Top electroweak couplings study using di-leptonic state at $\sqrt{s} = 500$ GeV, ILC with the Matrix Element Method

AWLC2017, SLAC
Yo SatoA
Akimasa IshikawaA, Emi KouB, Francois Le DiberderB, Hitoshi YamamotoA, Junping TianC, Keisuke FujiiD,
Tohoku UniversityA, LALB, University of TokyoC, KEKD
Outline

Motivation

Kinematical reconstruction of top quark
- Strategy of kinematical reconstruction
- Fraction of wrong assignment of b-jets
- Helicity angles computation

Matrix element method analysis
- Fit of CP-Conserving form factors
- Fit of CP-Violating form factors

Summary
Top EW Couplings Study

- Top quark is the heaviest particle in the SM. Its large mass implies that it is strongly coupled to the mechanism of electroweak symmetry breaking (EWSB)

→ Top EW couplings are good probes for New physics behind EWSB

\[\mathcal{L}_{\text{int}} = \sum_{v=\gamma,Z} g^v \left[V^V_t \bar{t} \gamma^l (F^V_{1V} + F^V_{1A} \gamma_5) t + \frac{i}{2m_t} \partial_\nu V^V_t \bar{t} \sigma^{l\nu} (F^V_{2V} + F^V_{2A} \gamma_5) t \right] \]

In new physics models, such as composite models, the predicted deviation of coupling constants, \(g_L^Z, g_R^Z \) (\(= F^Z_{1V} \mp F^Z_{1A} \)) from SM is typically 10%
Di-leptonic State of the top pair production

Top pair production has three different final states:

- **Fully-hadronic state** \((e^+e^- \rightarrow t\bar{t} \rightarrow b\bar{b}q\bar{q}q\bar{q})\) 46.2%
- **Semi-leptonic state** \((e^+e^- \rightarrow t\bar{t} \rightarrow b\bar{b}q\bar{q}l\nu)\) 43.5%
- **Di-leptonic state** \((e^+e^- \rightarrow t\bar{t} \rightarrow b\bar{b}l\nu l\nu)\) 10.3%

Advantage

- 9 helicity angles can be computed (details will be described later)
→ Higher sensitivity to the form factors

Difficulty

- Two missing neutrinos → Difficult to reconstruct top quark.

Develop the reconstruction process in realistic situation
Set Up of Analysis

<table>
<thead>
<tr>
<th>Situation</th>
<th>On / Off</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full simulation of ILD</td>
<td>On</td>
</tr>
<tr>
<td>Hadronization</td>
<td>On</td>
</tr>
<tr>
<td>Gluon emission from top</td>
<td>On</td>
</tr>
<tr>
<td>ISR/BS</td>
<td>On</td>
</tr>
<tr>
<td>$\gamma\gamma \rightarrow$ hadrons</td>
<td>On</td>
</tr>
<tr>
<td>bkg. events</td>
<td>Off (ongoing)</td>
</tr>
</tbody>
</table>

Sample (Only signal)

[Di-muonic state](#)

$e^+e^- \rightarrow b\bar{b}\mu^+\nu\mu^-\bar{\nu}$

- \sqrt{s}: 500 GeV
- Polarization (P_{e^-}, P_{e^+}): (-0.8, +0.3) "Left" / (+0.8, -0.3) "Right"
- Integrated luminosity: 500 fb$^{-1}$ (50/50 between Left and Right)

Generator

Whizard

Detector

ILD_01_v05 (DBD ver.)
Reconstruction Process

- Isolated leptons tagging
 - Number of isolated leptons = 2 & Opposite charge each of two

- Suppression of $\gamma\gamma \rightarrow$ hadrons
 - kt algorithm (cf. the Semi-leptonic analysis, $R = 1.5$)

- b-jet reconstruction
 - LCFI Plus (Durham algorithm)
 - The b-charge measurement is not used

- Kinematical reconstruction of top quark
Kinematical Reconstruction of top quark

\[e^+ e^- \rightarrow \bar{t}t \rightarrow \bar{b}b \mu^+ \nu \mu^- \bar{\nu} \]

Measurable

- muon's: \(E_\mu^+, \theta_\mu^+, \phi_\mu^+ \), \(E_\mu^-, \theta_\mu^-, \phi_\mu^- \)
- b-jet's: \(E_{b1}, \theta_{b1}, \phi_{b1}, E_{b2}, \theta_{b2}, \phi_{b2} \)

