that give strength of left-handed and
right-handed couplings of ν and e to Z. they are given by

sνL =
1

2
, seR = sin2 θW , seL = −1

2
+ sin2 θW .

The propagator of Z is the same as that of W (with different mass).
(a) Show that L is hermitian.
(b) Write down the relevant lowest-order Feynman diagram for

νµ(p)e
−(q)→ νµ(p

′)e−(q′)

and the Lorentz-invariant matrix element M. Then assume that the 4-momenta
involved are small compared to the Z mass; namely, k2 ≪ m2

Z and all other Lorentz-
invariant expressions such as p ·q, p ·q′ · · · ≪ m2

Z, where k is the 4-momentum carried
by Z. In this limit the propagator acts as a constant. Then use the Fermi coupling
constant GF = g2/(4

√
2m2

W ) to simplifyM.
(c) Assume that the incoming muon neutrino is left-handed, then calculate the dif-
ferential cross section dσ/dt separately for the cases the final-state electron is right-
handed and left-handed, where t ≡ (p′ − p)2 is the invariant 4-momentum transfer.
The initial-state electron is unpolarized. Assume that the mass of electron me is
much smaller than the energies and momenta involved. Express the results in terms
of GF , s, t, and sin2 θW , where s ≡ (p + q)2 is the C.M. total energy squared. The
approximation of (b) also applies.
(d) Suppose the energy of the neutrino beam is 200 GeV and the electron target is
at rest. Is the approximation we have made in (b) reasonable? What is the angle
of the final-state electron with respect to the neutrino beam direction when the final-
state electron has the maximum transverse momentum which is the component of p⃗
perpendicular to the neutrino beam direction? Give the answer in radian. This is not
the maximum angle, but one can see that the scattering angle is in general very small.
(e) Finally, let’s find out the energy distribution of the recoil electron in the lab. frame
for a fixed beam energy. Re-write the two differential cross sections, separately for the
two helicities of the recoil electron, in terms of the energy of the final-state electron
in unit of the neutrino beam energy; call it x which is dimensionless. Plot dσ/dx in
unit of G2

F s/π. You can use your favorite plotting program or you can hand-draw it
on a graph paper or equivalent.
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5.8 Polarized W decay.
A polarized W+ with polarization vector ϵµ decays to µ+ and νµ:

W+(k, ϵ)→ µ+(p, s)νµ(q, s
′)

where the initial state is at rest. Assume the muon and neutrino to be massless.
(a) W+ is polarized with its spin pointing to +z direction; namely, the component
of spin in z direction is +1. Write down the explicit polarization vector ϵµ in the
laboratory coordinate system.
(b) Calculate the differential decay rate dΓ/dΩ in the C.M. system, where Ω is the
direction of the muon with respect to the z axis. Express it in terms of the weak
coupling constant g, W mass M , and θ, ϕ of the muon direction. (hint: You may
have to evaluate the term with ϵαβγδ explicitly.)
(c) Does the muon tend to get emitted forward or backward with respect to the W+

spin direction? What if the parent is W−?





Chapter 6

Quantum Electrodynamics

As far as we know, the mass of photon is zero, and the main purpose of this chapter
is to deal with subtleties that arise as the consequence. And when we do so, we will
have a remarkably successul theory of photon and charged fermion called quantum
electrodynamics (QED). The story is roughly as follows: first, the helicity-0 polar-
ization vector diverges in the massless limit, and an attempt to restore it results in
an unphysical state leaving only two degrees of freedom corresponding to helicity ±1.
Then, we will see that simply banishing the unphysical states is incompatible with
the 4-vector nature of the photon field Aµ(x); or equivalently, even if Aµ(x) happens
to have no unphysical component, a Lorentz transformation can generate it. It then
follows that in order for the theory to be Lorentz-invariant, the unphysical component
should interact with other fields in such a way that it has no observable consequences.
Such is the case if photon field couples to a conserved current, and this then leads to
the concept of gauge invariance.

It is a non-trivial question how such gauge symmetry in classical field theory trans-
lates to features in the corresponding quantized theory. Quantizing a theory with
massless spin-1 particle encounters obstacles because the field Aµ has 4-components
while photon has only two physical degrees of freedom. In the case of massive spin-1
field, the Lorentz condition ∂µA

µ = 0 removed one degree of freedom in a Lorentz-
invariant way. Upon momentum expanding the field under the constraint, introducing
standard commutators for the resulting creation and annihilation operators gave a
satisfactory quantized field. In the case of massless spin-1 field, we have another de-
gree of freedom to remove, and this cannot be done easily without explicitly breaking
Lorentz-invariance. One approach is to impose additional condition that explicitly
restricts the number of degrees of freedom to two (e.g. ∇⃗ · A⃗ = 0) accepting that the
procedure is no longer Lorentz-invariant. The Lorentz invariance will be restored in
the end when S matrices are calculated. Another approach is to keep the formulation
Lorentz-invariant while allowing unphysical states to enter into the quantization pro-
cedure (the Gupta-Bleuler method). This results in fictitious particles (referred, in
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general, as ‘ghosts’) that cancel in the evaluations of observable effects. In this book,
after briefly describing these methods, we will take the third approach: we will start
from a theory with massive photon coupling to a conserved current, and take the limit
of massless photon. Yet another way, which is widely used to directly obtain Feynman
rules for more complicated theories, is the path integral method. This technique, in
spite of its importance and elegance, is not strictly required for the quantization of
quantum electrodynamics and we will leave it to many other excellent textbooks.

6.1 Massless spin-1 particle and gauge invariance

We will start from trying to find the appropriate momentum expansion of a massless
spin-1 field within the framework of non-quantized field. For a free massive spin-1
field Aµ which we assume to be real, the momentum expansion that satisfies the
Lorentz condition ∂µA

µ(x) = 0 and the Klein-Gordon equation (∂2 +m2)Aµ(x) = 0
(which together are equivalent to the Proca equation) is

Aµ(x) =
∑

p⃗,λ=1,2,3

ap⃗λϵ
µ
p⃗λep⃗(x) + c.c. with ep⃗(x) ≡

e−ip·x√
2p0V

. (6.1)

where p0
def≡
√
p⃗ 2 +m2 with m being the mass of the spin-1 particle. The polarization

vectors are given in the linear basis by

ϵp⃗1 = (0, êp⃗1)

ϵp⃗2 = (0, êp⃗2)

ϵp⃗3 = (η, γêp⃗3)

(
η ≡ |p⃗|

m
, γ ≡ p0

m
, êp⃗3 = p̂

)
, (6.2)

where êp⃗1 and êp⃗2 are unit vectors perpendicular to p̂ and to each other.
Upon taking the limit m → 0, one immediately encounters a problem; namely,

the polarization vector for the helicity-0 component ϵp⃗3 diverges. Then, how can
Aµ(x) be expanded under ∂µA

µ(x) = 0 and ∂2Aµ(x) = 0 (the Klein-Gordon equation
with m = 0)? For this, we have to start from the beginning. Any 4-component real
function that satisfies (∂2 +m2)Aµ(x) = 0 can be uniquely expanded as

Aµ(x) =
∑
p⃗

Aµ
p⃗ep⃗(x) + c.c. (6.3)

where Aµ
p⃗ is a complex number uniquely defined for a given Aµ(x). The expansion

works fine as before; the only difference is that we now have m = 0 and thus p0 ≡ |p⃗|
(p0 appears in ep⃗(x)). Because of the orthonormality of the normal-mode functions
ep⃗(x), the Lorentz condition ∂µA

µ(x) = 0 leads to

pµA
µ
p⃗ = 0 (for all p⃗) (6.4)
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If m were non-zero, we could move to the rest frame where pµ = (m, 0⃗) and expand
Aµ

p⃗ in terms of êp⃗,λ=1,2,3. This time, however, we cannot go to the rest frame since
m = 0. We thus have to expand the coefficient Aµ

p⃗ without moving to the rest frame.
In the coordinate system defined by êp⃗1,2,3, the 4-momentum is

pµ = (p0, 0, 0, p0) , (6.5)

and then the Lorentz condition pµAµ
p⃗ = 0 becomes

p0A0
p⃗ − p0A3

p⃗ = 0 or A0
p⃗ = A3

p⃗ . (6.6)

Namely, if Aµ
p⃗ has only 1 and/or 2 component (namely, the transverse component), the

Lorentz condition is trivially satisfied, and if there is nonzero 3 component (namely,
the component parallel to p⃗) the 0 component should have the same value. Thus, Aµ

p⃗

can be uniquely expanded as

Aµ
p⃗ =

∑
λ=1,2,3

ap⃗λε
µ
p⃗λ (6.7)

with
εµp⃗1 = (0, 1, 0, 0)

εµp⃗2 = (0, 0, 1, 0)

εµp⃗3 = (1, 0, 0, 1)

, (6.8)

where we have used curly epsilon ε instead of ϵ for the polarization vectors to distin-
guish them from the massive case. Note that εµp⃗1 and ε

µ
p⃗2 are the same as the massive

case (6.2), and that the third polarization is proportional to the 4-momentum:

εµp⃗3 ∝ pµ , (6.9)

which can be regarded as the massless limit of ϵµp⃗3 = (η, 0, 0, γ) where we have η →
γ asymptotically. Substituting (6.7) in (6.3), a massless spin-1 field that satisfies
∂µA

µ = 0 and ∂2Aµ = 0 can be uniquely expanded as

Aµ(x) =
∑

p⃗,λ=1,2,3

ap⃗λε
µ
p⃗λep⃗(x) + c.c. (6.10)

Now, the problem is that the third polarization εµp⃗3 has zero norm:

εµ∗p⃗3εp⃗3µ = 0 . (6.11)

This effectively results in such state carrying no energy or momentum. This can be
seen classically by evaluating the corresponding electric and magnetic fields which are
seen to vanish. In fact, for the plane wave of the third polarization

Aµ(x) = εµp⃗3 e
−ip·x + c.c. , (6.12)
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E⃗ and B⃗ are

E⃗ ≡ −∂0A⃗− ∇⃗A0 = (i p0ε⃗p⃗3︸ ︷︷ ︸
p⃗

−ip⃗ ε0p⃗3︸︷︷︸
1

)e−ip·x + c.c. = 0 (6.13)

B⃗ ≡ ∇⃗ × A⃗ = ip⃗× ε⃗p⃗3 e−ip·x + c.c. = 0 . (6.14)

Thus, such state does not carry any energy or momentum which are given by

H =
1

2

∫
d3x(E⃗2 + B⃗2) , P⃗ =

∫
d3xE⃗ × B⃗ . (6.15)

This is for classical fields, but the situation is similar if we were to quantize Aµ by
introducing the standard commutators for a

(†)
p⃗λ (λ = 1, 2, 3) in the expansion (6.10)

and evaluate H and P⃗ defined as above: the number operators corresponding to the
third polarization drop out leaving only λ = 1 and 2.

Thus, we declare that the third polarization to be unphysical and postulate that
the polarization vectors εµp⃗ and εµp⃗ + cεµp⃗3 represent the same physical state where εµp⃗
is any polarization vector and c is an arbitrary constant. Then, when the theory is
quantized and the Feynman rules are derived, the Lorentz-invariant matrix element
M should have the same value under the replacement (using εµp⃗3 ∝ pµ)

εµp⃗ → εµp⃗ + cpµ ; (6.16)

namely,
M(. . . , εp⃗, . . .) =M(. . . , εp⃗ + cpµ, . . .) . (6.17)

Such postulate would be unnecessary if the unphysical components can be banished
from the theory and never appear again. This, however, is not the case since a
Lorentz transformation can generate the banished unphysical polarization. To see
this clearly, consider a Lorentz transformation that is a small boost along êp⃗1 followed
by a rotation around êp⃗2 that rotates p⃗ back to the original direction (Figure 6.1). The
corresponding 4× 4 matrix defined in the the space coordinate axes (êp⃗1, êp⃗2, êp⃗3 = p̂)
is

Λ = 1 + α(K1 − L2) = 1 + α




0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

−


0 0 0 0

0 0 0 1

0 0 0 0

0 −1 0 0




= 1 + α


0 1 0 0

1 0 0 −1
0 0 0 0

0 1 0 0

 (α: real and small) . (6.18)
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e^ 3

e^ 1

α 1

α L
2

p

−

Κ

e^ 2

Figure 6.1: A rotation that keeps a massless pµ invariant. It first boosts along ê1 by
a velocity α and then rotates it back around ê2 by −α radian.

We can verify that it indeed leaves the momentum direction invarirant: since
pµ = (p0, 0, 0, p0),

p′ = Λp = p+ α


0 1 0 0

1 0 0 −1
0 0 0 0

0 1 0 0



p0

0
0
p0


︸ ︷︷ ︸

0

= p . (6.19)

We see that this transformation leaves invariant not only the direction of p⃗ but also
the whole 4-momentum pµ.1 Under this Λ, εp⃗2 is also invariant:

Λεp⃗2 = εp⃗2 + α


0 1 0 0

1 0 0 −1
0 0 0 0

0 1 0 0



0
0
1
0

 = εp⃗2 , (6.20)

but εp⃗1 develops a component proportional to εp⃗3:

Λεp⃗1 = εp⃗1 + α


0 1 0 0

1 0 0 −1
0 0 0 0

0 1 0 0



0
1
0
0

 = εp⃗1 + α


1
0
0
1

 = εp⃗1 + αεp⃗3 . (6.21)

1The group formed by the Lorentz transformations that keep the 4-momentum of a particle in-
variant is called the Wigner’s little group, and plays an important role in rigorous treatment of
Lorentz transformation of states in the Hilbert space. For a massive particle, the relevant transfor-
mation boosts to the rest frame of the particle rotate it and then boost back such that the particle
has the same 4-momentum as before.
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Thus, even if one eliminates the unphysical component in one frame, it shows up in
other frames. Similarly, one can verify that the transformation Λ = 1 + α(K2 + L1)
generates the unphysical component out of εp⃗2 while keeping pµ invariant.

Getting back to the condition (6.17), we first note that a polarization vector in
general appears linearly inM as

M(. . . , εp⃗, . . .) = εµp⃗ Iµ , (6.22)

where Iµ is whatever εµp⃗ is multiplied to in forming M. Then the condition (6.17)
becomes

εµp⃗ Iµ = (εµp⃗ + c pµ)Iµ

→ pµ Iµ = 0 . (6.23)

Namely, if the polarization vector of a photon is replaced by its 4-momentum, the
matrix element vanishes. Even though the matrix element is evaluated in the frame-
work of quantized field theory, let’s for the moment try to guess what it means in
terms of the classical field theory. Applying the condition (6.16) each of the three
basis polarization vectors, the replacement can be written as

εµp⃗λ → εµp⃗λ + cp⃗λp
µ (λ = 1, 2, 3) , (6.24)

where the subscripts on cp⃗λ indicates that it is in general a function of p⃗ and λ. In
terms of the field Aµ(x), this replacement translates to

Aµ(x) =
∑

p⃗,λ=1,2,3

ap⃗λε
µ
p⃗λep⃗(x) + c.c.

→
∑

p⃗,λ=1,2,3

ap⃗λε
µ
p⃗λep⃗(x) +

∑
p⃗,λ=1,2,3

i∂µ︷︸︸︷
pµ ap⃗λcp⃗λep⃗(x) + c.c.

= Aµ(x) + ∂µΛ(x) (6.25)

with Λ(x) = i
∑

p⃗,λ ap⃗λcp⃗λep⃗(x) + c.c.. Thus, it seems reasonable to demand that the
theory is invariant under the transformation

Aµ(x)→ Aµ(x) + ∂µΛ(x) (6.26)

where Λ(x) is an arbitrary differentiable real function of x. As we will see below, this
is realized if Aµ is linearly coupled to a conserved current,

Lint = −eAµ(x)jµ(x) , ∂µjµ(x) = 0 . (6.27)

In the later sections, we will show that, upon quantization, such theory (the quantum
electrodynamics) indeed leads to matrix elements that are invariant under the sub-
stitution εµ

k⃗λ
→ εµ

k⃗λ
+ ck⃗λk

µ. Here, we will proceed within the framework of classical
field theory.
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To see that the theory is invariant under Aµ → Aµ + ∂µΛ, it suffices to show that
the action S is invariant under the same transformation. The change in S due to
Aµ → Aµ + ∂µΛ is

∆S = ∆
∫
d4xLint = −e

∫
d4x

apply partial integration︷ ︸︸ ︷
(∂µΛ)jµ

= e
∫
d4xΛ ∂µjµ︸ ︷︷ ︸

0

(6.28)

= 0 .

In this proof, we have used the conservation of current which is correct only when the
fields that form the current follow equations of motion. In deriving the equations of
motion of the whole system, one can proceed one field at a time, each time restricting
the field to follow the equation of motion before moving to the next field. Thus, we
can assume that the current is conserved in the evaluation of action above (as long as
the current itself does not contain Aµ, and as long as the derivation of the conserved
current is not affected by Aµ → Aµ+∂µΛ). Let’s take a concrete example of quantum
electrodynamics.

