Exercise 4.1
(a) Noting that [a,a’] = 1 leads to aa’ = 1+ N, and using Na'"|0) = na'™|0),
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Rpeating the procedure results in
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(b) We have
1 n 1 n+1
= —a"o +1) = ——at"0).
) = S0 ) = ™)
Then,
1 n vn+ 1 n
o= O = O Y
- n !
Also,
1 n—
In—1) = ———ad' 1|O>.
(n—1)!
Then,
1 n 1 n—1 \/ﬁ n—1
aln) = —=aa'"0) = —= aa! a'" 7|0) = ——=—=da" |0) = V/n|n —1).
Vn! TN =, V-1
~~

n—1



Exercise 4.2 Matrix representation of fermionic oscillator.
The operator a can be written as a 2 by 2 matrix as
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Using the relations given, we obtain
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Namely,

Then, the anti-commutation relations can be verified explicitly,

= wdo= (3 1) (0 )+ () D)-(3 D).
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{a,a} = {a',a’} = 0.

and

thus,