Missing

- neutrino's: \(E_\nu, \theta_\nu, \phi_\nu, E_{\bar{\nu}}, \theta_{\bar{\nu}}, \phi_{\bar{\nu}} \)

\(\Rightarrow \) **6 unknowns**

To recover them, impose the kinematical constraints:

- **Initial state constraints**: \((\sqrt{s}, \vec{P}_\text{init.}) = (500, \vec{0})\)
- **Mass constraints**: \(m_t, m_{\bar{t}}, m_{W^+}, m_{W^-} \)

\(\Rightarrow \) **8 constraints (2 in excess)**

We don’t need \(E_{b1} \) and \(E_{b2} \) which are relatively difficult to reconstruct.

\(\rightarrow \) Just use to decide the assignment of b-jets
Kinematical Reconstruction of top quark

To detect the solution, we solve the following equations.

\[E_{\mu_{\pm}}^{W \pm \text{rest frame}}(\theta_t, \phi_t) = m_{W \pm}/2 \quad \text{(Red: } \mu^+, \text{ Green: } \mu^-) \]

assignment A (correct), \(b_1 = b, \ b_2 = \bar{b} \)

assignment B (wrong), \(b_1 = \bar{b}, \ b_2 = b \)

Typically, 4 candidates exist for each event.

We need to select the optimal solution from these candidates.
Kinematical Reconstruction of top quark

\[\chi_b^2(\theta_t, \phi_t) \equiv \left(\frac{E_b(\theta_t, \phi_t) - E_b^{\text{meas.}}}{\sigma[E_b^{\text{meas.}}]} \right)^2 + \left(\frac{E_{\bar{b}}(\theta_t, \phi_t) - E_{\bar{b}}^{\text{meas.}}}{\sigma[E_{\bar{b}}^{\text{meas.}}]} \right)^2 = 2 \] (Blue)

assignment A (correct), \(b_1 = b, \ b_2 = \bar{b} \)

assignment B (wrong), \(b_1 = \bar{b}, \ b_2 = b \)

The candidate A1 has the minimum \(\chi_b^2 \)

\[\Rightarrow \] The assignment A is selected and the solution is \((\theta_t, \phi_t) \approx (0.5, -0.35) \)
Kinematical Reconstruction of top quark

Technically, to obtain the solution, we minimize χ^2_{tot}:

$$\chi^2_{tot}(\theta_t, \phi_t) = \chi^2_{\mu}(\theta_t, \phi_t) + \chi^2_{b}(\theta_t, \phi_t)$$

where $\chi^2_{\mu}(\theta_t, \phi_t) \equiv \left(\frac{E^{(W^+ \text{ rest frame})}(\theta_t,\phi_t)-m_{W^+}/2}{\sigma[E^{(W^+ \text{ rest frame})}]^2} \right) + \left(\frac{E^{(W^- \text{ rest frame})}(\theta_t,\phi_t)-m_{W^-}/2}{\sigma[E^{(W^- \text{ rest frame})}]^2} \right)$

χ^2_{μ} is dominant to determine (θ_t, ϕ_t) because $\sigma[E^{(W \text{ rest frame})}] \ll \sigma[E_b]$
F_{wrong} : Fraction of the Wrong Assignment of b-jets

F_{wrong} (the fraction of the wrong assignment of b-jets) = 22 %

When we use samples not including ISR, $F_{\text{wrong}} = 8 %$

\rightarrow ISR significantly affects the assignment problem.

We use two quantities to reduce F_{wrong}

χ^2_{tot} (as mentioned)

$\Delta\chi^2_{\text{tot}} = |\chi^2_{\text{tot,assignment A}} - \chi^2_{\text{tot,assignment B}}|$
F_{wrong} : Fraction of the Wrong Assignment of b-jets

We investigate F_{wrong} and the efficiency varying the set of criteria for $(\chi^2_{\text{tot}}, \Delta \chi^2_{\text{tot}})$

The polar angle distribution of top is improved by the quality cut.