In the case of electron photon system, the Lagrangian is the sum of the electron
part, the massless spin-1 part, and the interaction part2 Lint = −eAµjµ (e < 0) with
jµ = ψ̄γµψ:

L = ψ̄(i∂/ −m)ψ︸ ︷︷ ︸
Le

−1

4
FµνF

µν︸ ︷︷ ︸
Lγ

−eAµ(ψ̄γµψ)︸ ︷︷ ︸
Lint

. (6.29)

We first vary the electron field to derive the conserved current. Instead of obtaining
the equation of motion for ψ to prove the conservation of current, the action principle
can be used to prove the current conservation directly as follows. Suppose ψ(x) is a
solution, then any small variation should lead to δS = 0 due to the action principle.
Let us take the variation to be a phase rotation that depends on space-time position:

ψ(x)→ eiθ(x)ψ(x) , ψ̄(x)→ e−iθ(x)ψ̄(x) . (6.30)

Under this change, Lγ is not touched and Lint stays the same since the phase factor
cancels out. The electron term Le, however, changes due to the derivative ∂µ operating
on the space-time dependence of θ(x):

Le = ψ̄(i∂/ −m)ψ = iψ̄γµ∂µψ −mψ̄ψ
2That the sign of Lint is correct can be seen heuristically as follows: The time component of Lint

is −ej0A0 where j0 is the electron density and A0 is the electrostatic potential. This has properly
the form −(potential energy) as such term should have in Lagrangian.
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→ i(e−iθψ̄)γµ ∂µ(e
iθψ)︸ ︷︷ ︸

eiθ∂µψ + i(∂µθ)e
iθψ

−mψ̄ψ

= iψ̄γµ∂µψ − (ψ̄γµψ)∂µθ −mψ̄ψ
= Le + δLe , (6.31)

with
δLe = −(ψ̄γµψ)∂µθ . (6.32)

Then the variation in action is

δS =
∫
d4x

−(ψ̄γµψ)∂µθ → partial integration︷ ︸︸ ︷
δLint

=
∫
d4x [∂µ(ψ̄γ

µψ)] θ . (6.33)

which should vanish for small and arbitrary θ(x) (actually, δS given above is valid
even for finite θ(x), but it is besides the point); thus, we have a conserved current

∂µj
µ = 0 , jµ = ψ̄γµψ , (6.34)

and one can proceed, as we have done in (6.29), to prove that the theory is invariant
under the transformation Aµ → Aµ + ∂µΛ based on the fact that the photon field is
coupled to the conserved current in the QED Lagrangian.

Note that the conserved current (6.34) is the same as the one obtained by the
Noether’s theorem based on the invariance of the Lagrangian density under the global
phase transformation (namely, the phase does not depend on space-time)

ψ → eiθψ , ψ̄ → e−iθψ̄ (θ : real constant) . (6.35)

The Lagrangian density, however, is not invariant under the local phase transformation
ψ → eiθ(x)ψ (and accordingly for ψ̄) because of the extra term δLint generated by ∂µ
operating on θ(x) as we have seen in (6.31). Nor is the Lagrangian invariant under
Aµ(x) → Aµ(x) + ∂µΛ(x) (the action is). There is, however, a curious aspect of the
form of the QED Lagrangian which we will demonstrate below; namely, it is invariant
if we transform ψ and Aµ simultaneously and set θ(x) = −eΛ(x):

ψ(x)→ e−ieΛ(x)ψ(x) , Aµ(x)→ Aµ(x) + ∂µΛ(x) . (6.36)

First, the tensor F µν does not change:

F µν ≡ ∂νAµ − ∂µAν

→ ∂ν(Aµ + ∂µΛ)− ∂µ(Aν + ∂νΛ)

= ∂νAµ − ∂µAν + ∂ν∂µΛ− ∂µ∂νΛ︸ ︷︷ ︸
0

= F µν . (6.37)
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Thus, the photon part is invariant under (6.36):

δLγ = 0 . (6.38)

The variation of the interaction part is

δLint = −e(Aµ + ∂µΛ) (eieΛψ̄)γµ(e
−ieΛψ)︸ ︷︷ ︸

ψ̄γµψ

−(−eAµψ̄γµψ)

= −e(∂µΛ)ψ̄γµψ (6.39)

Together with δLe = e(∂µΛ)ψ̄γµψ which is obtained by setting θ = −eΛ in (6.32),
the total change in L indeed vanishes:

δL = �
��Z
ZZδLe +�

��Z
ZZδLγ + δLint

= e(∂µΛ)ψ̄γµψ − e(∂µΛ)ψ̄γµψ = 0 . (6.40)

Thus, the QED Lagrangian is invariant under the simultaneous space-time dependent
transformations of ψ and Aµ given by (6.36). Such symmetry of Lagrangian is called
a local gauge symmetry or a gauge symmetry of second kind (the first kind being
the symmetry under the global phase transformation of ψ). Sometimes it is simply
called a gauge symmetry and the transformation (6.36) a gauge transformation. Note
that the invariance holds for finite Λ(x) - the transformation does not have to be
infinitesimal.

The gauge symmetry of the QED Lagrangian is put in a more transparent form
by defining the covariant derivative Dµ by

Dµ
def≡ ∂µ + ieAµ(x) (6.41)

which allows us to write the Lagrangian (6.29) as

L = ψ̄(i∂/ − eA/ −m)ψ − 1

4
FµνF

µν

= ψ̄(iD/ −m)ψ − 1

4
FµνF

µν (6.42)

This is of course the minimal substitution we have encountered before. A critical
point is that, under the gauge transformation (6.36), the phase factor e−ieΛ comes
straight out of Dµψ:

Dµψ ≡ (∂µ + ieAµ)ψ

→ [∂µ + ie(Aµ + ∂µΛ)]e
−ieΛψ

= e−ieΛ∂µψ + �
��Z
ZZ(−ie∂µΛ)e−ieΛψ + ie(Aµ +�

��Z
ZZ∂µΛ)e

−ieΛψ

= e−ieΛ(∂µ + ieAµ)ψ

= e−ieΛDµψ . (6.43)
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Then, the invariance of the ‘kinetic’ term ψ̄iD/ψ becomes trivial:

ψ̄iγµDµψ → (eieΛψ̄)iγµ(e−ieΛDµψ) = ψ̄iγµDµψ . (6.44)

Together with mψ̄ψ → mψ̄ψ and F µν → F µν , we see that the Lagrangian (6.42) is
invariant under the gauge transformation.

Even though we have started out by requiring the Lorentz condition ∂µA
µ = 0 to

be satisfied, the Lagrangian (6.29) is invariant under the gauge transformation even
if ∂2Λ ̸= 0 which will break the Lorentz condition; in fact, under Aµ → Aµ + ∂µΛ we
have

∂µA
µ → ∂µA

µ + ∂2Λ︸︷︷︸
̸= 0 in general

. (6.45)

When we introduced Λ(x) in (6.25), it satisfied ∂2Λ = 0 since it was a linear combi-
nation of e±ip·x with p0 = |p⃗|. However, when we proved that a theory with conserved
current is invariant under Aµ → Aµ + ∂µΛ in (6.29), Λ(x) was no longer required to
satisfy ∂2Λ = 0. Nor was it required to show the invariance of L under the gauge
transformation (6.36). Using the flexibility granted by the gauge invariance, one can
often simplify calculations by imposing some conditions - called ‘fixing the gauge’.
Often-used ‘gauges’ are

∂µA
µ = 0 : Lorentz gauge

∇⃗ · A⃗ = 0 : Coulomb (or radiation) gauge

A0 = 0 : temporal gauge

A3 = 0 : axial gauge .

(6.46)

Note that, except for Lorentz gauge, they break Lorentz invariance. Each of these
conditions does not by themselves exhaust all the degrees of freedom of the gauge
transformation. For example, after the Lorentz gauge condition (6.4) was applied,
we had three degrees of freedom for free massless spin-1 field as given by the three
polarization vectors (6.8). Then, one more degree of freedom can be eliminated by

imposing the Coulomb gauge condition ∇⃗ · A⃗ = 0 on top of the Lorentz condition,
which will remove the third polarization leaving the two transverse polarizations. The
resulting field satisfies

A0 = 0 , ∇⃗ · A⃗ = 0 . (6.47)

This set of conditions, which applies to a free massless spin-1 field, is sometimes called
as the Coulomb (or radiation) gauge.

Let us reflect on the flow of the logic we followed. First, we saw that, in the mass-
less limit, the helicity-0 component of a spin-1 particle became unphysical. In order
for such unphysical state to have no observable effects, we saw that the corresponding
classical theory should be invariant under the transformation Aµ → Aµ + ∂µΛ where



6.2. QUANTIZATION OF QUANTUM ELECTRODYNAMICS 293

Λ is an arbitrary real function. This was accomplished by coupling Aµ to a conserved
current which then made the action invariant under Aµ → Aµ + ∂µΛ, but not the
Lagrangian density. We then observed that the Lagrangian density itself was invari-
ant under the local gauge transformation (6.36) where ψ and Aµ are simultaneously
transformed space-time dependently.

Now, we could have ‘obtained’ the QED Lagrangian by following the above rea-
soning backward, namely, by starting from the free electron Lagrangian ψ̄(i∂/ −m)ψ
and then requiring that the Lagrangian be invariant under the local phase transfor-
mation ψ → eiθ(x), which leads to an introduction of a spin-1 field that couples to ψ
through the covariant derivative Dµ = ∂µ + ieAµ and simultaneously transforms to
cancel the extra term generated by the space-time dependence of θ(x). The gauge
transformation (6.36) forms a group. Since the phase transformation eiθ is generated
by a 1 by 1 unitary matrix (namely, just 1), it is called U(1) gauge group. When a La-
grangian is invariant under certain global transformations that form a Lie group, one
can in general make the Lagrangian invariant under the corresponding local transfor-
mation by introducing a spin-1 field corresponding to each generator of the Lie group.
Such introduction of interactions by requirement of local gauge symmetry is called
the gauge principle. We will later apply it to SU(2) group (for example, exchange of
electron and neutrino), which constitutes a crucial part in constructing the standard
model of elementary particles.

Gauge invariance requires that the spin-1 particle be massless. This can be seen
by noting that the mass term transforms as

m2AµAµ → m2(Aµ + ∂µΛ)(Aµ + ∂µΛ)

= m2
(
AµAµ + (∂µΛ)Aµ + Aµ∂

µΛ + ∂µΛ∂µΛ︸ ︷︷ ︸
̸= 0

)
(6.48)

The conservation of current, however, is not affected even if photon is massive as can
be easily seen by noting that the mass term m2AµAµ would not affect the derivation
of conserved current (6.34). As will see, this allows us to quantize the system by first
giving the photon a mass and then taking the massless limit.

6.2 Quantization of quantum electrodynamics

In the previous section, we saw that a theory of massless photon should have a
feature that transition matrix elements it produces are invariant when one adds to the
polarization vector of a photon an arbitrary term proportional to the 4-momentum of
the photon: ϵk⃗λ → ϵk⃗λ+ ckµ. Then we went on to construct a Lagrangian that would
satisfy such requirement in the framework of classical field theory. In order to see that
the resulting theory really produces matrix elements that are invariant under such
transformation, however, we need to actually quantize the QED Lagrangian (6.29).
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In quantizing the QED Lagrangian, one has to quantize a free massless spin-1
particle (namely, photon), and to do so, one has to somehow deal with the two extra
degrees of freedom that arises from the fact that the field Aµ has four components
while the physical photon has only two degrees of freedom corresponding to helicities
±1. There are more than one ways to accomplish this, and, luckily, they all give same
matrix elements in the end.

The most straightforward is to eliminate all unphysical degrees of freedom and
then proceed to apply the method of canonical quantization. A convenient, though
not Lorentz-invariant, way to remove the unwanted degrees of freedom is to impose
the Coulomb gauge condition

∇⃗ · A⃗(x) = 0 . (6.49)

As there is no time derivative of A0 appearing in the QED Lagrangian (6.29), A0 does
not have corresponding canonical momentum ∂L/∂Ȧ0. Thus, one degree of freedom
is already removed. Out of the three polarizations of (6.8), the third violates the
Coulomb gauge condition above which reads

p⃗ · A⃗(x) = 0

for a plane wave. On the other hand, ϵp⃗1 and ϵp⃗2 satisfy it. The expansion of the
space part of Aµ is then obtained by taking only λ = 1, 2 in (6.1)

A⃗(x) =
∑

p⃗,λ=1,2

êp⃗λ[ap⃗λep⃗(x) + a†p⃗λe
∗
p⃗(x)] . (6.50)

The time dependence above is for the free field or that in the interaction picture. The
quantization condition can be imposed by introducing the standard commutation
relations among a’s and a†’s:

[ap⃗,λ, a
†
p⃗ ′,λ′ ] = δp⃗p⃗ ′δλλ′

[ap⃗λ, ap⃗ ′λ′ ] = [a†p⃗λ, a
†
p⃗ ′λ′ ] = 0

(6.51)

One obvious problem is that such quantization is not explicitly Lorentz-invariant since
applying a Lorentz transformation to Aµ can lead to the unphysical third polarization
εp⃗3; namely, Coulomb gauge condition in one frame is not the same as that in another
frame. However, when transition matrix elements are obtained in the end, thay turn
out to be Lorentz-invariant. This method is called the Coulomb-gauge quantization.

The second method is to treat all four components of Aµ as independent in order
to preserve Lorentz invariance of the procedure (the Gupta-Bleuler method). The
polarization vectors are naturally taken to be

ϵp⃗0 = (1, 0, 0, 0)

ϵp⃗1 = (0, 1, 0, 0)

ϵp⃗2 = (0, 0, 1, 0)

ϵp⃗3 = (0, 0, 0, 1)

(6.52)
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in the frame where pµ = (p0, 0, 0, p0). The photon Lagrangian −1
4
FµνF

µν is incom-

patible with this scheme since, as mentioned above, it does not contain Ȧ0 and thus
there is no canonical conjugate to A0. The fix is to add an extra Lorentz-invariant
term to the Lagrangian

Lγ = −1

4
FµνF

µν +
1

2α
(∂µA

µ)2 (6.53)

where α is an arbitrary constant, and impose ‘Lorentz condition’ as

⟨Ψ|∂µAµ|Ψ⟩ = 0 (6.54)

for all physical states |Ψ⟩. The Lorentz condition ∂µAµ = 0 cannot be applied directly
to the field since that would revert the Lagrangian (6.53) back to the original form
where there is no canonical conjugate to A0. Then, the commutation relations treating
all four components as independent

[Aµ(t, x⃗), π
ν(t, x⃗ ′)] = igµ

νδ3(x⃗− x⃗ ′) (6.55)

establish the quantized theory. In this scheme, the unphysical 0-th and 3-rd compo-
nents also propagate as particles (the ‘ghosts’) with the 0-th component carrying neg-
ative probability. However, the two unphysical components always cancel each other
in evaluating observable effects. This is reminiscent of the fact that the unphysical
polarization εµp⃗3 = (1, 0, 0, 1) in (6.12) did not carry any energy or momentum due
essentially to cancellation of the 0-th and 3-rd components.

The method adopted here is to start from the QED Lagrangian with a finite
photon mass

L = ψ̄(i∂/ −m)ψ − 1

4
FµνF

µν +
M2

2
AµAµ − eAµ(ψ̄γµψ) (6.56)

where M is the photon mass that will be set to zero in the end. This Lagrangian is
clearly invariant under the global phase rotation ψ → eiθ, and the Noether theorem
gives the conserved current

∂µj
µ = 0 , jµ = ψ̄γµψ . (6.57)

The same conserved current can be obtained by the action principle for the local
phase rotation as in (6.34).

Then, quantization of such system is straightforward. In fact, we already know
exactly the Feynman rules for external legs and propagators for spin-1/2 and massive
spin-1 particles. The vertex factor for electron-photon coupling can be read off the
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form of the interaction term −eAµ(ψ̄γµψ); namely, i times the factor apart from the
fields themselves:

e (e)
_

e (e)
_

γ
vertex factor = −ieγµ . (6.58)

In the massless limit, nothing subtle occurs with the external photon rule; namely,
ϵµ
k⃗λ

for an initial-state photon and ϵµ∗
k⃗λ

for a final-state photon. One simply does not
have helicity-0 photons in the initial or final states.

