Study of Pair-monitor for ILD

Yutaro Sato Tohoku Univ. 23/Sep/2008

Pair-monitor

- Pair-monitor measures the beam profile at IP, using pair background.
 - Beam size
 - Displacement and rotation of the beam
 - The number of particles in the beam bunch
- The silicon pixel sensor is considered as a sensor candidate.
- Geometry

—

- Outer radius : 10 [cm]
- Inner radius (upstream): 1.0 [cm]
 - (downstream) : 1.8 [cm]

1

Pair-monitor

Requirement to pair-monitor

- Radiation dose : < 10 Mrad/year (0.1 MGy/year)
- Measurement accuracy of the beam size : < 10%
 - > Suppression of scattered and back-scattered particles is important.
- Fit to the forward geometry in ILD
 - The location in front of BeamCal seems to be the best. It would be easy for me to put pair-monitor in front of BeamCal.

Possibility to install pair-monitor in front of BeamCal is studied.

J Today's topics

- Estimation of radiation dose
- Investigation of back-scattered particles from BeamCal.
- Calculation of 3-D field for ILD.

Simulation setup

- CM energy : 500 GeV
- Crossing angle : 7 mrad
- Beam size : $(\sigma_x^0, \sigma_y^0, \sigma_z^0) = (639nm, 5.7nm, 300\mu m)$
- Tools : CAIN (Pair background generator)
 : Jupiter (Tracking emulator)
- Magnetic field : 3.5 T + anti-DID
- Pair-monitor was located in front of BeamCal.

Radiation dose

 Radiation doses on pair-monitor and BeamCal were checked for the nominal beam .
 Maximum radiation dose per year

At pair-monitor, the dose is 12 [Mrad/year].
 (0.12 [MGy/year])

 The dose becomes the maximum at the 4th layer of the BeamCal (96 [Mrad/year]).

The dose was > 10 Mrad/year at the most inner pixels.

Requirement < 10 Mrad/year</p>

The radiation level decreases rapidly for larger radius.

The radiation dose will be acceptable without inner most pixels

Study of back-scattering effect

- Simulation study for the pair-monitor has been performed with GLD geometry.
 - CH₂mask was placed between pair-monitor and BeamCal to absorb the back-scattered electrons so far.
- CH₂mask might be necessary between pair-monitor and BeamCal.
 - Distributions for beam size measurement were compared with and without CH₂mask.

Measurement of horizontal beam size

• Radius of the hit distribution depends on horizontal beam size.

The radial distribution is important for measurement of horizontal beam size. → The radial distribution was checked in front of BeamCal.

Radial distribution

• A radial distribution on pair-monitor was compared with and without CH₂mask in front of BeamCal.

There is no significant difference in the radial distribution. R_{max} doesn't change without CH_2mask .

Measurement of vertical beam size

• Ratio depends on vertical beam size.

R- Φ distribution is important for the measurement of the vertical beam size. > The effect of CH₂mask was checked.

<u>R-Φ distribution</u>

R- Φ distribution on pair-monitor was compared with and without CH₂mask in front of the BeamCal.

 \Rightarrow CH₂mask would not be necessary.

9

Calculation the 3-D magnetic field

- Preparation of the 3-D magnetic field is ongoing.
 - Software : ANSYS
 - The study is collaboration with Brett Parker and KEK.
 - 3-D **solenoid** field was calculated.
 - Implementation of **anti-DID** is ongoing.

3-D solenoid magnetic field map

□<u>Summary</u>

- Possibility to install pair-monitor in front of BeamCal was investigated.
- Radiation dose is ~acceptable in front of BeamCal.
- Pair-monitor can be located in front of BeamCal.

There is no significant difference in a radial distribution with/without CH₂mask.

> A R- Φ distribution has similar information with/without CH₂mask.

• Calculation of 3-D solenoid field map for ILD was finished.

□<u>Plans</u>

- Performance study of Pair-monitor
- Calculation of 3-D anti-DID field map.