$\chi^2_{\text{tot}} < 5, \Delta \chi^2_{\text{tot}} > 6$

($F_{\text{wrong}} = 5.0 \%$

total efficiency = 28 \%)
All final state particles including two neutrinos can be calculated. The 9 helicity angles which are related to the ttZ/γ vertex are computed.

$$\theta_t, \theta_{W^+}^{\text{frame}}, \phi_{W^+}^{\text{frame}}, \theta_{W^+}^{\mu+}, \phi_{\mu+}^{\text{frame}}, \theta_{W^-}^{\text{frame}}, \phi_{W^-}^{\text{frame}}, \theta_{\mu^-}^{\text{frame}}, \phi_{\mu^-}^{\text{frame}}$$

eg)

$$\cos \theta_{W^+}^{\text{frame}}$$

$$\cos \phi_{W^+}^{\text{frame}}$$

$$\chi^2_{tot} < 5, \Delta \chi^2_{tot} > 6$$
Matrix Element Method Analysis

Matrix element method is based on the maximum likelihood method.

\[-2 \log L(F) (= \chi^2 (F)) = -2 \left(\sum_{e=1}^{N_{\text{event}}} \log |M|^2 (\Phi_e, F) - N(F) \right)\]

$|M|^2$: the full matrix element, Φ_e: the 9 helicity angles, F: the form factors, $N(F)$: the expected number of events.

The minimization of $\chi^2 (F)$ automatically introduces the derivatives;

\[\omega_i (\Phi_e) = \frac{1}{|M|^2 (\Phi_e)} \frac{\partial |M|^2 (\Phi_e)}{\partial F_i} \bigg|_{F \text{ at SM}}, \quad \Omega_i = \frac{1}{N} \frac{\partial N}{\partial F_i} \bigg|_{F \text{ at SM}}\]

The results of fit are related with $\omega_i (\Phi_e)$ and Ω_i:

- $\delta F_i (= F_{\text{fit}} - F_{\text{SM}}) \approx \frac{<\omega_i - \Omega_i>}{<(\omega_i - \Omega_i)^2>}$

- covariance matrix, V_{ij};

\[V_{ij}^{-1} = N_{\text{event}} < (\omega_i - \Omega_i)(\omega_j - \Omega_j) >\]
Fit of the CP-Conserving form factors

Result of $\delta \tilde{F}_{1V}^\gamma$ fit (the others are fixed at SM)

Before the quality cut (total efficiency 77%)

$$\delta \tilde{F}_{1V}^\gamma = 0.0223 \pm 0.0066, \ \chi^2_{\text{test}} = 11.4 \Leftrightarrow 0.07\% \text{ CL}$$

The $\omega - \Omega$ distribution of the wrong assignment (Green) is

- shifted to positive \rightarrow bias
- blunter \rightarrow over estimates the precision

* $\chi^2_{\text{test}} = \sum \delta F_i V_{ij}^{-1} \delta F_j$: the chi-square test
Fit of the CP-Conserving form factors

Result of $\delta \tilde{F}^\gamma_{1V}$ fit (the others are fixed at SM)

Before the quality cut (total efficiency 77%)

$$\delta \tilde{F}^\gamma_{1V} = 0.0223 \pm 0.0066, \ \chi^2_{test} = 11.4 \Leftrightarrow 0.07\% \text{ CL}$$

After the quality cut ($\chi^2_{tot} < 5 \& \Delta \chi^2_{tot} > 6$, total efficiency 28%)

$$\delta \tilde{F}^\gamma_{1V} = 0.0075 \pm 0.0115, \ \chi^2_{test} = 0.43 \Leftrightarrow 51\% \text{ CL}$$

Good agreement between MC truth and Rec.

\rightarrow The bias disappears.

\rightarrow The error becomes larger ($\sim \sqrt{N}$)

The histogram of $\omega - \Omega$ for $\delta \tilde{F}^\gamma_{1V}$ (after quality cut)
The distributions of $\omega - \Omega$ (bef. the quality cut)

"Left" polarization

$\left(\delta \tilde{F}^\gamma_{1V} \right)$

$\left(\delta \tilde{F}^Z_{1V} \right)$

$\left(\delta \tilde{F}^\gamma_{1A} \right)$

$\left(\delta \tilde{F}^Z_{1A} \right)$

$\left(\delta \tilde{F}^\gamma_{2V} \right)$

$\left(\delta \tilde{F}^Z_{2V} \right)$

AWLC2017
The distributions of $\omega - \Omega$ (aft. the quality cut)