The conservation of current still holds even when jµ(x) is an operator (in the
interaction picture) as shown below. The fields ψ(x) and ψ̄(x) in the interaction
picture satisfy the free-field equations of motion, namely the Dirac equations, as we
have seen in (4.357):

iγµ∂µψ = mψ , −i(∂µψ̄)γµ = mψ̄ , (ψ, ψ̄: operators). (6.59)

Then, ∂µj
µ becomes

∂µj
µ = ∂µ(ψ̄γ

µψ) = (∂µψ̄)γ
µ︸ ︷︷ ︸

imψ̄

ψ + ψ̄ γµ∂µψ︸ ︷︷ ︸
−imψ

= 0 (jµ: operator) ; (6.60)

namely, the operator current jµ is conserved.

The photon propagator needs some care in taking the massless limit, and this is
where the conservation of current comes into play. When we set the mass to zero in
the propagator of a spin-1 particle (5.327)

iDαβ
F (k) = i

−gαβ + kαkβ

M2

k2 −M2 + iϵ
. (6.61)

the term kαkβ/M2 diverges. In general, however, a photon propagator is attached to a
fermion current. As an example, let’s assume it is attached to an initial-state electron
e−(p) and a final-state electron e−(q). By the conservation of 4-momentum, the
momentum flowing in the propagator is k = q− p. There actually is a sign ambiguity
of k depending on which direction the arrow is put, but it has no consequence since
Dαβ

F (k) is symmetric with respect to the sign of k. Ignoring whatever attaches to the
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other side of the propagator, the matrix element is

up

_
uq

−    γie β
αβ

D
F ki

t

(   )

∝ iDαβ
F (k)ūqγβup

k = q − p
(6.62)

where we have suppressed the spin indices for simplicity. Using the Dirac equations
p/up = mup and q/uq = muq, we have

kβ(ūqγβup) = ūqk/up = ūq(q/ − p/)up
= ūqq/︸︷︷︸

mūq

up − ūq p/up︸︷︷︸
mup

= 0 . (6.63)

Thus, when the photon propagator is attached to two external electrons, the term
kαkβ/M2 strictly vanishes even before we take the limit M → 0.

The term kαkβ/M2 of the photon propagator vanishes regardless of whether any
of the two external lines are a fermion or a antifermion, or initial-state or final-state
as long as the diagram is legitimate (i.e. the charge and the 4-momenta are conserved
at the vertex). This can be checked explicitly as above for each case, but it can also
be directly derived from the conservation of current as follows. In terms of fields,
∂µj

µ = 0 is
0 = ∂µ(ψ̄γ

µψ) = (∂µψ̄)γ
µψ + ψ̄γµ(∂µψ) . (6.64)

Replacing the fields with the momentum expansions

ψ =
∑
p

(apfp + b†pgp) , ∂µψ =
∑
p

(−ipµ)(apfp − b†pgp) ,

ψ̄ =
∑
q

(a†qf̄q + bqḡq) , ∂µψ̄ =
∑
q

(iqµ)(a
†
qf̄q − bqḡq) , (6.65)

where we have again suppressed the spin indexes as well as sums over them for
simplicity, we have

0 =
∑
q

(iqµ)(a
†
qf̄q − bqḡq)γµ

∑
p

(apfp + b†pgp)

+
∑
q

(a†qf̄q + bqḡq)γ
µ
∑
p

(−ipµ)(apfp − b†pgp)

= i
∑
p,q

[
(qµ − pµ)(f̄qγµfp) a†qap + (qµ + pµ)(f̄qγ

µgp) a
†
qb
†
p +

(−qµ − pµ)(ḡqγµfp) bqap + (−qµ + pµ)(ḡqγ
µgp) bqb

†
p

]
. (6.66)
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Since the products of creation and annihilation operators in the four terms are in-
dependent, each coefficient should vanish. Using fp = upe

−ipx/
√
2p0V and gp =

vpe
ipx/
√
2p0V , they can be summarized as

kµ(w̄qγ
µw′p) = 0 (w,w′ = u or v) , (6.67)

with
k = (±q)− (±p) (6.68)

where the signs on ±q and ±p are taken to be +(−) if the corresponding spinor is a
u(v) spinor. Tracing the above proof backward, one sees that the relation (6.67) is
equivalent to ∂µj

µ = 0. In fact, (6.67) can be regarded as the conservation of current
expressed in the momentum space.

For any of the sign combinations in (6.68), the 4-momentum k is seen to be always
the 4-momentum of the photon attached to the fermion current. The conservation
of current (6.67) then states that, as long as 4-momentum is properly conserved at
the vertex, the photon 4-momentum times the current vanishes in general. If we take
both spinors to be u spinors, for example, we have (qµ − pµ)ūqγµup = 0 recovering
(6.63). If both fermions are in the final state, it represents a creation of e+e− pair.
In this case we have

q p

e+e−

k = q p+t

(qµ + pµ)ūqγ
µvp = 0 . (6.69)

Note that (6.67) holds regardless of whether the photon is external or a propagator.
What happens if one or more of the fermion line are not external, namely fermion

propagators? In such cases, the above argument unfortunately does not hold. We
will, however, later extend the above proof to the case where the fermion current
contains a series of fermion propagators which may or may not form a loop. Namely,
if we denote the fermion current by Jα,β..., where the Lorentz indices are the ones that
contract with those of the photon lines, then we have

. . .

α β µ

. . .

k

. . .

kµJα,β...µ... = 0 (6.70)

where kµ is the 4-momentum of the photon attached at the vertex labeled by the
Lorentz index µ. It should be stated here that the identity holds when the diagrams
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of the same order are summed (or more precisely, the sum of diagrams where the
photon with momentum kµ is the first photon along the fermion line, second along
the fermion line, and so on). This is called the Ward identity which is one form of the
more general Ward-Takahashi identities which is a consequence of the conservation
of current.

Thus, we can in general ignore the kαkβ/M2 term in the spin-1 propagator for
the electron photon system. Then, setting M = 0 in the denominator, the photon
propagator in massless limit is

iDαβ
F (k) = i

−gαβ

k2 + iϵ
. (photon propagator) (6.71)

The identity (6.70) also applies when the photon is external. The matrix element
that includes an external photon can in general be written as

M = ϵµ
k⃗λ
Jα,β...µ...X ≡ ϵµ

k⃗λ
Iµ (6.72)

where ϵµp⃗λ is the photon polarization vector, Jα,β...µ... represents the fermion current to
which the photon is attached to, and X represents whatever is the rest ofM. Then,
the identity (6.70) indicates that if we replace the photon polarization vector ϵµp⃗λ by
its 4-momentum kµ, then the matrix element vanishes:

M(ϵµ
k⃗λ
→ kµ) = kµ(Jα,β...µ...X) = 0 , (6.73)

thus verifying that the condition for the self-consistency (6.17) is indeed satisfied for
the quantized theory.

Apart from being crucial for the self-consistency, the relation (6.73) greatly sim-
plifies the spin sum for an external photon. Squaring (6.72) and summing over the
photon polarization while assuming that photon is massive, we obtain

∑
λ=1,2,3

|M|2 = IµI
∗
ν

∑
λ=1,2,3

ϵµ
k⃗λ
ϵν∗
k⃗λ

= IµI
∗
ν

(
−gµν + kµkν

M2

)
= IµI

∗
ν (−gµν) , (6.74)

where we have used kµIµ = 0. Thus, the photon spin sum rule is effectively∑
λ

ϵµ
k⃗λ
ϵν∗
k⃗λ
→ −gµν . (6.75)

This is true for a massive photon and should hold as we take the limit M → 0. In
the massless case, however, we know that there are only two physical polarizations
λ = 1, 2 over which the sum is taken. Thus, if the spin sum formula above, which
is the sum over three polarizations, is to be correct in the massless case where the
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sum is over two polarizations, the matrix element for the λ = 3 component (namely,
the helicity-0 component) should smoothly vanish as we take the limit M → 0. It is
easy to see that this is indeed the case. The helicity-0 polarization vector ϵµ

k⃗3
given

by (6.2) can be written as a sum of a term proportional to kµ and another term with

zero space part as (note that we have M ̸= 0 here and thus k0 ̸= |⃗k|)

ϵµ
k⃗3

= (η, γk̂) =

 |⃗k|
M
,
k0

M
k̂

 =
k0

|⃗k|
kµ

M
−
(
M

|⃗k|
, 0⃗

)
. (6.76)

Since kµIµ = 0, the helicity-0 matrix element becomes

M = ϵµ
k⃗3
Iµ = −M

|⃗k|
I0 (6.77)

which will vanish when we take the limit M → 0 while keeping k⃗ fixed.
Some cautionary comments are in order in using the formulae (6.71) and (6.75).

First, it works only when diagrams of same order, or at least some relevant subset of
them, are added up since such addition is required for the Ward identity to hold. Also,
the spin sum rule (6.75) in particular should be used at a stage of calculation when
whatever the polarization vector is multiplied to, denoted as Lµ, satisfies k

µLµ = 0.
Namely, if one modifies the expression using some relation that is satisfied by ϵk⃗λ but
not by kµ, such as ϵ2

k⃗λ
= −1 which is not satisfied by k (namely, k2 = 0 instead),

before applying the spin sum rule, then the rule will no longer work. Incidentally, the
property that the matrix element should vanish when a photon polarization vector
is replaced by the corresponding photon momentum can be used as a powerful check
of calculation. The same cautions as above should be employed when applying such
technique.

6.3 e+e− → µ+µ−

As an example of interaction involving photon, let’s take the muon pair creation by
e+e− annihilation. This mode serves as a model for other important channels such
as e+e− → uū, dd̄, or τ+τ−, which can be obtained by simply using the appropriate
charge and mass for the final-state fermion. The Lagrangian is essentially the QED
Lagrangian (6.29) with muon terms added:

L = Le + Lµ + Lγ + Lint (6.78)

with

Le = ψ̄e(i∂/ −me)ψe , Lµ = ψ̄µ(i∂/ −mµ)ψµ , (6.79)
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and
Lint = −eAα(j

α
e + jαµ ) , jαe = ψ̄eγ

αψe , jαµ = ψ̄µγ
αψµ , (6.80)

where ψe and ψµ are the electron field and the muon field, respectively. The photon
term Lγ is the same as before. This Lagrangian is a simple extension of the QED
lagrangian (6.29) and invariant under a gauge transformation of the type (6.36).

Exercise 6.1 Verify that the Lagrangian (6.78 ) is invariant under the following
gauge transformation:{

ψe(x)→ e−ieΛ(x)ψe(x)

ψµ(x)→ e−ieΛ(x)ψµ(x)
, and Aµ(x)→ Aµ(x) + ∂µΛ(x) . (6.81)

The matrix element can be derived in exactly the same way as νµe
− → µ−νe

(5.330); the only differences are that the V −A coupling is replaced by a V -coupling
and the spin-1 particle is now massless. Or, we could simply apply the Feynman rules
to the diagram below: labeling the spinors by corresponding 4-momenta, we have

v
_

u

u
_

γµie− γνie−

+

e−

e

µ+

µ−

p
1

2
p

v
2

q

q
1

− igµν

p +p( )
1 2

2

t

γµ ν M = ie2(v̄p2γµup1)
gµν

(p1 + p2)2
(ūq1γνvq2)

=
ie2

s
(v̄p2γµup1)(ūq1γ

µvq2)

(6.82)

where s ≡ (p1 + p2)
2 is the invariant C.M. mass squared, and we have ignored +iε in

the denominator of the photon propagator since there is no singularity at ε→ 0.
In the following, we ignore the electron mass, but not the muon mass:

me = 0 , mµ ̸= 0 . (6.83)

We assume that all fermions are unpolarized and sum over all spins and divide by the
number of initial-state spin configurations (which is four) to obtain the spin-averaged
matrix element squared:

|M|2 =
1

4

∑
spins

|M|2

=
e4

4s2
∑
spins

[(v̄p2γµup1)(ūq1γ
µvq2)][(v̄p2γνup1)(ūq1γ

νvq2)]
∗

=
e4

4s2
∑
spins

(v̄p2γµup1)(ūp1γνvp2)
∑
spins

(ūq1γ
µvq2)(v̄q2γ

νuq1) (6.84)

=
e4

4s2
Trp/2γµp/1γν Tr(q/1 +mµ)γ

µ(q/2 −mµ)γ
ν . (6.85)
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Using trace theorems, we have

Trp/2γµp/1γν = 4(p2µp1ν − p1 · p2 gµν + p1µp2ν) , (6.86)

Tr(q/1 +mµ)γ
µ(q/2 −mµ)γ

ν = 4(q1µq2ν − q1 · q2 gµν + q2µq1ν)− 4m2
µg

µν .

Taking the product of the two traces and contracting µ and ν, we obtain (note
gµνgµν = 4)

|M|2 = 8e4

s2
[p2 · q1 p1 · q2 + p2 · q2 p1 · q1 +m2

µ p1 · p2] . (6.87)

Let’s evaluate this in the C.M. system whose kinematic configuration as well as the
definitions of parameters are shown in the figure below. The 4-momentum products
are then written as

e

µ

µ

+

−

−

n^

p =  E, E z( )^
1

q =  E, P n( )^

1

p =  E,   E z( )^−
2

q =  E,   P n( )^−
2

θ
z^e

+

p1 · p2 = 2E2 ,

p1 · q1 = p2 · q2 = E2 − EP cos θ

= E2(1− β cos θ) ,
p1 · q2 = p2 · q1 = E2 + EP cos θ

= E2(1 + β cos θ) .

(β ≡ P/E : the velocity of µ)

(6.88)

Together with e2 = 4πα (α: the fine structure constant) and s = (2E)2, |M|2 is now

|M|2 =
8(4πα)2

s2

[
E4(1 + β cos θ)2 + E4(1− β cos θ)2 + 2E2m2

µ

]
= (4πα)2(2− β2 sin2 θ) . (6.89)

Using the cross section formula (5.287) with s ≡M2, we then obtain

dσ

dΩ
=
|M|2
(8π)2s

|p⃗f |
|p⃗i|

=
(4πα)2(2− β2 sin2 θ)

(8π)2s

P

E︸︷︷︸
β

→ dσ(e+e− → µ+µ−)

dΩ
=
α2

4s
β (2− β2 sin2 θ) (me = 0) . (6.90)

We see that the angular distribution is uniform just above the threshold of µ+µ−

production where β ∼ 0, and approaches 1 + cos2 θ at high-energy (β ∼ 1).
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Integrating over dΩ = 2π d cos θ, the total cross section is

σ(e+e− → µ+µ−) =


2πα2

s
β

(
1− β2

3

)
(me = 0)

4πα2

3s
(me = mµ = 0) ,

(6.91)

where in the second expression we have also set mµ = 0 (namely, the high-energy
limit).

6.4 Spin correlations in e+e− → µ+µ−

In the massless limit, a V −A current creates left-handed (helicity −) fermion or right-
handed (helicity +) antifermion, as we have seen in the decay µ− → νµe

−ν̄e (p234).
The scattering e+e− → µ+µ− occurs through vector currents, and there is no specific
helicity associated with fermions or antifermions. As we will see now, however, there
are spin correlations between the spins of e+ and e− and between those of µ+ and µ−

If a high-energy electron is left-handed, then the corresponding spinor u satisfies

PLu = u (e− left-handed). (6.92)

Similarly, if a high-energy positron is left-handed, its spinor v satisfies

PRv = v (e+ left-handed). (6.93)

Then, the e+e− vector current of the initial state vanishes if both particles are left-
handed:

v̄γµu = PRvγ
µPLu = v̄PLγ

µPLu = v̄γµ PRPL︸ ︷︷ ︸
0

u = 0 . (6.94)

Thus, the e+e− pair cannot annihilate through a virtual photon if both are left-
handed. By exchanging PL and PR in the above, we see that the process is also
forbidden if both are right-handed. Similarly, in the high-energy limit, the µ+µ−

pair cannot be created from a virtual photon if both are left-handed or both are
right-handed.

Similar selection rules apply when the vector current represents a particle in initial
state scattering to a particle in final state. When a right-handed electron in initial
state scatters to a left-handed electron in final state, the spinors satisfies

PRui = ui , PLuf = uf , (6.95)

where i and f indicates initial state and final state, respectively. Then, the vector
current again vanishes:

ūfγ
µui = PLufγ

µPRui = 0 . (6.96)



304 CHAPTER 6. QUANTUM ELECTRODYNAMICS

By exchanging PR and PL in the above, and also applying similar logic to an an-
tifermion, we see that a high-energy fermion or an antifermion cannot flip helicity in
a scattering caused by a vector current.

