Exercise 3.7 (20 pnts)
1. Weyl representation:
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The space part is the same as the Direac representation; thus, {7,177} = 2¢%¥ is
already shown. The rest is to show 7% = 1 and {+°,~'} = 0:
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Thus, the v matrixes in the Weyl representation indeed satisfies {7, 7"} = 2¢**.

2. The v matrixes in the Majorana representation (denoted as 74,) can be written
using those in the Dirac representation as
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We have to show that 79,> = 1, 44,° = —1, and they all anticommute, which is

equivalent to {4, 74} = 2¢". With k =1 or 3,
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Anticommutations (again with £ =1 or 3):
{(°2, 577} = Y57 + %5 10 P = — s = 0.
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Y, %7°7 ) = 7% + %Y =0
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and

{157’75 7%} = 37057+ 57° 570y = = (v + %) = 0.
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Thus, we see that {~v};,7%} = 0 (1 # v). Putting all together we have shown
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Exercise 3.8
(a) We will use a shorthand for sin and cos: sy = sin¢, c¢s = cos ¢ etc.
Using the formula €% = ¢, +i(a - 7)s, and
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the rotation matrix u (6, ¢) can be written as
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Now write them in terms of s, = sgcy, s, = sp54. Using s. = ¢, 205 = 1+ cop,
252 = 1 — ¢y, and noting |s, | = s,
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Since s = sg(cy + 154) = sp€™,
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Then, x4 and y_ can be written as
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Since the rotation u(f, ¢) is a unitary matrix, the norm is conserved; namely, it is
automatically unity:.
(b) Using the explicit expression of §- &
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the projection operators are
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Applying P, to any vector, say | 1), should give x+ up to a constant:
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woP(o)=(07) e (o) = (157).

which is consistent with (a).