"Left" polarization

$(\delta \delta^\gamma_{1V})$
$(\delta \delta^Z_{1V})$
$(\delta \delta^\gamma_{1A})$

$(\delta \delta^Z_{1A})$
$(\delta \delta^\gamma_{2V})$
$(\delta \delta^Z_{2V})$
Fit of the CP-Conserving form factors

Results of 6 CPC form factors fit

Before quality cut (total efficiency 77%)

\[
\begin{align*}
\mathcal{R}e \, \delta \tilde{F}_{1V}^\gamma &= +0.0188 \pm 0.0089 \\
\mathcal{R}e \, \delta \tilde{F}_{1V}^Z &= +0.0293 \pm 0.0161 \\
\mathcal{R}e \, \delta \tilde{F}_{1A}^\gamma &= +0.0280 \pm 0.0133 \\
\mathcal{R}e \, \delta \tilde{F}_{1A}^Z &= +0.2250 \pm 0.0202 \\
\mathcal{R}e \, \delta \tilde{F}_{2V}^\gamma &= -0.0246 \pm 0.0260 \\
\mathcal{R}e \, \delta \tilde{F}_{2V}^Z &= +0.1448 \pm 0.0435
\end{align*}
\]

\[\chi^2_{\text{test}} = 166 \Leftrightarrow \sim 0\% \, \text{CL}\]

After quality cut (\(\chi^2_{\text{tot}} < 5 \& \Delta \chi^2_{\text{tot}} > 6\), total efficiency 28%)

\[
\begin{align*}
\mathcal{R}e \, \delta \tilde{F}_{1V}^\gamma &= +0.0088 \pm 0.0154 \\
\mathcal{R}e \, \delta \tilde{F}_{1V}^Z &= +0.0339 \pm 0.0270 \\
\mathcal{R}e \, \delta \tilde{F}_{1A}^\gamma &= +0.0233 \pm 0.0221 \\
\mathcal{R}e \, \delta \tilde{F}_{1A}^Z &= +0.0704 \pm 0.0340 \\
\mathcal{R}e \, \delta \tilde{F}_{2V}^\gamma &= +0.0788 \pm 0.0461 \\
\mathcal{R}e \, \delta \tilde{F}_{2V}^Z &= +0.1244 \pm 0.0762
\end{align*}
\]

\[\chi^2_{\text{test}} = 10.0 \Leftrightarrow 12.5\% \, \text{CL}\]
Fit of the CP-Violating form factors

Result of $Re\delta F_{2A}^{Y}$ fit (the others are fixed at SM)

Before the quality cut (total efficiency 77%)

$$Re\delta F_{2A}^{Y} = -0.0172 \pm 0.0185, \chi^2_{test} = 0.87 \Leftrightarrow 35\% \text{ CL}$$

The $\omega - \Omega$ distribution of the wrong assignment (Green) is

- centered at 0
 - no apparent effect on the bias
 - χ^2_{test} is misleading
- if we use a CP-Violating sample, the wrong assignment will dilute the effect of CPV
 - blunter \rightarrow over estimates the precision

* $\chi^2_{test} = \sum \delta F_i V_{ij}^{-1} \delta F_j$: the chi-square test
Fit of the CP-Violating form factors

Result of $Re\delta F_{2A}^\gamma$ fit (the others are fixed at SM)

Before the quality cut (total efficiency 77%)

$$Re\delta F_{2A}^\gamma = -0.0172 \pm 0.0185, \quad \chi^2_{\text{test}} = 0.87 \Leftrightarrow 35\% \text{ CL}$$

After the quality cut ($\chi^2_{\text{tot}} < 5 \& \Delta \chi^2_{\text{tot}} > 6$, total efficiency 28%)

$$Re\delta F_{2A}^\gamma = -0.0052 \pm 0.0287, \quad \chi^2_{\text{test}} = 0.034 \Leftrightarrow 85\% \text{ CL}$$

Good agreement between MC truth and Rec.
\Rightarrow The error is estimated correctly.