One can use these spin correlations to obtain the angular distribution of e+e− →
µ+µ− withtout actually calculating the Feynman diagrams. In the C.M. frame of
e+e− → µ+µ−, let us take the spin quantization axis for e+ and e− to be the ẑ
direction (the e− direction). As we have seen above, the interaction proceeds only
when the spin of e+ and that of e− are aligned:

e
−

e
+

z^
e

−
e

+
or z^ . (6.97)

This can be interpreted as the virtual photon having polarization |1, 1⟩z or |1,−1⟩z
where the subscript z indicates that the quantization axis for these states is ẑ. Then,
the creation of µ+µ− can be considered as decays of this virtual photon to a µ+µ−

pair. On the other hand, the allowed spin configurations for the µ+µ− pair is

µ−

µ+

^
n µ−

µ+

^
n

or

, (6.98)

where the spin quantization axis is taken to be n̂ (the direction of µ−). Then, the
virtual photon coupling to the µ+µ− pair should have spin state |1, 1⟩n or |1,−1⟩n
where the subscript n indicates that the quantization axis is n̂. The angular distri-
bution is then given by the inner product of the initial and final spin states of the
virtual photon (four combinations):

dσ

dΩ
∝

∑
m,m′=±1

|n⟨1,m|1,m′⟩z|2 =
∑

m,m′=±1
|d1m,m′(θ)|2 (6.99)

where the inner products of angular momentum eigenstates with different quantiza-
tion axes are given by the d-functions:

d11,1(θ) = d1−1,−1(θ) =
1 + cos θ

2
, d11,−1(θ) = d1−1,1(θ) =

1− cos θ

2
. (6.100)

Thus, we obtain the angular distribution without actually calculating the matrix
element in spinor space:

dσ

dΩ
∝ 1 + cos2 θ . (6.101)
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The above selection rules applies at high-energy limit. When the masses are not
negligible compared to energies involved, the selection rules are not exact, but still
work approximately to the extent the masses are small. Then, exactly how often is
the µ+µ− pair created with both left-handed or both right-handed when the muon
mass is finite? To answer the question, we will use the trick with the spin projection
operator. Namely, we will insert a spin projection operator in front of each muon
spinor:

uq1 → Σ1uq1 (µ
−) , vq2 → Σ2uq2 (µ

+) , (6.102)

with

Σi =
1 + γ5s/ i

2
, (i = 1, 2) , (6.103)

then sum over the spins of muons. This way, we obtain the rate for the spin states
specified by the spin projection operators while allowing the use of trace techniques.
Let’s denote the spin component along the µ− direction n̂ (in unit of 1/2) as δi
(i = 1, 2); for example, if both particles are right-handed, then we have δ1 = 1 and
δ2 = −1. The polarization 4-vectors s1 and s2 are obtained by boosting the values in
the particle rest frame

sµi = (0, δin̂) = δi(0, n̂) , (i = 1, 2) (6.104)

to the C.M. frame of the interaction; namely, the boost is in the n̂ direction for 1
(µ−) and in the −n̂ direction for 2 (µ+):

sµ1 = δ1(η, γn̂) , sµ2 = δ2(−η, γn̂) , (6.105)

where γ ≡ E/m and η ≡ P/m. Substituting (6.102) in (6.82) and using Σi = Σi, the
matrix element is

M =
ie2

s
(v̄p2γµup1)(Σ1uq1γ

µΣ2vq2)

=
ie2

s
(v̄p2γµup1)(ūq1Σ1γ

µΣ2vq2) . (6.106)

Now we square this matrix element, sum over all spins and divide by four for the
number of initial-state spin configurations:

|M|2 =
e4

4s2
Trp/2γµp/1γν · Tr(q/1 +m)Σ1γ

µΣ2(q/2 −m)Σ2γ
νΣ1

=
e4

4s2
Trp/2γµp/1γν · Tr(q/1 +m)Σ1γ

µ(q/2 −m)Σ2γ
ν , (6.107)

where
m ≡ mµ , (6.108)
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and we have used the fact that q/ i commutes with Σi for same i (3.283) and Σ2
i =

Σi. The first trace is the same as before and given in (6.87). The second trace is
straightforward if cumbersome. Using the trace theorems, si · qi = 0, and dropping
the terms with ϵµναβ (since it is multiplied to the first trace which is symmetric under
µ↔ ν), we obtain

Tr(q/1 +m)Σ1γ
µ(q/2 −m)Σ2γ

ν = q1µq2ν − q1 · q2 gµν + q2µq1ν −m2
µg

µν

−(q1 · q2 +m2)(s1µs2ν − s1 · s2 gµν + s2µs1ν)− s1 · q2 s2 · q1 gµν

+
[
(s1 · q2 sµ2qν1 + s2 · q1 sµ1qν2 − s1 · s2 q

µ
2 q

ν
1 ) + (µ↔ ν)

]
. (6.109)

Executing the product of the two traces and using (6.88) together with the following
explicit evaluations

q2 · s1 = −q1 · s2 = 2
E2

m
βδi , (i : subscript of s)

p2 · s1 = −p1 · s2 =
E2

m
(β + cos θ)δi , (6.110)

p1 · s1 = −p2 · s2 =
E2

m
(β − cos θ)δi ,

the spin-averaged |M|2 is found to be

|M|2 = e4

s

[
(E2 +m2) + P 2 cos2 θ + δ1δ2

(
(E2 +m2) cos2 θ + P 2

)]
. (6.111)

Using the formula (5.287), the scattering cross section becomes

dσ

dΩ
=


α2

8s
β(1 + cos2 θ) (δ1δ2 = 1)

α2

8s
β(1− β2) sin2 θ (δ1δ2 = −1)

, (6.112)

where δ1δ2 = 1 corresponds to a favored spin configuration of µ+µ− pair (one is right-
handed and the other is left-handed), and δ1δ2 = −1 corresponds to a suppressed
configuration (both left-handed or both right-handed).

Let us now appreciate the physical meaning of this result. First, the cross section
for δ1δ2 = −1 vanishes for β → 1 as expected - the selection rule is exact in the
massless limit. Note that the favored spin configuration is seen to have the same
angular distribution, 1+cos2 θ, as the massless case. This is because the spin angular
momentum along the n̂ direction is already specified to be±1, thus the same argument
as in (6.99) still holds. The angular distribution for the suppressed case can also be
derived similarly. In this case, the muon spins add up to zero along n̂ and thus the
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virtual photon that couples to the final state should have the zero component along
n̂. Thus, the angular distribution should be given by

dσ

dΩ
∝

∑
m=±1

|n⟨1, 0|1,m⟩z|2 =
∑

m=±1
|d10,m(θ)|2 = sin2 θ , (6.113)

where we have used d10,1(θ) = −d10,−1(θ) = sin θ/
√
2. We see that the rate for sup-

pressed spin configuration is maximum at θ = π/2 and becomes zero for θ = 0 or π.
This can be understood as follows: when the µ+µ− pair is emitted along the beam
direction, the z component of the angular momentum of the virtual photon, m = ±1,
has to be carried by that of the muon pair. Since the orbital angular momentum
cannot have component along the line of the pair, the sum of the spin z components
of the pair has to be ±1 which means that the spins have to be aligned along the z
direction. Integrating (6.112) over the angle and taking the ratio, we obtain

σ(δ1δ2 = −1)
σ(δ1δ2 = 1)

=
1− β2

2
=

m2

2E2
. (6.114)

The factor m2/E2 is the typical suppression factor that occurs when a fermion spin
is opposite to what is allowed in the massless limit.

6.5 Scalar-photon interaction

In order to introduce the interaction of photon with charged scalar (denoted H±), we
apply the gauge principle to the free charged scalar Lagrangian (4.228)

LH = (∂µϕ)
†∂µϕ−m2ϕ†ϕ , (6.115)

which is clearly invariant under the phase transformation ϕ(x)→ eiθϕ(x) where θ is a
real constant. In order to make the Lagrangian invariant under phase transformation
that depends on space time, we introduce a massless spin-1 field Aµ and replace ∂µ
with the covariant derivative Dµ = ∂µ + ieAµ as before. The resulting Lagrangian

L = (Dµϕ)
†Dµϕ−m2ϕ†ϕ− 1

4
F µνFµν , (6.116)

is invariant under the simultaneous transformation of ϕ(x) and Aµ(x) given by

ϕ(x)→ e−ieΛ(x)ϕ(x) , Aµ(x)→ Aµ(x) + ∂µΛ(x) .

This can be seen by noting that the covariant derivative of the field Dµϕ transforms
by a simple phase rotation:

Dµϕ→ e−ieΛ(x)Dµϕ ,
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which is derived in the same way as (6.43). Note that we used the replacement
∂µψ

† → (Dµψ)
† rather than ∂µψ

† → Dµ(ψ
†) in order to make the Lagrangian real

(hermitian).
The scaler-photon interaction is contained in the kinetic term:

(Dµϕ)
†Dµϕ−m2ϕ†ϕ

= (∂µ − ieAµ)ϕ
†(∂µ + ieAµ)ϕ−m2ϕ†ϕ

= (∂µϕ)
†∂µϕ−m2ϕ†ϕ︸ ︷︷ ︸
LH

+(−ieAµ)ϕ
†∂µϕ+ (∂µϕ)

†ieAµϕ︸ ︷︷ ︸
−eAµi[ϕ†(∂µϕ)− (∂µϕ)

†ϕ]

+e2AµA
µϕ†ϕ

= LH + Lint , (6.117)

where
Lint = −eAµjµ + e2AµA

µϕ†ϕ , (6.118)

with
jµ ≡ i[ϕ†(∂µϕ)− (∂µϕ)

†ϕ] ≡ iϕ†
↔
∂µϕ . (6.119)

This is the same conserved current we obtained for the free Klein-Gordon field in
(2.44). In the interaction picture, the operator field ϕ(x) satisfies the free Klein-
Gordon equation; and thus the same derivation that led to the conservation of (2.44)
shows that the operator current jµ above in the interaction picture satisfies

∂µj
µ = 0 .

The proper canonical quantization involves defining the conjugate field π which has
an extra term arising from ∂0ϕ found in Lint, forming the Hamiltonian, identifying the
interaction Hamiltonian and introducing the standard commutation relation between
ϕ and π. As a result, the interaction Hamiltonian Hint is not simply −Lint. In the
interaction picture, the resulting interaction Hamiltonian can be written as

Hint = ieAµ(ϕ†
↔
∂µϕ) + e2ϕ†ϕA⃗2 (6.120)

which differ from −Lint by e
2ϕ†ϕA02. Let us ignore the second term for now, which

is second order in e, and find the vertex rule for the first term. First, consider the
‘decay’ of a virtual photon γ → H+H−. The virtual photon is actually a propagator,
but one may assume that the photon is massive and on-shell for this exercise - the
result does not depend on this assumption. The initial and final states are then

k

−
H

+
H

p
2

p
1

γ
,λ

t |i⟩ = a†kλ|0⟩ ,
|f⟩ = a†p1b

†
p2
|0⟩ .

(6.121)
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The S matrix element is first-order in the Dyson series (5.76):

Sfi = −i
∫
d4x⟨f |Hint(x)|i⟩

= −i
∫
d4x⟨0|bp2ap1

[
ie(ϕ†

↔
∂µϕ)︷ ︸︸ ︷

1 =
∑
n

|n⟩⟨n|

Aµ
]
a†kλ|0⟩

= e
∫
d4x⟨0|bp2ap1(ϕ†

↔
∂µϕ)|0⟩⟨0|Aµa†kλ|0⟩ , (6.122)

where in the second line we have inserted identity and used the fact that there are
only photon operators to its right and only scalar operators to its left, thus only |0⟩⟨0|
survives. In the second expectation value, only akλϵ

µ
kλek(x) in A

µ survives:

⟨0|Aµa†kλ|0⟩ = ϵµkλek(x) . (6.123)

In the first vacuum expectation value, only the term with a†p1 and b†p2 survives:

⟨0|bp2ap1(ϕ†
↔
∂µϕ)|0⟩ = ⟨0|bp2ap1

∑
p

( a†pe
∗
p + bpep)

↔
∂µ

∑
q

(aqeq + b†qe
∗
q )|0⟩

= ⟨0|bp2ap1(a†p1e
∗
p1

↔
∂µb

†
p2
e∗p2)|0⟩ = e∗p1(x)

↔
∂µe

∗
p2
(x)

= −i(p1 − p2)µ e∗p1(x)e
∗
p2
(x) . (6.124)

We then identify the Lorentz-invariant matrix elementM in Sfi:

Sfi =
∫
d4xe∗p1(x)e

∗
p2
(x)ek(x)︸ ︷︷ ︸

4-momentum conservation

[
− ie(p1 − p2)µϵµkλ

]
︸ ︷︷ ︸

M

(6.125)

The factor ϵµkλ in M is the photon external leg factor we have seen before and the
vertex factor of photon scalar coupling is then identified as −ie(p1 − p2)µ.

What signs should be given to the 4-momenta in general cases? We note that
final state particles always should be matched with creation operators a† or b† (the
particle has to be ‘created’) and initial state particles with annihilation operators (the
particle has to be ‘destroyed’). In momentum expansion of fields, creation operators
are always attached to e∗p(x) and annihilation operators to ep(x). Thus, a final state
particle with momentum p will be associated with e∗p(x) and an initial-state particle
with momentum p with ep(x). Thus, ∂µ will pull down the factor ipµ for a final-state
particle and −ipµ for an initial-state particle. Also, there is an extra minus sign if
the desired operator is found in ϕ† (namely, a† or b), since it sits to the left of the



310 CHAPTER 6. QUANTUM ELECTRODYNAMICS

operator
↔
∂µ in (ϕ†

↔
∂µϕ). The signs are thus

−ie(s1p1 + s2p2) ϕ† (a† b)
↔
∂µ ϕ (a b†)

to the right(+) or left(−) of
↔
∂ − − + +

initial(+) or final(−) state − + + −

over-all sign (si) + − + −

; (6.126)

namely, the vertex factor is −ie(s1p1 + s2p2) where sign si is plus if it corresponds to
a particle and minus if antiparticle regardless of whether it appears in the initial state
or in the final state. This applies even when one of the legs are a propagator as long
as the momentum flowing in the propagator is determined by particle or antiparticle
in the propagator to be moving forward in time; namely, when one draws a line as a
particle propagating forward in time or an antiparticle propagating forward in time,
the 4-momentum of the propagator has opposite sign which is canceled by the stated
rule giving the same vertex factor in the end. Thus, the vertex rule of scalar-photon
coupling is

s1 + p
2

s2( )ie− p
1

p
1

p
2

si : + if particle,− if antiparticle. (6.127)

The photon can be dealt with in the same way as in the photon-electron system.
We can assign a finite mass to the photon, obtain the spin-1 propagator as before,
and take the limit of massless photon. Here, we need to worry if the kµkν/M2 term
in the propagator strictly vanishes - otherwise, it will diverge when the massless limit
is taken.

We can apply these rules to the reaction e+e− → H+H− which occurs through a
virtual photon as in the case of e+e− → µ+µ−. The matrix element is then

v
_

u

γµie−
ν

+

e−

e

Η+

Η
−

p
1

2
p

− igµν

p +p( )
1 2

2

t

γµ ν
−

1
q

2
q

ie− (
2

q
1

q )

M = ie2(v̄p2γµup1)
gµν

(p1 + p2)2
(q1 − q2)ν

=
ie2

s
(v̄p2k/up1)

(s ≡ (p1 + p2)
2 , k ≡ q1 − q2)

(6.128)
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where the direction of arrows indicates the actual flow of 4-momentum; namely, those
of e+e− flow into the interaction region and those ofH+H− flows out of the interaction
region. Square it and spin averaging over the initial-state, we obtain (also ignoring
the electron mass)

|M|2 =
1

4

∑
spin

|M|2 = e4

4s2
Trp/2k/p/1k/

=
e4

s2
(2 p2 · k p1 · k − p2 · p1 k2) (6.129)

In the C.M. frame, the kinematics is the same as in the case of e+e− → µ+µ− (6.88)
where (µ−, µ+) is replaced by (H+, H−). Then, we have

k = q1 − q2 = (0, 2Pn̂) ,

k2 = −4P 2 ,

p2 · k = −p1 · k = 2EP cos θ ,

p1 · p2 = 2E2 .

(6.130)

Using these expressions, |M|2 becomes

|M|2 = e4

2
β2 sin2 θ , (6.131)

which give the differential cross section

dσ

dΩ
=
|M|2
(8π)2s

P

E
=
α2

8s
β3 sin2 θ . (6.132)

Integrating this over dΩ = 2πd cos θ, we get the total cross section

σ(e+e− → H+H−) =
πα2

3s
β3 . (6.133)

The angular distribution can be understood in terms of the spin state of the virtual
photon which is |1,±1⟩z by the same argument as in the case of e+e− → µ+µ−. Since
scalar particle is spin zero, the angular momentum of the virtual photon has to be
carried by the orbital angular momentum of the H+H− pair. Thus, the angular wave
function of the H+H− pair should be Y 1

±1(θ, ϕ) which should add up incoherently
since the two cases correspond to different initial sates:

dσ

dΩ
∝ |Y 1

1 (θ, ϕ)|2 + |Y 1
−1(θ, ϕ)| ∝ sin2 θ . (6.134)

Note also the threshold behavior is σ ∝ β3; this is typical for a P -wave threshold
production (namely, orbital angular momentum = 1). This can be compared to the
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fermion pair production which behaved as σ ∝ β near the threshold. At well above
threshold, the cross section for e+e− → H+H− is 1/4 of the muon pair case. Thus, the
size of total cross section, the threshold behavior, as well as the angular distribution
can be (and have been) used to determine the spin of the particle-antiparticle pairs
being produced in e+e− annihilation.

