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Exercise 1.3
(a) Raising α in the expression (Mµν)αβ = gµα g

ν
β − gµβ g

ν
α,

(Mµν)αβ = gµα gνβ − gµβ g
να .

Then, noting that g0i = 0(i = 1, 2, 3),

(KiKj)
α
γ = (M0i)αβ(M

0j)βγ

= (g0
α
giβ − g0β g

iα)(g0
β
gjγ − g0γ g

jβ)

= −giαgjγ − g0αg0γg
ji .

Exchanging i and j,
(KjKi)

α
γ = −gjαgiγ − g0αg0γg

ij .

Then, the commutator [Ki, Kj] is

[Ki, Kj]
α
γ = gjαgiγ − giαgjγ = (M ji)αγ = −(M ij)αγ ,

namely,
[Ki, Kj] = −Lk (i, j, k : cyclic) .

(b) Since any nonzero components in the matrixes that appear in [Li, Lj] = ϵijkLk

have purely space indeces, it suffices to consider the 3 × 3 space parts only. Using
(Li)

j
k = −ϵijk,

(LiLj)
l
m = (Li)

l
k(Lj)

k
m = ϵilkϵjkm = −ϵilkϵjmk

= −(δijδlm − δimδlj) ,

where we have used the formula ϵilkϵjmk = δijδlm − δimδlj. Exchanging i and j,

(LjLi)
l
m = −(δjiδlm − δjmδli) .

Then, the commutator becomes,

[Li, Lj]
l
m = δimδlj − δjmδli = ϵijkϵmlk = ϵijk(Lk)

l
m ,

namely,
[Li, Lj] = ϵijkLk .

(c) Since (Li)
0
µ = (Li)

µ
0 = 0 and (Ki)

j
k = 0,

[Li, Kj]
k
l = (Li)

k
µ(Kj)

µ
l − (Kj)

k
µ(Li)

µ
l = 0 .

On the other hand,

[Li, Kj]
k
0 = (Li)

k
µ(Kj)

µ
0︸ ︷︷ ︸

−ϵiklδjl

−(Kj)
k
µ (Li)

µ
0︸ ︷︷ ︸

0

= −ϵikj = ϵijlδlk = ϵijl(Kl)
k
0 .
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Similarly,
[Li, Kj]

0
k = ϵijl(Kl)

0
k .

Putting all together, we have
[Li, Kj] = ϵijlKl .
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Exercise 1.4
(a) Using P∥ = P⃗ · n⃗ and P⃗⊥ = P⃗ − P∥n⃗, the boost can be written as

E ′ = γE + ηP∥ = γE + ηP⃗ · n⃗ = γE + βγP⃗ · β⃗
β

= γE + γP⃗ · β⃗ = γE + γβxPx + γβyPy + γβzPz ,

and

P⃗ ′ = P ′
∥n⃗+ P⃗ ′

⊥ = (ηE + γP∥)n⃗+ P⃗⊥

= (ηE + γP⃗ · n⃗)n⃗+ P⃗ − (P⃗ · n⃗)n⃗
= (ηE + (γ − 1)P⃗ · n⃗)n⃗+ P⃗

= γEβ⃗ +
γ − 1

β2
(P⃗ · β⃗)β⃗ + P⃗ ,

which writes in terms of components,

P ′
x = γβxE + ρβx(β⃗ · P⃗ ) + Px

P ′
y = γβxE + ρβx(β⃗ · P⃗ ) + Py

P ′
z = γβyE + ρβy(β⃗ · P⃗ ) + Pz ,

with ρ ≡ (γ − 1)/β2. Putting them in matrix form,
E ′

P ′
x

P ′
y

P ′
z

 =


γ γβx γβy γβz

γβx 1 + ρβ2
x ρβxβy ρβxβz

γβy ρβyβx 1 + ρβ2
y ρβyβz

γβz ρβzβx ρβzβy 1 + ρβ2
z




E
Px

Py

Pz

 .

(b) When β ≪ 1, γ ∼ 1 + β2/2 and thus γ − 1 ∼ β2/2. Namely, ρ ∼ 1/2 and
γ ∼ 1. Then, the Lorentz tranformation obtained above becomes,

1 βx βy βz

βx 1 0 0
βy 0 1 0
βz 0 0 1

 = I + βiKi .

(c) The particle with mass m at rest in K has 4-momentum P ν = mgν0. Then,
the 4-momentum in K ′ is given by

P ′µ = Λµ
νP

ν = mΛµ
νg

ν
0 = mΛµ

0 .

On the other hand, the same 4-momentum should be

P ′µ = mη′µK .
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where η′µK is the 4-velocity corresponding to β′
K :

η′0K =
1√

1− β′2
K

, η′iK =
β′
Ki√

1− β′2
K

.

Thus, we should have
Λµ

0 = η′µK .

If we put a mass m at rest in K ′, the 4-momenta there is P ′ν = mgν0. The 4-
momentum in K is given by the inverse transformation of Λ:

P µ = (Λ−1)µνP
′ν = m(Λ−1)µ0 = mΛ0

µ ,

where we have used (Λ−1)µν = Λν
µ. On the other hand, the same 4-momentum can

be written in terms of β⃗K′ as
P µ = mηµK′ ,

where ηµK′ is the 4-velocity corresponding to β⃗K′ . Thus, we should have Λ0
µ = ηµK′ , or

Λ0
µ = ηK′µ .
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Problem 1.3
That a rotation around an axis commute with a boost in that direction: Using

the commutations relations between Ki and Lj as well as θj = c ξj,

[ξiKi, θjLj] = ξiθj [Ki, Lj]︸ ︷︷ ︸
ϵijkKk

= c ξiξjϵijkKk = 0

where we noted that ξiξj is symmetric while ϵijk is antisymmetric under i ↔ j, thus
cancel out when summed over i and j. Then, using the CBH theorem,

eξiKieθjLj = eξiKi+θjLj+ · · ·︸︷︷︸
0

where the terms indicated by dots are zero since their innermost commutator is
[ξiKi, θjLj] which is zero as shown above. Namely, eξiKi and eθjLj commute.

That two boosts in the same direction commute: Similarly as above,

[ξiKi, ξ
′
jKj] = ξiξ

′
j [Ki, Kj]︸ ︷︷ ︸
−ϵijkLk

= −c ξiξjϵijkLk = 0 .

Thus,
eξiKieξ

′
jKj = eξiKi+ξ′jKj+ · · ·︸︷︷︸

0
.

Namely, eξiKi and eξ
′
jKj commute.