"Left" polarization

The histogram of $\omega - \Omega$ for $Re\delta F_{2A}^\gamma$
(after quality cut)
The distributions of $\omega - \Omega$ (bef. the quality cut)

“Left” polarization

$\langle Re\delta\tilde{F}^V_{2A} \rangle$

$\langle Im\delta\tilde{F}^V_{2A} \rangle$

$\langle Re\delta\tilde{F}^Z_{2A} \rangle$

$\langle Im\delta\tilde{F}^Z_{2A} \rangle$
The distributions of $\omega - \Omega$ (aft. the quality cut)

"Left" polarization

$\text{(Re}\delta \tilde{F}^{\gamma}_{2A})$

$\text{(Im}\delta \tilde{F}^{\gamma}_{2A})$

$\text{(Re}\delta \tilde{F}^{Z}_{2A})$

$\text{(Im}\delta \tilde{F}^{Z}_{2A})$
Fit of the CP-Violating form factors

Results of 4 CPV form factors fit

Before quality cut (total efficiency 77%)

\[
\begin{bmatrix}
\mathcal{R}e \delta F_{2A}^\gamma \\
\mathcal{R}e \delta F_{2A}^{Z} \\
\mathcal{I}m \delta F_{2A}^\gamma \\
\mathcal{I}m \delta F_{2A}^{Z}
\end{bmatrix}
=
\begin{bmatrix}
-0.0196 \pm 0.0185 \\
+0.0307 \pm 0.0357 \\
-0.0324 \pm 0.0177 \\
+0.0111 \pm 0.0239
\end{bmatrix}
\]

\[\chi^2_{\text{test}} = 5.0 \Leftrightarrow 29\% \text{ CL}\]

After quality cut (\(\chi^2_{\text{tot}} < 5 \& \Delta \chi^2_{\text{tot}} > 6, \text{ total efficiency 28\%}\))

\[
\begin{bmatrix}
\mathcal{R}e \delta F_{2A}^\gamma \\
\mathcal{R}e \delta F_{2A}^{Z} \\
\mathcal{I}m \delta F_{2A}^\gamma \\
\mathcal{I}m \delta F_{2A}^{Z}
\end{bmatrix}
=
\begin{bmatrix}
-0.0022 \pm 0.0287 \\
+0.0423 \pm 0.0567 \\
-0.0026 \pm 0.0300 \\
+0.0148 \pm 0.0419
\end{bmatrix}
\]

\[\chi^2_{\text{test}} = 0.64 \Leftrightarrow 96\% \text{ CL}\]
Relation of the helicity angles of μ^\pm and $\omega - \Omega$

When we don't use the ϕ_{μ^\pm} or $(\phi_{\mu^\pm}, \theta_{\mu^\pm})$, the $\omega - \Omega$ distribution becomes sharper, hence the sensitivity becomes lower.

$\rightarrow (\phi_{\mu^\pm}, \theta_{\mu^\pm})$ has a sensitivity to the ttZ/γ.

AWLC2017
Summary

- Di-leptonic state analysis produces the 9 helicity angles which are sensitive to the form factors.

- Reconstruct top quark imposing the kinematical constraints
 - ISR significantly affects the assignment problem of b-jets
 - The quality cut improves the fraction of wrong assignment of b-jets, hence the angular distributions.

- Fit the form factors with the Matrix element method
 - CPC: After quality cut, results are consistent with SM.
 - CPV: The wrong fraction has no effects on the bias, but it will dilute the CPV effects if we use a CPV sample.
Suppression of $\gamma\gamma \rightarrow$ hadrons & b-jet reconstruction

Particles from $\gamma\gamma \rightarrow$ hadrons are mostly emitted along the beam direction. The direction of the b-jet is affected by these particles.

Suppress these particles using the kt algorithm ($R=1.5$).

\implies The direction of the b-jet is improved.

The polar angle distribution b-jets. A: without the suppression of $\gamma\gamma \rightarrow$ hadrons, B: with the suppression of $\gamma\gamma \rightarrow$ hadrons
Scalar product, $\hat{\eta}_{t,MC} \cdot \hat{\eta}_{t,Rec.}$
Kinematical reconstruction of top

To select the optimal solution, we compare E_b and $E_{\bar{b}}$ between calculated by (θ_t, ϕ_t) and measured by the b-jet reconstruction.

$$\chi_b^2(\theta_t, \phi_t) = \left(\frac{E_b(\theta_t, \phi_t) - E_{b}^{\text{meas.}}}{\sigma[E_b^{\text{meas.}}]} \right)^2 + \left(\frac{E_{\bar{b}}(\theta_t, \phi_t) - E_{\bar{b}}^{\text{meas.}}}{\sigma[E_{\bar{b}}^{\text{meas.}}]} \right)^2$$

Compute χ_b^2 for each candidate → **Pick one which has the smallest χ_b^2**
Luminosity spectrum

Because we impose the initial state constraints, the events which have low \sqrt{s} are badly reconstructed.