6.6 Wick’s theorem

In order to obtain the complete set of Feynman rules of QED, we will now introduce a
powerful theorem that allows one to expand the time ordered products in the Dyson
series into terms that contain propagators. Using h(t) =

∫
d3xHint(x), the Dyson

series (5.74) can be written as

Sfi =
∞∑
n=1

(−i)n

n !

∫
d4x1 · · · d4xn⟨f |T

(
Hint(x1) · · ·Hint(xn)

)
|i⟩ . (6.135)

where we have assumed |i⟩ ̸= |f⟩. In evaluating ⟨f |T (Hint(x1) · · ·Hint(xn))|i⟩, we
note that terms that survive should have annihilation operators that exactly match
the initial state particles and creation operators that exactly match the final-state
particles. If there are extra operators in a given term, which would happen for
higher-order terms, then they should be matched within themselves in order for the
term not to vanish. We have seen an example in the νµe → µνe scattering where
extra operators were the creation and annihilation operators of W , resulting in the
W propagator. We will now see how each order in the expansion above becomes a
set of diagrams with Feynman propagators properly inserted.

First, we define the Wick contraction of two fields ϕ1(x1) and ϕ2(x2) by the dif-
ference between their time-ordered product and the normal product:

ϕ1(x1)ϕ2(x2)
def≡ T (ϕ1(x1)ϕ2(x2))− : ϕ1(x1)ϕ2(x2) : , (6.136)

where ϕi may be a scalar field, a component of a fermion or vector field, and can be
separated into an annihilation part and creation part as in (4.269) or (4.358):

ϕi(xi) = ϕa
i (xi) + ϕc

i(xi) , (6.137)

where the superscript ‘a’ (‘c’) stands for the annihilation part (the creation part). The
fields in (6.136) may be ϕa,c(x), or for that matter any operators that are functions of
x and constructed out of creation and annihilation operators. To simplify expressions,
we will use the shorthand

ϕi
def≡ ϕi(xi) ϕa,c

i

def≡ ϕa,c
i (xi) (6.138)
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Recall that the time-ordered product is defined by [see (5.75)]

T (ϕ1ϕ2) =

{
ϕ1ϕ2 (x01 ≥ x02)

s ϕ2ϕ1 (x01 < x02)
, (6.139)

and the normal-ordered product is given by reordering the fields such that ϕc
i is always

to the left of ϕa
i :

: ϕ1ϕ2 : = : (ϕa
1 + ϕc

1)(ϕ
a
2 + ϕc

2) :

= : ϕa
1ϕ

a
2 + ϕa

1ϕ
c
2 + ϕc

1ϕ
a
2 + ϕc

1ϕ
c
2 :

= ϕa
1ϕ

a
2 + s ϕc

2ϕ
a
1 + ϕc

1ϕ
a
2 + ϕc

1ϕ
c
2 , (6.140)

where s in (6.139) and (6.140) is −1 if ϕ1 and ϕ2 are both fermion fields and +1
otherwise (namely, if at least one of them is a boson field). Then, if ϕ1 and ϕ2

commute (or anticommute if both are fermion) then T (ϕ1ϕ2) and : ϕ1ϕ2 : are both
equal to the original product; namely, the Wick contraction is zero:

ϕ1ϕ2 = 0 , if ϕ1 and ϕ2 (anti)commute . (6.141)

In the above and hereafter, when we write ‘(anti)commute’, ‘anticommute’ applies
only when both fields in question are fermion. When the two fields are of same type,
they may not (anti)commute. In such cases, the effect of reordering comes from the
(anti)commutation relations

ap⃗σa
†
p⃗ ′σ′ − s a†p⃗ ′σ′ap⃗σ = δp⃗p⃗ ′ δσσ′ , (6.142)

where σ is a spin index if any, and the time-ordered product and the normal-ordered
product differ from the original product by a mere c-number. This makes the Wick
contraction a c-number, and sandwiching the defining equation (6.136) between the
vacuum gives

ϕ1ϕ2 = ⟨0|T (ϕ1ϕ2)|0⟩ , (6.143)

where we have used the fact that the vacuum expectation value of a normal-ordered
product is zero by definition (4.202). Thus, the Feynman propagators are nothing
but Wick contractions; namely,

ϕ(x)ϕ†(y) = i∆F (x− y) , ψn(x)ψ̄m(y) = iSF nm(x− y) ,

Aµ(x)Aν(y) = iDF
µν(x− y) . (6.144)
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Now define a contraction within a normal product by

: ϕ1 · · ·ϕi · · ·ϕj · · ·ϕn :
def≡ s1···nij1···i/\ j/\···n︸ ︷︷ ︸

dij

ϕiϕj : ϕ1 · · ·ϕ/\ i ϕ/\j · · ·ϕn : , (6.145)

where ij1 · · · i/\ j/\ · · ·n indicates that i and j are missing from the ascending series
1 · · ·n, and 

si1···inj1···jn
def≡ (−1)l l: number of fermion flips needed

to reorder ϕi1 · · ·ϕin to ϕj1 · · ·ϕjn .

dij
def≡ (−1)k

k: number of fermion flips to move
ϕi and ϕj next to each other with-
out changing their relative order.

(6.146)

These two sign factors are equivalent since if two fields are of different type then the
whole expression is zero due to (6.141), and once two fields of same type are put
next to each other, they can be moved together without changing sign. Multiple
contractions are defined similarly:

: ϕ1 · · ·ϕi · · ·ϕk · · ·ϕj · · ·ϕl · · ·ϕn :

def≡ s1···nijkl 1···i/\ k/\j/\ l/\···n ϕiϕjϕkϕl : ϕ1 · · ·ϕ/\ i ϕ/\kϕ/\j ϕ/\ l · · ·ϕn : , (6.147)

Note that the order of lower indices of s is the same as the order of fields that
follow including the contracted ones. The final ordering of a time-ordered product is
uniquely determined by the time arguments of the fields. Thus, it does not matter in
what order the fields are placed in the time-ordered product - up to a sign. Suppose
x0k1 > · · · > x0kn , then by the definition of time-ordered product,

T (ϕ1 · · ·ϕn) = s1···nk1···kn ϕk1 · · ·ϕkn

T (ϕi1 · · ·ϕin) = si1···ink1···kn ϕk1 · · ·ϕkn .
(6.148)

Thus,
T (ϕi1 · · ·ϕin) = s1···nk1···kns

i1···in
k1···kn︸ ︷︷ ︸

s1···ni1···in

T (ϕ1 · · ·ϕn) (6.149)

According to the definition (6.139), this does not hold if any of the times are identical;
for example, if x0k = x0l , we have 3

T (ϕkϕl) = ϕkϕl , T (ϕlϕk) = ϕlϕk ̸= sϕkϕl in general. (6.150)
3If we define the time-ordered product for fields with equal time to be T (ϕ1(t)ϕ2(t)) = ϕ1(t)ϕ2(t)+

sϕ2(t)ϕ1(t), then T (ϕ1(t1)ϕ2(t2)) = sT (ϕ2(t2)ϕ1(t1)) holds also for t1 = t2. This will, however, lead
to some complications later on, and we will stick to the definition (6.139).
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However, in the following proof, we will not have to exchange the order if the times
are equal.

Similarly, the result of a normal ordering does not change up to a sign when one
starts from a different ordering of the same fields. The sign is again given by the
same factor as in the case of time ordering:

: ϕi1 · · ·ϕin : = s1···ni1···in : ϕ1 · · ·ϕn : . (6.151)

Applying these to n = 2, we see that the Wick contraction also changes sign if two
fermion fields are switched:

ϕ2ϕ1 = T (ϕ2ϕ1)− : ϕ2ϕ1 : = s [T (ϕ1ϕ2)− : ϕ1ϕ2 : ] = s ϕ1ϕ2 , (6.152)

which works for x01 ̸= x02.
Now, Wick’s theorem states that

T (ϕ1 · · ·ϕn) = apc(ϕ1 · · ·ϕn) , (Wick’s theorem) (6.153)

where apc(ϕ1 · · ·ϕn) stands for the sum of all possible contractions of : ϕ1 · · ·ϕn : ;
namely,

apc(ϕ1 · · ·ϕn) = : ϕ1 · · ·ϕn : (0 contraction)

+ : ϕ1 · · ·ϕi · · ·ϕj · · ·ϕn : + · · · (1 contraction)

+ : ϕ1 · · ·ϕi · · ·ϕk · · ·ϕj · · ·ϕl · · ·ϕn : + · · · (2 contractions)

+ · · · , (6.154)

where for example the 2-contraction terms are for all possible ways to pick two pairs
(i, j) and (k, l) out of (1 · · ·n).

The proof of Wick’s theorem is a bit cumbersome, in particular to keep track of
signs arising from fermion fields. We will prove it without waving hands and I believe
it would be useful to follow the next few pages; if you choose to skip it, however, just
make sure that you know the exact meaning of Wick’s theorem and are able to use
it correctly.

For n=2, it trivially holds since it is nothing but the definition of the Wick con-
traction (6.136). In proving this theorem, let’s use a further-simplified notation:

i
def≡ ϕi , ia,c

def≡ ϕa,c
i . (6.155)

We will prove this in three steps: (a) without losing generality, we can assume that
x01 ≥ · · · ≥ x0n, (b) the following relation holds:

: 1 · · · (n− 1) : n = : 1 · · ·n : +
n−1∑
k=1

: 1 · · · k · · ·n : , (6.156)
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(c) if Wick’s theorem holds for n− 1, then it holds for n.
(a) Suppose the fields 1 · · ·n are not time-ordered. When they are reordered such

that x0i1 ≥ · · · ≥ x0in , the time-ordered product on the left-hand side of the theorem
picks up the factor s1···ni1···in according to (6.149). If any of the times are equal, then the
relative order is not changed. For a given term in apc(ϕi1 · · ·ϕin), there is one term in
apc(ϕ1 · · ·ϕn) that has exactly the same fields contracted, say k and l (k < l). They
are by definition

: 1 · · · k · · ·l · · ·n : = s1···nkl 1···k/\ l/\···n kl : 1 · · · k/\ l/\ · · ·n : (6.157)

and

: i1 · · · l · · ·k · · · in : = si1···inlk i1···l/\ k/\···in lk : i1 · · · l/\ k/\ · · · in : , (6.158)

where we have assumed that k appear to the left of l in (i1 · · · in). Due to (6.151) and
(6.152), we can switch k and l and reorder (i1 · · · l/\ k/\ · · · in) in (6.158) as long as we
do it consistently in the lower indices of s and for the fields. Thus,

: i1 · · · l · · ·k · · · in : = si1···inkl 1···k/\ l/\···n︸ ︷︷ ︸
s1···ni1···ins

1···n
kl 1···k/\ l/\···n

kl : 1 · · · k/\ l/\ · · ·n :

= s1···ni1···in : 1 · · · k · · ·l · · ·n : . (6.159)

Similarly, all other terms in apc(ϕi1 · · ·ϕin) pick up the same relative sign with respect
to the corresponding terms in apc(ϕ1 · · ·ϕn). Namely, when one reorders the fields
inside a normal product with contractions, it simply picks up the sign s1···ni1···in as long
as the same fields are contracted before and after the reordering. Thus,

apc(ϕi1 · · ·ϕin) = s1···ni1···in apc(ϕ1 · · ·ϕn) . (6.160)

Together with (6.149), we see that if Wick’s theorem holds for x01 ≥ · · · ≥ x0n, then it
holds for any ordering of fields.

(b) We now assume x01 ≥ · · · ≥ x0n. By induction, we will first prove

: 1 · · · (n− 1) : nc = : 1 · · ·nc : +
n−1∑
k=1

: 1 · · · k · · ·nc : . (6.161)

For n = 2, it trivially holds by the definition of the Wick contraction:

T (12c) since x01 ≥ x02︷︸︸︷
12c = : 12c : + 12c → 12c = T (12c)− : 12c : . (6.162)
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Note that a creation field at the left-hand-most inside a normal ordering or an an-
nihilation field at the right-hand most comes straight out of the normal ordering
sign:

←−
: 1c 2 · · ·n : = 1c : 2 · · ·n : , : 1 · · · (n− 1) na

−→
: = : 1 · · · (n− 1) : na (6.163)

and together with (6.151),

: 1a
−−−−→
2 · · ·n : = s1···n2···n 1 : 2 · · ·n 1a

−→
: = s1···n2···n 1 : 2 · · ·n : 1a . (6.164)

Thus, we have

: 1 · · ·n : =
←−−
: ( 1c + 1a

−−−−−−→
) 2 · · ·n : = 1c : 2 · · ·n : + s1···n2···n 1 : 2 · · ·n : 1a . (6.165)

Similar relation holds even when there are contractions. Using (6.159),

: 1 · · · k · · ·l · · ·n : = : (1c + 1a) · · · k · · ·l · · ·n :

= : 1c2 · · · k · · ·l · · ·n : + : 1a2 · · · k · · ·l · · ·n :︸ ︷︷ ︸
s1···n2···n 1 : 2 · · · k · · ·l · · ·n1a :

= 1c : 2 · · · k · · ·l · · ·n : + s1···n2···n 1 : 2 · · · k · · ·l · · ·n : 1a , (6.166)

and similarly for the cases with more than one contractions. Also, since x01 ≥ x0n, we
have

1n = T (1n)− : 1n : = (1a + 1c)(na + nc)− : (1a + 1c)(na + nc) :

= 1anc − s1nn 1 n
c1a . (6.167)

Then, using (6.165),

: 1 · · · (n− 1) : nc

=
[
1c : 2 · · · (n− 1) : + s

1···(n−1)
2···(n−1) 1 : 2 · · · (n− 1) : 1a

]
nc

= 1c : 2 · · · (n− 1) : nc + s
1···(n−1)
2···(n−1) 1 : 2 · · · (n− 1) : 1anc︸ ︷︷ ︸

(6.167)→ s1nn 1 n
c1a + 1n

= 1c : 2 · · · (n− 1) : nc︸ ︷︷ ︸
(∗)

+ s
1···(n−1)
2···(n−1) 1s

1n
n 1︸ ︷︷ ︸

s1···n2···n 1

: 2 · · · (n− 1) : nc︸ ︷︷ ︸
(∗)

1a

+ s
1···(n−1)
2···(n−1) 11n : 2 · · · (n− 1) :︸ ︷︷ ︸

: 1 · · ·n :

, (6.168)
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where in the last step we have used s
1···(n−1)
2···(n−1) 1 = d1n which corresponds to moving 1

next to n.

Now assuming that (6.161) holds for n− 1, we apply it to (∗) above:

: 1 · · · (n− 1) : nc = : 1 · · ·n :

+ 1c : 2 · · ·nc : +
n−1∑
k=2

1c : 2 · · · k · · ·nc :

+ s1···n2···n 1 : 2 · · ·nc : 1a +
n−1∑
k=2

s1···n2···n 1 : 2 · · · k · · ·nc : 1a

= : 1 · · ·n : + 1c : 2 · · ·nc : + s1···n2···n 1 : 2 · · ·nc : 1a︸ ︷︷ ︸
: 12 · · ·nc : by (6.165)

+
n−1∑
k=2

( 1c : 2 · · · k · · ·nc : + s1···n2···n 1 : 2 · · · k · · ·nc : 1a︸ ︷︷ ︸
: 12 · · · k · · ·nc : by (6.166)

)

: 12 · · ·nc : +
n−1∑
k=1

: 12 · · · k · · ·nc : (6.169)

Thus, (6.161) holds for n and it is proven by induction. Adding

: 1 · · · (n− 1) : na = : 1 · · · (n− 1)na : (6.170)

to (6.161), and noting

kn = kna︸︷︷︸
T (kna)− : kna : = 0

+ knc = knc , (6.171)

we establish (6.156).

(c) Since the Wick’s theorem holds for n = 2, we again use induction and assume
it holds for n− 1; then, since x01 ≥ · · · ≥ x0n,

T (1 · · ·n) = T (1 · · · (n− 1))n = apc(1 · · · (n− 1))n . (6.172)

Now, we write out apc(1 · · · (n− 1)) and use (6.156). The first term : 1 · · · (n− 1) : n
gives 1 · · ·n : and all possible contractions involving n. Then the term

: 1 · · · i · · ·j · · · (n− 1) : n (6.173)
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adds : 1 · · · i · · ·j · · ·n : and all possible double contractions involving n, and simi-
larly for higher-order contractions. Thus, the net result is that we have all possible
contractions of (1 · · ·n) and this proves the Wick’s theorem.

The Wick’s theorem holds for any fields for which time ordering and normal
ordering can be defined, and they may be annihilation or creation parts of fermion
fields, ψa

i , ψ̄
c
i etc. (note that ψ̄c contains a†p⃗s⃗, not b

(†)
p⃗s⃗ ). When a group of fields in

the time-ordered product have equal time and already normal-ordered, which can
happen when they are part of an interaction Hamiltonian with a given x, then the
only difference is that contractions within the group do not occur. This can be seen
as follows: Suppose 1 and 2 are normal-ordered and x01 = x02, then

T (: 1 2 : X) = T (: (1a + 1c)(2a + 2c) : X)

= T ((1a2a + 1c2a + s 2c1a + 1c2c)X)

= T (1a2aX) + T (1c2aX) + s T (2c1aX) + T (1c2cX) (6.174)

Applying the Wick’s theorem to each of the four time-ordered products, the terms
with only 1 and 2 contracted are

1a2a︸ ︷︷ ︸
0

: X : + 1c2a : X : + s 2c1a : X : + 1c2c︸︷︷︸
0

: X : = (1c2a + s 2c1a) : X : , (6.175)

where we have used the fact that the contraction of two fields that (anti)commute
vanish. Since x01 = x02 we have

1c2a = T (1c2a)︸ ︷︷ ︸
1c2a

− : 1c2a :︸ ︷︷ ︸
1c2a

= 0 , (6.176)

and 2c1a similarly vanishes. Thus, we can write

: ϕ1(t)ϕ2(t) : = 0 . (6.177)

What happens if we ignore the normal ordering of the interaction term and proceed
with applying Wick’s theorem? As we will see later, we will simply obtain a constant
‘infinity’ which can be removed by the renormalization process.

6.7 Feynman rules of quantum electrodynamics

Let us apply the Wick’s theorem to simple cases of quantum electrodynamics to see
how it works. For the scattering e+e− → µ+µ−, the interaction Lagrangian is given
by (6.80):

Hint(x) = e : Aα(x)(j
α
e (x) + jαµ (x)) : , (6.178)
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where we have explicitly written the normal ordering. Since the process should an-
nihilate e+e− and create µ+µ− it cannot be a first-order process. The terms in
Hint(x)Hint(y) that can do the job are

(a) e2Aα(x)j
α
e (x)Aβ(y)j

β
µ(y) and (b) e2Aα(x)j

α
µ (x)Aβ(y)j

β
e (y) . (6.179)

The Sfi for the first term above, denoted as S
(a)
fi , is then

S
(a)
fi =

(−ie)2

2

∫
d4xd4y⟨µ+µ−|T

(
(: Aα j

α
e :)x(: Aβ j

β
µ :)y

)
|e−e+⟩ , (6.180)

where the subscript x and y indicates the space-time arguments:

Fx ≡ F (x) , (F: any operator) . (6.181)

Now we apply the Wick’s theorem to the time-ordered product. Among all possible
contractions, the only terms that survive are the one with the photon fields contracted
since there are no photons in the initial or final states. There is one such term which,
by the definition (6.145), is

AαxAβy : j
α
exj

β
µy : = + iDF αβ(x− y) : jαexjβµy : . (6.182)

Thus, we have

S
(a)
fi =

(−ie)2

2

∫
d4xd4y iDF αβ(x− y)⟨µ+µ−| : jαexjβµy : |e−e+⟩ , (6.183)

The Sfi due to the second term of (6.179) can be obtained by simply exchanging e
and µ for the currents:

S
(b)
fi =

(−ie)2

2

∫
d4xd4y iDF αβ(x− y)︸ ︷︷ ︸

DF βα(y − x)

⟨µ+µ−| : jαµxjβey :︸ ︷︷ ︸
: jβeyj

α
µx :

|e−e+⟩ , (6.184)

where we have used the fact that Dαβ
F (x − y) is symmetric under α ↔ β or x ↔ y

and that jβey commutes with jβµx (the ordering does not matter anyway since they are
normal-ordered). Thus, we see that the integrands of (6.183) and (6.184) are related
by x ↔ y and thus give the same result when integrated over x and y, and this
cancels the factor 1/2 in front of the integral. The evaluation of the remaining matrix
element proceeds as usual; namely, matching operators are moved next to the initial
or final states and annihilated. Using a notation similar to the Wick contraction to
indicate a matching of operators (it is not Wick contraction), we have

⟨µ+µ−| : (ψ̄µ

f̄µ

γβψµ

gµ

)y(ψ̄e

ḡe

γαψe

fe

)x : |e−e+⟩ = (f̄µ−γβgµ+)y(ḡe+γ
αfe−)x . (6.185)
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In this particular example, there is no minus sign arising from the shuffling. Using
the Fourier transform of iDF αβ(x − y) (5.327) and executing the integrals over x, y
and the momentum variable in iDF αβ(x− y), we obtain

Sfi = 2S
(a)
fi = (−ie)2

∫
d4xd4y iDF αβ(x− y)(ḡe+γαfe−)x(f̄µ−γβgµ+)y

=
(2π)4δ4(pµ+ + pµ− − pe+ − pe−)√

2p0µ+V 2p0µ−V
√
2p0e+V 2p0e−V

× (−ie)2iDF αβ(pe+ + pe−)(v̄e+γ
αue−)(ūµ−γβvµ+)︸ ︷︷ ︸

M

, (6.186)

where M is identified by the definition (5.109). It reproduces the matrix element
obtained earlier in (6.82).

Let us look at a case where there will be multiple diagrams where we have to be
careful about the relative sign among them. Consider the scattering

e−e− → e−e− (6.187)

called the Møller scattering. This is also caused by the QED interaction Hint =
eAµψ̄γµψ at the second order where the photon fields are contracted. No electron
fields should be contracted at this order since we need all four fields of (ψ̄γµψ)x(ψ̄γµψ)y
to annihilate two electrons and create two electrons. Thus,

Sfi =
(−i)2

2

∫
d4xd4y ⟨e−3 e−4 |T (Hint(x)Hint(y))|e−2 e−1 ⟩

=
(−ie)2

2

∫
d4xd4y Aµ

xA
ν
y ⟨e−3 e−4 | : (ψ̄γµψ)x(ψ̄γνψ)y : |e−2 e−1 ⟩ (6.188)

Now, the final-state electrons can be created by ψ̄x or ψ̄y, and the initial-state electrons
can be annihilated by ψx or ψy. Thus, there are four ways to match the fields with
the initial and final states. Among the four cases, two of them are related the other
two by the exchange x↔ y. Thus, we resolve it by requiring that e−4 of the final state
be always matched with ψ̄x and drop the factor 1/2 for Sfi. This will require that e

−
3

be matched with ψ̄y. There are still two ways to match the operators corresponding
to the exchange of the initial-state electrons:

⟨e−3 e−4 | : (ψ̄γµψ)x(ψ̄γνψ)y : |e−2 e−1 ⟩

= ⟨e−3 e−4 | : (ψ̄
f̄4

γµψ
f2

)x(ψ̄
f̄3

γνψ
f1

)y : |e−2 e−1 ⟩+ ⟨e−3 e−4 | : (ψ̄
f̄4

γµψ
f1

)x(ψ̄
f̄3

γνψ
f2

)y : |e−2 e−1 ⟩

+ (x↔ y)

= (f̄4γµf2)x(f̄3γνf1)y − (f̄4γµf1)x(f̄3γνf2)y + (x↔ y) (6.189)
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Figure 6.2: Two diagrams contributing to Møller scattering e−e− → e−e−. They are
related by the exchange of the legs for the initial-state electrons which results in the
relative minus sign.

Here, we are being careful about the ordering of the particles written inside the initial
and final states so that they reflect the ordering of the creation and annihilation
operators:

|e−2 e−1 ⟩
def≡ a†2a

†
1|0⟩ , ⟨e−3 e−4 |

def≡ ⟨0|a3a4 , (6.190)

then the relative minus sign above between the two amplitudes arises due to the signs
that occur when we move the matching operators in the fields next to the creation
and annihilation operators of the initial and final states. One sees that it is effectively
due to the exchange of the role of the underlined fields ψx and ψy in (6.189), which
is graphically shown in Figure 6.2.

The two diagrams we have obtained are all the topologically independent diagrams
that have two vertices. Note that what counts in distinguishing diagrams is which
external legs connect to which vertices topologically and it does not matter where
one draws the vertices; for example,

3 4

2121

3 4

21

3 4 3 4

21

t

xy y y yxxx

. (6.191)

It corresponds to the exchange x ↔ y which is already taken care of by eliminating
the 1/n! factor in the Dyson series. Putting all pieces together, the Lorentz-invariant
matrix element is

M = (−ie)2iDαβ
F (p1 − p3)(ū4γβu2)(ū3γαu1)

− (−ie)2iDαβ
F (p2 − p3)(ū4γβu1)(ū3γαu2) . (6.192)

Note that the second terms is obtained from the first by relabeling 1↔ 2.
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Figure 6.3: Two diagrams contributing to Bhabha scattering e+e− → e+e−. If one
interchanges the lines for e+ in the final state and e− in the initial state in the first
diagram, one obtains the second.

Similar minus sign occurs when two diagrams are related by exchange of an initial-
state fermion with a final-state antifermion, or exchange of an initial-state antifermion
with a final-state fermion. To demonstrate it, let us consider the scattering

e+e− → e+e− (6.193)

which is called the Bhabha scattering. The corresponding Sfi can be obtained by
simply changing the initial and final states In (6.188):

Sfi =
(−ie)2

2

∫
d4xd4y Aµ

xA
ν
y ⟨e+4 e−3 | : (ψ̄γµψ)x(ψ̄γνψ)y : |e−1 e+2 ⟩ (6.194)

with

⟨e+4 e−3 | : (ψ̄γµψ)x(ψ̄γνψ)y : |e−1 e+2 ⟩

= ⟨e+4 e−3 | : (ψ̄
f̄3

γµψ
g4

)x(ψ̄
ḡ2

γνψ
f1

)y : |e−1 e+2 ⟩+ ⟨e+4 e−3 | : (ψ̄
f̄3

γµψ
f1

)x(ψ̄
ḡ2

γνψ
g4

)y : |e−1 e+2 ⟩

+ (x↔ y)

= (f̄3γµg4)x(ḡ2γνf1)y − (f̄3γµf1)x(ḡ2γνg4)y + (x↔ y) (6.195)

where the redundancy due to x ↔ y was resolved by requiring that e−3 be always
matched with a field at x. The relative minus sign arises in the process of moving
the matching operators next to the initial and final states and annihilating them
one by one. As in the case of Møller scattering, the role of the underlined fields are
interchanged between the two terms; this time, however, the electron in the initial
state and the positron in the final state are exchanged as shown in Figure 6.3. The
Lorentz-invariant matrix element is then given by

M = (−ie)2iDαβ
F (p3 + p4)(ū3γβv4)(v̄2γαu1)

− (−ie)2iDαβ
F (p3 − p1)(ū3γβu1)(v̄2γαv4) . (6.196)
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This can be obtained by simply writing down all topologically independent diagrams
with two vertices and assigning a relative minus sign between the resulting two dia-
grams.

Note that this sign rule arose because a given field (ψ or ψ̄) could be matched
with either of two external legs. If two diagrams are related by exchange of a fermion
and an antifermion in the initial state (or in the final state), then there is no single
field that can be matched with both of the two external legs since it would require
that a single ψ or ψ̄ field should contain both a and b operators (or both a† and b†

operators if the two legs are in the final state). Thus, the sign rule does not apply in
such cases. Similarly, it does not apply if two diagrams are related by an exchange
of a fermion in the initial state and a fermion in the final state since a single field
cannot have both a and a† operators, nor when they are related by an exchange of
an antifermion in the initial state with an antifermion in the final state since a single
field cannot have both b and b† operators.

Next, we will study the rules realted to fermion loops. Let’s consider the second-
order photon to photon transition γi → γf . In general, the initial and final state
photons can be off-shell; we will, however, treat them as on-shell since it still demon-
strates essential points. Since there are no fermions in the initial or final states, the
fermion fields must be contracted. If we ignore the normal ordering within Hint, the
S matrix element is

Sfi =
(−i)2

2

∫
d4xd4y ⟨γf |T (Hint(x)Hint(y))|γi⟩

=
(−ie)2

2

∫
d4xd4y

[
⟨γf | : Aµ

xA
ν
y(ψ̄γµψ)x(ψ̄γνψ)y : |γi⟩ (a)

+ ⟨γf | : Aµ
xA

ν
y(ψ̄γµψ)x(ψ̄γνψ)y : |γi⟩ (b)

+ ⟨γf | : Aµ
xA

ν
y(ψ̄γµψ)x(ψ̄γνψ)y : |γi⟩ (c)

+ ⟨γf | : Aµ
xA

ν
y(ψ̄γµψ)x(ψ̄γνψ)y : |γi⟩

]
(d) .

(6.197)

Let us examine the term (a) which is called the vacuum polarization or the photon
self energy. By the definition of contraction within normal product (6.145) and the
relation (6.144),

: Aµ
xA

ν
y(ψ̄γµψ)x(ψ̄γνψ)y : = : Aµ

xA
ν
yψ̄xiψxjψ̄ykψyl : γµijγνkl

= sijkliljk︸︷︷︸
+

ψ̄xiψyl︸ ︷︷ ︸
−ψylψ̄xi by (6.152)

ψxjψ̄yk : A
µ
xA

ν
y : γµijγνkl

= −iSF li(y − x) γµij iSF jk(x− y)γνkl : Aµ
xA

ν
y :
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= −Tr
[
iSF (y − x)γµiSF (x− y)γν

]
: Aµ

xA
ν
y : (6.198)

The photon matrix element has two terms

⟨γf | : Aµ
xA

ν
y : |γi⟩ = ⟨γf | :Aµ

xA
ν
y : |γi⟩+ ⟨γf | :Aµ

xA
ν
y : |γi⟩

= hµ∗f (x)hνi (y) + hν∗f (y)hµi (x) , (6.199)

where hµp⃗λ(x) = ϵµp⃗λep⃗(x). Then, the term (a) is now

(a) = −(−ie)2

2

∫
d4xd4y

[
Tr iSF (y − x)h/∗f (x) iSF (x− y)h/ i(y)

+ Tr iSF (y − x)h/ i(x) iSF (x− y)h/∗f (y)
]
.

(6.200)

The two traces are related by x↔ y and thus give same result when integrated over x
and y, canceling out the factor 1/2 in front. Thus, we can again require that the final
state be matched with Aµ(x) and drop the factor 1/2. Using the Fourier transform
of the propagator (5.351)

iSF (y − x) =
∫ d4p

(2π)4
iSF (p)e

−ip·(y−x)

iSF (x− y) =
∫ d4p′

(2π)4
iSF (p

′)e−ip
′·(x−y)

, (6.201)

and integrating over x and y, one obtains two delta functions corresponding to 4-
momentum conservation at each vertex:∫
d4xd4y e−ip·(y−x)︸ ︷︷ ︸

SF (y − x)
e−ip

′·(x−y)︸ ︷︷ ︸
SF (x− y)

eikf ·x︸ ︷︷ ︸
hµ∗f (x)

e−iki·y︸ ︷︷ ︸
hνi (y)

= (2π)4δ4(p+kf −p′)(2π)4δ4(p′−p−ki) ,

(6.202)
where ki and kf are the initial and final 4-momenta, respectively. Upon integrating
over p′, p′ acquires value p + ki = p + kf , and we are left with one delta function
(2π)4δ4(ki − kf ) and the integration over p. Thus,

(a) = −(−ie)2
∫ d4p

(2π)4
Tr
[
iSF (p)ϵ/

∗
f iSF (p+ ki)ϵ/ i

]
︸ ︷︷ ︸

M

(2π)4δ4(kf − ki)√
2k0fV

√
2k0i V

. (6.203)

This is graphically shown in Figure 6.4 (a). Since the 4-momentum should be con-
served at each vertex, the initial and final 4-momenta should be equal as indicated
by the delta function above. Since the propagators form a loop, the momenta of
the propagators are not uniquely determined by the external momenta, as the result
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x

y

µ

ν

p

fk

k i

p fk+

(  )a (  )b (  )c

i

f (  )d

i

f

i

f

Figure 6.4: Second-order diagrams for the photon to photon transition. (a) vacuum
polarization, (b) tadpoles, and (c) and (d) with vacuum bubbles.

there is an integration over the momentum flowing in the loop. Note how the trace is
formed: draw arrows on the loop indicating the fermion number flow (the direction
happens to be irrelevant in this case) and write down 4-momenta such that they are
conserved at each vertex, and then starting somewhere on the loop one forms the
trace by picking up the elements moving against the arrow on the loop.