The quality cut reduces low \sqrt{s} events, but there are still a tail.
Luminosity spectrum

Tried to fit the energy of ISR photon along beam direction;

\[e^+ e^- \rightarrow b\bar{b}\mu^+ \nu\mu^- \bar{\nu} + \gamma_{ISR} \]

→ Another parameter, K

- \(|K| = E_\gamma/250\), hence \(\sqrt{s} = 500 \times \sqrt{1 - |K|}\)
- If \(\gamma\) is emitted in the \(e^-(e^+)\) direction, \(K\) is positive (negative).

Then one minimizes \(\chi^2_{tot}'(\theta_t, \phi_t, K)\);

\[\chi^2_{tot}'(\theta_t, \phi_t, K) = \chi^2_{tot}(\theta_t, \phi_t, K) - 2 \log \text{PDF}_K(K) \]

→ Reconstructed \(\sqrt{s}\) don’t correlate MC truth.

→ The constraints are not enough.

Now we fix \(K = 0\) (i.e. use \(\chi^2_{tot}(\theta_t, \phi_t)\))
\tilde{F}_{2V}^Z fit (The simplest case)

Other ways to reduce the bias

• Convolve the $|M|^2$ with the resolution function of the helicity angles

\[|M|^2 \ast = |M|_{\text{cov.}}^2 \]

The deviation of each helicity angles

• Use other quantities for the quality cut.

eg) $|\chi^2_{\text{tot,caseA1(B1)}} - \chi^2_{\text{tot,caseA2(B2)}}|$
\tilde{F}_{2V}^Z Fit (The simplest case)

(Fix the other form factors at the SM)

Before quality cut

\[\delta \tilde{F}_{2V}^Z = 0.117 \pm 0.033, \quad \chi^2_{\text{test}} = 12.6 \text{ (confidence level = 0.03\%)} \]

After quality cut (\(\chi^2_{\text{tot}} < 5 \& \Delta \chi^2_{\text{tot}} > 6\), efficiency 36%)

\[\delta \tilde{F}_{2V}^Z = 0.096 \pm 0.055, \quad \chi^2_{\text{test}} = 3.0 \text{ (confidence level = 8.3\%)} \]
6 CPC form factors fit

Fit 6 form factors \((\tilde{F}_{1V}^{\gamma}, \tilde{F}_{1V}^{Z}, \tilde{F}_{1A}^{\gamma}, \tilde{F}_{1A}^{Z}, \tilde{F}_{2V}^{\gamma}, \tilde{F}_{2V}^{Z})\)

Before quality cut

\[
< \sigma_F > = 0.021, \chi^2 = 141 \text{ (confidence level ~ 0 %)}
\]

After quality cut \((\chi^2_{tot} < 5 \& \Delta \chi^2_{tot} > 6, \text{ efficiency 36%})\)

\[
< \sigma_F > = 0.035, \chi^2 = 10.5 \text{ (confidence level = 11 %)}
\]
4 CP Violating Form Factors Fit

Fit 4 form factors \((Re\tilde{F}_{2A}^\gamma, Re\tilde{F}_{2A}^Z, Im\tilde{F}_{2A}^\gamma, Im\tilde{F}_{2A}^Z) \)

Before quality cut

\(< \sigma_F > = 0.026, \chi^2 = 8.6 \) (confidence level = 7.2 %)

After quality cut \((\chi^2_{tot} < 5 \& \Delta\chi^2_{tot} > 6, \text{efficiency 35\%}) \)

\(< \sigma_F > = 0.038, \chi^2 = 3.7 \) (confidence level = 45 %)
The distributions of $\omega - \Omega$ (bef. the quality cut)

"Left" polarization

"Right" polarization
The distributions of $\omega - \Omega$ (bef. the quality cut)

“Left” polarization

“Right” polarization