There is an minus sign that arose when one of the propagators was formed by
flipping the order of fields in order to match the definition of propagator in (6.198).
This is a general feature for a fermion loop regardless of how many photons are
attached. For example, when there are four external photons the process is 4-th
order, and possible contractions are

: Aα
1A

β
2A

µ
3A

ν
4(ψ̄γαψ)1(ψ̄γβψ)2(ψ̄γµψ)3(ψ̄γνψ)4 : (6.204)

where subscript i indicates that the corresponding term is a function of xi. In this
example, the contraction of ψ4 and ψ̄1 needs to be flipped to make it the propagator
−iSF (x4 − x1), picking up a minus sign in the process. Incidentally, the sense of the
loop does matter if there are more than two external photons for a fermion loop. This
is in contrast to the case with two external photons, and it is because the change of
the sense of the loop is equivalent to topologically exchanging two diagonally opposing
photons:

2

1

3

4

2

1

3

4

2

1

3

41 3

. (6.205)
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For a fixed set of external photon momenta, the two diagrams will have different
momenta flowing in the photon propagators and results in different matrix elements.

The term (b) of (6.197) may be graphically represented in Figure 6.4 (b) and called
‘tadpoles’. There is also a diagram where the photon fields are also contracted which
is shown as Figure 6.4 (d). As we have seen in (6.177), such terms do not occur when
Hint is normal-ordered. Sometimes, however, it is more convenient not to use normal
ordering in Hint, as in the case of the systematic study of divergences. and then in
general the effect of tadpoles will be removed later when the theory is renormalized.
In QED, however, tadpoles vanish due to the Furry’s theorem which we will discuss
later.

The third term (c) contains a part which is not connected to any external lines
and forms a multiplicative factor for the amplitude:

(c) =

(−i)2
2

∫
d4xd4y : Aµ

xA
ν
y(ψ̄γµψ)x(ψ̄γνψ)y :

 ⟨γf |γi⟩ . (6.206)

Generally, disconnected parts of a diagram form simple multiplicative factors, which
is also true for the diagram (b) and (d). Diagrams that are not connected to any
external lines are fully contracted and are called vacuum bubbles, and appear when
one evaluates the vacuum to vacuum transition amplitude:

⟨0|S|0⟩ = ++1 + . . .+ (6.207)

Since the vacuum is expected to stay as vacuum; namely, if there is no particles
at all at t = −∞ then there will be no particles at t = +∞, when all is properly
renormalized the vacuum to vacuum transition amplitude should be unity up to a
phase factor:

⟨0|S|0⟩ = eiθ . (6.208)

This amplitude should then multiply to any process in question. For example, e+e− →
µ+µ− have vacuum bubble corrections that factor out as a phase factor:

+1 + =+ . . .+ × eiθ (6.209)

This phase factor is common to any diagrams, and thus the vacuum bubbles can in
general be ignored.
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In addition, we note that disconnected diagrams are usually not relevant for actual
evaluations of decay rates and scattering cross sections. If an incoming line continues
to the final state without being attached to any other lines, then it is not decaying
nor scattering. Even if the incoming line does interact, disconnected parts are usually
better treated separately.

To summarize, the Feynman rules in the momentum space for quantum electrody-
namics is as follows: the Lorentz-invariant matrix elements at n-th order are obtained
as follows:

1. Draw all topologically distinct diagrams with n vertices which connect initial-
state particles to final state. No disconnected diagrams or vacuum bubbles need
to be included.

2. Impose 4-momentum conservation at each vertex.

3. For each vertex, give a vertex factor−ieγµ where µ is the Lorentz index uniquely
assigned to the vertex.

4. External lines have factors given by

initial state final state

fermion up⃗s⃗ ūp⃗s⃗

antifermion v̄p⃗s⃗ vp⃗s⃗

photon ϵµp⃗λ ϵµ∗p⃗λ

(6.210)

The Lorentz index of ϵµp⃗λ is the one assigned to the vertex the photon attaches
to.

5. Internal lines (propagators) are associated with

propagator symbol

fermion
i(p/ +m)

p2 −m2 + iϵ
iSF (p)

photon
−igµν

p2 −m2 + iϵ
iDµν

F (p)

(6.211)

The Lorentz indices of iDµν
F (p) are the ones assigned to the two vertices they

attach to. If not part of a loop, the sign of p for the fermion propagator is given
by drawing the fermion propagating forward in time.
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6. For a fermion loop, assign an extra minus sign for the amplitude, then integrate
over the momentum flowing in the loop:

∫
d4p/(2π)4.

7. Relative minus sign if two diagrams are related by exchange of two fermion
lines. Namely, exchanges of two fermions or two antifermions in the initial or
final state, or a fermion in the initial state and an antifermion in the final state,
or an antifermion in the initial state and a fermion in the final state.

Exercise 6.2 Photon-photon scattering.
Consider the photon-photon scattering

γ1 + γ2 → γ3 + γ4 .

Start from the 4-th order S matrix element

Sfi =
(−i)4

4!

∫
d4x1 · · · d4x4⟨γ3γ4|T (Hint(x1) · · ·Hint(x4))|γ1γ2⟩

with
Hint(x) = eAµ(x)ψ̄(x)γµψ(x) ,

and apply the Wick’s theorem to systematically enumerate all the distinct connected
diagrams it generates. Does the factor 1/4! canceled by the redundancy due to the
exchange of x1 · · ·x4 ? How many distinct diagrams are there? Then draw the dia-
grams.

6.8 Pair annihilation e+e− → γγ

Let us consider the annihilation of e+e− pair into two photons

e−(p1, s1) + e+(p2, s2)→ γ(ka, ϵa) + γ(kb, ϵb) . (6.212)

There are two topologically distinct graphs as shown in Figure 6.5. Since the parti-
cles in the initial state are a fermion and an antifermion, there is no relative minus
sign associated with their exchange. Then following the Feynman rules of QED, the
Lorentz-invariant matrix element is

M = −ie2
(
v̄2ϵ/
∗
b

p/1 − k/a +m

(p1 − ka)2 −m2
ϵ/∗au1︸ ︷︷ ︸

A

+ v̄2ϵ/
∗
a

p/1 − k/b +m

(p1 − kb)2 −m2
ϵ/∗bu1︸ ︷︷ ︸

B

)
. (6.213)

Note that B is obtained from A by the exchange of labels a ↔ b. If we were not
interested in the polarization of the photons, we would square this and use the photon
spin sum rule

∑
ϵ∗µϵν = −gµν . Here, however, we will proceed without summing over
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the photon spins so that we can obtain the correlation of photon polarizations. We
will evaluate the rate in the e− rest frame [namely, p1 = (m, 0⃗)] and use the Coulomb
gauge defined in that frame and the linear basis :

ϵµ∗a = ϵµa = (0, êa) , ϵµ∗b = ϵµb = (0, êb) ,

ka · ϵa = 0 , kb · ϵb = 0 .
(6.214)

This allows us to simplify the numerators of A and B substantially. First, we note
that

p1 = (m, 0⃗) → p1 · ϵa = 0 , p1 · ϵb = 0 , (6.215)

which means that p/1 anticommutes with ϵ/a,b:

p/1ϵ/a + ϵ/ap/1 = 2p1 · ϵa = 0 , p/1ϵ/b + ϵ/bp/1 = 2p1 · ϵb = 0 . (6.216)

This and the Dirac equation (p/1 −m)u1 = 0 gives

p/1ϵ/a︸ ︷︷ ︸
−ϵ/ap/1

u1 = −ϵ/a p/1u1︸ ︷︷ ︸
mu1

= −mϵ/au1 (6.217)

Then, the numerator of A simplifies as

( p/1︸︷︷︸
→ −m

−k/a +m)ϵ/au1 = −k/aϵ/au1 . (6.218)

Using
(p1 − ka)2 −m2 = p21︸︷︷︸

m2

−2p1 · ka + k2a︸︷︷︸
0

−m2 = −2p1 · ka . (6.219)

in the denominator, and repeating the same procedure for B, we have

A =
v̄2 ϵ/bk/aϵ/au1
2 p1 · ka

, B = (a↔ b) . (6.220)

t
γ

µ ν

+ee− 2
p

γµie− γνie−

b
k ε

b
ε

a
γµ ν

p
1

a
k

−p
1 a

k

γ

+ee− 2
p

γνie− γµie−

γ

p
1

−p
1 b

k
+

ε
a

µ
a

k
b

k ε
b

ν

µν

Figure 6.5: Two diagrams for the pair annihilation e+e− → γγ.
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In evaluating
|M|2 = e4(|A|2 + |B|2 + A∗B + AB∗) , (6.221)

we can obtain |B|2 from |A|2 by a ↔ b, and AB∗ from A∗B by simply taking the
complex conjugate. Summing over the e+e− spins and dividing by the number of
initial-state spin configurations (which is four), the spin-averaged |A|2 becomes

|A|2 =
1

4

∑
s1,s2

|A|2

=
1

4

1

4(p1 · ka)2
Tr(p/1 +m)ϵ/ak/aϵ/b(p/2 −m)ϵ/bk/aϵ/a

=
1

16(p1 · ka)2
(Trp/1ϵ/ak/aϵ/bp/2ϵ/bk/aϵ/a −m2Trϵ/ak/aϵ/bϵ/bk/aϵ/a) . (6.222)

We now have to use variety of tricks to reduce the number of γ matrices. Note that

k/ak/a = k2a = 0 , ϵ/aϵ/a = ϵ2a = −1 , and (a↔ b) (6.223)

Then we immediately see that the second trace vanishes:

Trϵ/ak/a ϵ/bϵ/b︸︷︷︸
−1

k/aϵ/a = −Trϵ/a k/ak/a︸ ︷︷ ︸
0

ϵ/a = 0 . (6.224)

Similarly, the strategy in calculating the first trace is to move two k/a’s or two ϵ/a’s
next to each other and then use (6.223):

Tr

−ϵ/ap/1︷ ︸︸ ︷
p/1ϵ/a k/aϵ/bp/2ϵ/bk/aϵ/a = −Trϵ/ap/1k/a

−1

ϵ/bp/2ϵ/bk/aϵ/a

= Tr p/1k/a︸ ︷︷ ︸
2p1 · ka − k/ap/1

ϵ/bp/2ϵ/bk/a = 2p1 · kaTrϵ/bp/2ϵ/bk/a − Trk/ap/1ϵ/b

0

p/2ϵ/bk/a . (6.225)

Then, the trace theorem for Trϵ/bp/2ϵ/bk/a finishes the job:

|A|2 = 2p1 · ka
16(p1 · ka)2

Trϵ/bp/2ϵ/bk/a =
1

2 p1 · ka
(2 ϵb · p2 ϵb · ka − ϵ2b︸︷︷︸

−1
p2 · ka) . (6.226)

Let’s use p1 instead of p2 wherever possible since the space part of p1 is zero which
will simplify expressions later. To do so, we can use

p1 + p2 = ka + kb →
{
(p1 − kb)2 = (p2 − ka)2 → p1 · kb = p2 · ka
ϵb · (p1 + p2) = ϵb · (ka + kb) → ϵb · p2 = ϵb · ka

, (6.227)
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where we have used ϵb · p1 = 0 (6.215) and ϵb · kb = 0 (Coulomb gauge). Then |A|2
can now be written as

|A|2 = 1

2 p1 · ka
[2(ka · ϵb)2 + p1 · kb] . (6.228)

Taking a↔ b, we have

|B|2 = 1

2 p1 · kb
[2(kb · ϵa)2 + p1 · ka] . (6.229)

The evaluation of the spin-averaged A∗B and AB∗ is left as an exercise:

A∗B + AB∗ = −
[
2(ϵa · ϵb)2 − 1 +

(ka · ϵb)2

p1 · ka
+

(kb · ϵa)2

p1 · kb

]
. (6.230)

Putting all pieces together, we obtain

|M|2 = e4|A+B|2 = e4

2

[
p1 · kb
p1 · ka

+
p1 · ka
p1 · kb

− 4(ϵa · ϵb)2 + 2
]
. (6.231)

Using the cross section formula (5.291)

dσ

dΩa

=
|p⃗a||M|2

64π2m|p⃗2|
[
m+ E2(1− β2

βa
cos θ)

] a

b

2 1 θ (6.232)

with
βa = 1 , |p⃗a| = k0a , p1 · ka,b = mk0a,b , ϵa · ϵb = −êa · êb, (6.233)

and e2 = 4πα, we finally obtain the cross section for e+e− → γγ:

dσ

dΩa

=
k0aα

2

8m|p⃗2| [m+ E2(1− β2 cos θ)]

[
k0b
k0a

+
k0a
k0b
− 4(êa · êb)2 + 2

]
, (6.234)

which was first obtained in 1930 by Dirac.
The physical meaning of the polarization correlation can best be appreciated in

the low velocity limit; namely, when the e+e− pair annihilates at rest. Then we have
β2 ∼ 0 and

k0a ∼ k0b ∼ m, |p⃗2| ∼ mβ2 , E2 ∼ m. (6.235)

and the cross section becomes

dσ

dΩa

=
α2

4m2β2
[1− (êa · êb)2] (6.236)
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Apparently, if êa and êb are parallel, then the cross section is zero. Classically, the
photon wave function is

Aµ = ϵµek⃗(x) + c.c. (6.237)

and the corresponding electric field is given by (with A0 = 0)

E⃗ ≡ −∂0A⃗− ∇⃗A0 = −∂0A⃗ = ik0 ê ek⃗(x) + c.c. ; (6.238)

where ϵµ = (0, ê). Namely, the electric field oscillates along ê. Thus, the electric fields
of the two photons created by an e+e− annihilation at rest are perpendicular to each
other:

E
E

b
γ

a
γ

. (6.239)

Later, we will learn that such correlation indicates that the annihilating state has
negative parity quantum number.

In order to calculate the total cross section, we have to sum over the photon
polarizations. Noting that êk⃗1, êk⃗2, and k̂ form a complete orthonormal basis, we
have

(êk⃗1)i(êk⃗1)j + (êk⃗2)i(êk⃗2)j + k̂ik̂j = δij

→
∑
λ=1,2

(êk⃗λ)i(êk⃗λ)j = δij − k̂ik̂j . (6.240)

Then, for general directions k⃗ and k⃗ ′,

∑
λλ′

(êk⃗λ · êk⃗ ′λ′)
2 =

∑
λλ′

∑
ij

(êk⃗λ)i(êk⃗ ′λ′)i(êk⃗λ)j(êk⃗ ′λ′)j

=
∑
ij

(δij − k̂ik̂j)(δij − k̂′ik̂′j)

=
∑
ij

(
δijδij︸ ︷︷ ︸
3

− k̂2︸︷︷︸
1

− k̂′2︸︷︷︸
1

+(k⃗ · k⃗ ′)2
)

= 1 + (k⃗ · k⃗ ′)2 . (6.241)

For our case at hand, we have k̂a · k̂b = −1 which leads to
∑
(êa · êb)2 = 2. Thus, the

cross section summed over photon spin is

dσ

dΩa

=
α2

4m2β2

∑
λaλb

[1− (êa · êb)2)]︸ ︷︷ ︸
4− 2

=
α2

2m2β2
, (6.242)
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which has an uniform angular distribution. This is not surprising since the annihila-
tion occurs at rest and we have summed over all spins. When integrating over angle,
we note that the exchange of k⃗a and k⃗b results in exactly the same final state which
should not be counted twice. Thus, we integrate over 4π steradian and divide by two
to obtain

σtot(e
+e− → γγ) =

πα2

m2β2
(low energy limit) , (6.243)

or

σtot(e
+e− → γγ) =

πr2e
β2

(low energy limit) , (6.244)

where re ≡ α/m is the classical electron radius.

Three distances in QED
There are three distance scales in the electron photon system, and they are related
by the fine structure constant α ∼ 1/137:

classical electron radius re =
α

m
∼ 2.8179 fm (= 10−13cm)

electron compton wave length λ̄e =
1

m
∼ 386.1 fm

Bohr radius a∞ =
1

mα
∼ 0.5292 Å (= 10−8cm)

(6.245)

Since the radius of proton is about 0.5 fm, the classical electron radius re is about
five times larger than the radius of proton.

6.9 The Ward identity

We are now well equipped to prove the Ward identity (6.70). Let us first restate the
claim. When an external photon is involved in a process, the Lorentz-invariant matrix
elementM is linear in the polarization vector ϵµ of the photon. Then, it vanishes if
one replaces ϵµ with the 4-momentum of the photon qµ:

M = ϵµIµ → qµIµ = 0 . (6.246)

As we will see below, the photon does not have to be on-shell. When a photon
is attached to a fermion line (loop or not), then, regardless of the on-shellness of
the photon, the current associated with the fermion line vanishes when the gamma
matrix at the vertex is contracted with the 4-momentum of the photon. This latter
aspect was needed for the term qµqν/M2 of the spin-1 propagator to vanish in (6.61).
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The original Ward identity is a relation between the electron propagator and the
electron-photon vertex function in the context of perturbation theory (with higher-
order corrections), which was generalized by Takahashi using a formulation exact to
all orders. It has become customary, however, to include the relation presented here
in the ‘Ward identities’.

A photon is always attached to a fermion line which may have two ends or may
be a loop. The fermion line may be attached to photons (with momenta k1 · · · kn
other than the photon of interest (with momentum q). The photons may be on-shell
or off-shell. Let us start from the case where the fermion line has ends. We assume
that the ends are u spinors, but the proof works also when one or both are v spinors.
For given incoming and outgoing momenta of the fermion line (pa and pb) and the
momenta of photons (q, k1 · · · kn), there are n+1 ways the photon of interest attaches
to the fermion line depending on the relative position of the series k1 · · · kn and q:

. . ._
ub au

µ

. . ._
ub au

q

. . ._
ub

. . .

q

µ

+ +. . . . . .

k1

α1

nk

α
n i

k
1

α
1

nk

αnp
b

p
a

p
b

p
a

(a) (b) (c)

αµ

q

αp
b

p
a

au

i +1
k

i +1
p

i

k i 

(6.247)
The system that these photons attach to is identical for each of these diagrams,
thus we can sum the these diagrams to prove the cancellation in terms of the entire
matrix element. There are diagrams with k1 · · · kn reordered, but it turns out that
the cancellation occurs within a given ordering of k1 · · · kn.

As we have seen in (5.358), because of the relation

p/ +m

p2 −m2
= (p/ −m)−1 ; (6.248)

we symbolically write the fermion propagator as

iSF (p) = i
p/ +m

p2 −m2 + iϵ

def≡ i

p/ −m+ iϵ
. (6.249)

For example, the diagram (a) of (6.247) can be written as

(a) = ūbγαn

1

p/b + k/n −m
γαn−1 · · · γα1

1

p/a − q/ −m
γµua , (6.250)

where we have dropped the i’s and −ie’s (e: electric charge) since they are common to
all diagrams and irrelevant in demonstrating the cancellation. We have also ignored
the +iϵ terms which do not affect the proof. Our task then is to show that the
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net result is zero when we contract γµ with qµ in each diagram and sum the n + 1
diagrams. We further simplify the notation by writing the inverse propagator as

[p]
def≡ p/ −m. (6.251)

Then, the Dirac equations for ua and ūb are

[pa]ua = 0 , ūb[pb] = 0 , (6.252)

and we have for any pµ and p′µ

[p]− [p′] = (p/ −m)− (p/ ′ −m) = p/ − p/ ′ . (6.253)

Then the diagram (a) with γµ contracted with qµ is

(a) : ūbγαn · · ·
1

[pa − q − k1]
γα1

1

[pa − q]

[pa]−[pa − q] by (6.253)︷︸︸︷
q/ ua

= ūbγαn · · ·
1

[pa − q − k1]
γα1

1

[pa − q]

0 by (6.252)︷ ︸︸ ︷
[pa]ua

−ūbγαn · · ·
1

[pa − q − k1]
γα1

1︷ ︸︸ ︷
1

[pa − q]
[pa − q]ua

= −ūbγαn · · ·
1

[pa − q − k1]
γα1ua . (6.254)

Similarly for (b) and (c), the contraction with qµ results in

(c) : ūb

[pb + q]−
/\
[pb] (← ūb[pb] = 0)︷︸︸︷

q/
1

[pb + q]
γαn

1

[pb + q + kn]
· · ·ua = ūbγαn

1

[pb + q + kn]
· · ·ua , (6.255)

and

(bi) : ūb · · ·
1

[pi − q − ki+1]
γαi+1

1

[pi − q]

[pi]− [pi − q]︷︸︸︷
q/

1

[pi]
γαi

1

[pi + ki]
· · ·ua

= ūb · · ·
1

[pi − q − ki+1]
γαi+1

1

[pi − q]
γαi

1

[pi + ki]
· · ·ua

− ūb · · ·
1

[pi − q − ki+1]
γαi+1

1

[pi]
γαi

1

[pi + ki]
· · ·ua , (6.256)
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where we have labeled as (bi) the diagram in which the photon of interest (with
momentum q) is attached between the (i + 1)-th and i-th photons and pi is the
momentum of the propagator just to the left of the i-th photon. In order to keep track
of momenta flowing in the propagators, it is convenient to use a graphical method
where the momenta are uniquely determined by the momentum conservation at each
vertex. We will use an extra arrow with dotted line to indicate that momentum
q is flowing out of the vertex and the momentum conservation is imposed on each
vertex, and otherwise the normal rules for propagators and spinors are applied. The
expression (6.254) can then be represented as

(a) →

. . .

k1nk

−

q
p
b

p
a

(bi) →

. . .

p
a

. . .

p
b q

. . .

p
a

. . .

p
b q

−

k
i

k
i+1

k
i+1

k
i

(c) →

. . .

k1nk

q
p
b

p
a
.

(6.257)

Now it is quite clear that (a) cancels the first term of (b1), and the second terms of
(b1) cancels the first term of (b2), and so on; and finally the second term of (bn−1)
cancels (c).

If pa is carried by a positron in the final state, then the starting momentum of the
current is −pa rather than pa; e.g. the momentum of the propagator just to the left
of q in (6.247a) is −pa − q. On the other hand, the positron spinor va satisfies

[−pa]va = (−p/a −m)va = 0 , (6.258)

and the proof can be carried out in the same way as before. Similarly, the proof works
fine when the spinor at the end of the current is a v spinor.

When the photon in question is attached to a fermion loop, the same reasoning
works just fine. This time the photon with momentum q is attached to a fermion loop
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with n other photons with momenta k1 · · · kn. There are n diagrams depending on
where the photon in question is attached with respect to the series of other photons,
and these diagrams need to be summed. The diagram with q placed between ki and
ki−1 gives (upon contracting qµ with the γµ at the vertex)

Tr

(
γαn · · ·

1

[pi − q − ki+1]
γαi+1

1

[pi − q]

[pi]− [pi − q]︷︸︸︷
q/

1

[pi]
γαi

1

[pi + ki]
· · · 1

[p]

)
(6.259)

= Tr

(
γαn · · ·

1

[pi − q − ki+1]
γαi+1

1

[pi − q]
γαi

1

[pi + ki]
· · · 1

[p]

)

− Tr

(
γαn · · ·

1

[pi − q − ki+1]
γαi+1

1

[pi]
γαi

1

[pi + ki]
· · · 1

[p]

)
,

which can be graphically represented as

(i) :

.
.

.

q

1k

nk
.

.

.
.

.
.

p

.
.

.

q

1k

nk
.

.

.
.

.
.

p−

.
.

.

.
.

.

ikik

i+1k i+1k

. (6.260)

Let’s label this pair of diagrams as (i). Then, it is seen that the second term of (i)
cancels the first term of (i + 1) and so on, and the second term of (n), where q is
placed between k1 and kn, cancels the first term of (1). Thus, the net total again
vanishes and the Ward identity (6.246) holds even when the photon is attached to a
fermion loop. This completes the proof.

Incidentally, when there are odd number of photons attached to a fermion loop,
then there is a cancellation between two diagrams with opposite loop directions (this
is for the ordinary matrix element without contracting any photon momentum with
the corresponding γ matrix). The photons need not be on-shell for this to hold. It
is also easy to see that the amplitude vanishes when odd number of photons and no
fermion lines are attached to a ‘blob’ which represents any QED diagram:

.

2n+1
k .

1
k

2k

= 0
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.
.

.

.

. .

(Furry’s theorem) : (6.261)



6.9. THE WARD IDENTITY 339

Since there are no external fermion lines, all fermion lines inside the blob are loops,
and since all photon lines that do not come out of the blob have two vertices there
is at least one fermion loop with odd number of photons attached. The amplitude
of this loop multiplies to the whole amplitude and thus the diagram vanishes. This
is called the Furry’s theorem and is a consequence of the symmetry of QED under
charge conjugation C which in particular prohibits transitions between odd and even
numbers of photons. We will come back to this point later. When there is only one
photon attached to the blob, it represents a tadpole (and corrections to it) and it
vanishes due to the Furry’s theorem.

Exercise 6.3 Furry’s theorem.
(a) Write down the two diagrams for a fermion loop with three external photons
with momenta k1, k2, and k3 flowing out of the loop. These diagrams are related by
reversing the direction of the fermion loop. Each vertex has a gamma matrix with
a given lorentz index (call them γµ1, γµ2, and γµ3). Write down the corresponding
amplitudes including the integral over the loop momentum. You can ignore the i’s
and e’s as well as the +iϵ terms.
(b) Show that the two amplitudes cancel. (hint: Use Trγi1 . . . γin = Trγin . . . γi1
(reverse order), and that the trace of odd number of γ’s is zero. Also, note that
the momentum conservation at each vertex demands k1 + k2 + k3 = 0.)
(c) Extend the proof to the case with (2n+1) photons attached to a fermion loop with
n > 2.
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Problems

6.1 Radiative decay: Higgs → fermion pair + photon.
The coupling of the neutral Higgs to fermion is given by the interaction Lagrangian

cϕψ̄ψ

where c is a dimensionless real coupling constant, ϕ is the Higgs field, which is neutral
and spin-0, and ψ is the fermion field. Let’s consider the process where Higgs decays
to a fermion pair + photon:

H(q)→ f(p1, s1) + f̄(p2, s2) + γ(k, ϵ)

There are two diagrams to be summed to obtain the decay amplitude corresponding to
which of f and f̄ emits the photon.
(a) Draw the relevant Feynman diagrams and write down the Lorentz-invariant matrix
element M. Assume that the fermion charge is e. Note that the momentum used in
the fermion propagator is defined to be that of the fermion propagating forward in
time and not that of anti-fermion propagating forward in time.
(b) Assume that the fermion mass is small; namely, it is set to zero. Actually, in the
standard model, the Higgs coupling to fermion is proportional to the fermion mass,
but it does not concern us here. Square the matrix element and sum over the fermion
spins and the photon spin. For the photon spin sum, use∑

λ

ϵµ∗λ ϵ
ν
λ → −gµν .

Convert it to the differential decay rate using

dΓ

ds1ds2
=

|M|2
(2π)332M3

where M is the Higgs mass, s1 is the invariant mass squared of the fermion and
photon, s2 is that of the antifermion and photon. Express the result in terms of M ,
s1, s2, α = e2/(4π) and c. You may want to use p/1 + k/ = q/ − p/2 (4-momentum
conservation) in the numerator of a fermion propagator, then use the Dirac equation
to eliminate p/2. Similarly for the other propagator.
(c) This time, we will use the Coulomb gauge in the rest frame of Higgs, namely the
polarization vector has no time component and the space part is transverse to k̂, and
simplify the matrix element as much as possible without summing over the photon
spin at the beginning. Thus, you can use relations such as

q · ϵ = 0 , k · ϵ = 0
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Show that the decay rate is given by (summed over fermion spins but not over photon
spin)

dΓ

ds1ds2
=

αc2

32π2M3

(
1

s1
+

1

s2

)2

[s1s2 − 4M2(p1 · ϵ)(p2 · ϵ)]

You can combine the two terms into one using q · ϵ = 0 (i.e. one trace to deal with)
(d) Now use

∑
λ ϵ

µ∗
λ ϵ

ν
λ → −gµν in (p1 · ϵ)(p2 · ϵ) above to ‘sum over’ the photon spin.

You will not get the same answer as in (b), why?
(e) Explicitly sum over the two linear polarizations. You can use∑

λ=1,2

êi
k⃗λ
êj
k⃗λ

= δij − k̂ik̂j ,

where êk⃗λ is the space part of the 4-vector ϵk⃗λ. This time, you should get the same
result as in (b).
[comment: The result shows that the decay rate is divergent as the invariant mass
of the photon and one of the fermion pair goes to zero. In fact the total decay rate
obtained by integrating over s1 and s2 is infinity. Such divergence is known to be can-
celed by a divergence encountered in the diagram where a photon emitted from fermion
is absorbed by anti-fermion which is called the vertex correction. It is an example of
a more general theorem called Kinoshita-Lee-Nauenberg, or KLN, theorem.]

6.2 e+e− → µ+µ− with transversely polarized beam.
When an electron or positron beam goes around a storage ring, the intrinsic magnetic
moment tends to get aligned to the magnetic field of the bending magnet which is
vertical (in order to circulate the beams in a horizontal plane). Since electron and
positron have opposite charges, their spins tend to polarize in opposite direction (ver-
tically). Take the y-exis to be pointing up and the z-zxis to be in the beam direction
at the collision point, and assume that electron is polarized in the +y direction and
positron in −y direction. Assume that electron is massless but do NOT assume that
muon is massless.
(a) Set the momentum/spin of electron and positron to be (p1, s1) and (p2, s2) respec-
tively. What is the numerical values of s1 and s2 in the lab system?
(b) Using the Feynman rules, write down the invariant matrix element M without
summing over the spins. Momenta/spin of final state µ− and µ+ are (q1, s

′
1) and

(q2, s
′
2) respectively. Consider only the lowest order; namely, via a single photon.

(c) Sum over the spins of final state muons, but not over the spins of initial state
particles. Use the relation

up,sūp,s =
1 + γ5s/

2
(p/ +m)

etc. to convert it to traces. Yes, it becomes traces even though not summing up the
intial state spins. This is equivalent to inserting spin projection operators and then
summing over spins.
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(d) Complete the calculation of the differential cross section dσ/dΩ and express it
in terms of α (fine structure constant), s (total c.m. energy squared), β (velocity of
muon), θ (polar angle of muon with respect to the beam axis), and ϕ (azimuthal angle
- ϕ = 0 for the x axis). The result is almost as simple as the non-polarized case.
(e) Obtain the differential cross section dσ/dΩ for the case when the polarizations of
electron and positron are in a same direction; namely, both up or both down. Sketch
the azimuthal distribution at θ = π/2 for the two cases - polarizations parallel and
anti-parallel - in the massless limit.

6.3 Electronic decay width of J/Ψ.
(a) Closely follow the calculation of e+e− → µ+µ− to obtain the spin-averaged Lorentz-
invariant matrix element squared for

c(p1)c̄(p2)→ e−(q1)e
+(q2) .

This time keep the mass of the charm quark (m = 1.5 GeV/c2) as non-zero. You can
ignore the electron mass. The charge of c quark is +2/3. You should get

|M|2 = 32e4

9s2
[p2 · q1 p1 · q2 + p2 · q2 p1 · q1 +m2q1 · q2] .

(b) Express the differential cross section dσ/dΩ in the CM system in terms of the
velocity of the charm quark (β), the CM energy squared (s), the angle between the
incomiong charm quark and the outgoing electron (q), and the fine structure constatn
a = e2/4π. (

answer:
dσ

dΩ
=

α2

9sβ
(2− β2 sin2 θ) .

)

(c) The result above can be used to roughly estimate the electronic decay rate Γ(Ψ→
e+e−), where Ψ is made of a pair of charm and anti-charm quarks coupled to form spin
1. Imagine, naively, that Ψ is a system in which charm quark and anti-charm quark
are rotating in opposite direction at non-relativistic speed. You can assume that the
charm quark is moving in the cloud of anti-charm quark with uniform density ρ = 1/V
where V is the volume of Ψ meson. Assume a ball of radius 0.25×10−13 cm. (or 0.25
fm). Estimate the decay in unit of keV. [hint: First integrate the cross section over
angles assuming β ≪ 1. Note that the number of reaction per unit time - i.e. decay
rate - is σ×ρ×(relative velocity of projectile and target). The result is independent of
the velocity β. The cross section obtained in (b) is for the spin averaged case. What
happens if the incoming cc̄ pair is already coupled to spin 1? The experimental value
is 5.26±0.37 keV.]

6.4 QED scattering H+H− → H+H−.
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(a) Draw the two lowest-order diagrams relevant for the QED reaction

H+(p1) +H−(p2)→ H+(q1) +H−(q2) ,

and write down the Lorentz-invariant matrix element in terms of the 4-momenta.
You should have one term inversely proportional to t ≡ (p1 − q1)2 (‘t-channel’) and
another term inversely proportional to s = (p1 + p2)

2 (‘s-channel’).
(b) Evaluate the differential cross section dσ/dΩ in the C.M. system and express it in
terms of the fine structure constant α, the velocity of the particles β, s, and the angle
θ between the incoming and outgoing H+. Examine the limit β → 0 and comment on
the angular distribution. Which of the two channels (s or t) dominates in that limit?




