Study of Pair-monitor for ILD

Yutaro Sato
Tohoku Univ.
23/Sep/2008
Pair-monitor

- Pair-monitor measures the beam profile at IP, using pair background.
 - Beam size
 - Displacement and rotation of the beam
 - The number of particles in the beam bunch
- The silicon pixel sensor is considered as a sensor candidate.
- Geometry
 - Outer radius: 10 [cm]
 - Inner radius (upstream): 1.0 [cm]
 (downstream): 1.8 [cm]
 - Thickness: 200 [µm]
Pair-monitor

- **Requirement to pair-monitor**
 - Radiation dose: < 10 Mrad/year (0.1 MGy/year)
 - Measurement accuracy of the beam size: < 10%
 - Suppression of scattered and back-scattered particles is important.
 - Fit to the forward geometry in ILD
 - The location in front of BeamCal seems to be the best. It would be easy for me to put pair-monitor in front of BeamCal.

Possibility to install pair-monitor in front of BeamCal is studied.

- **Today’s topics**
 - Estimation of radiation dose
 - Investigation of back-scattered particles from BeamCal.
 - Calculation of 3-D field for ILD.
Simulation setup

- CM energy: 500 GeV
- Crossing angle: 7 mrad
- Beam size: \((\sigma_x^0, \sigma_y^0, \sigma_z^0) = (639\text{nm}, 5.7\text{nm}, 300\mu\text{m})\)
- Tools: CAIN (Pair background generator)
 : Jupiter (Tracking emulator)
- Magnetic field: 3.5 T + anti-DID
- Pair-monitor was located in front of BeamCal.
Radiation dose

- Radiation doses on pair-monitor and BeamCal were checked for the nominal beam.

 - At pair-monitor, the dose is 12 [Mrad/year]. (0.12 [MGy/year])
 - The dose becomes the maximum at the 4th layer of the BeamCal (96 [Mrad/year]).

The dose was > 10 Mrad/year at the most inner pixels.
- Requirement < 10 Mrad/year

 The radiation level decreases rapidly for larger radius.

The radiation dose will be acceptable without inner most pixels.
Study of back-scattering effect

- Simulation study for the pair-monitor has been performed with GLD geometry.
 - CH\textsubscript{2} mask was placed between pair-monitor and BeamCal to absorb the back-scattered electrons so far.
- CH\textsubscript{2} mask might be necessary between pair-monitor and BeamCal.
 - Distributions for beam size measurement were compared with and without CH\textsubscript{2} mask.
Measurement of horizontal beam size

- Radius of the hit distribution depends on horizontal beam size.
 - R_{max}: Radius to contain the 99% of all the hits

The radial distribution is important for measurement of horizontal beam size.
 - The radial distribution was checked in front of BeamCal.
Radial distribution

- A radial distribution on pair-monitor was compared with and without CH$_2$ mask in front of BeamCal.

There is no significant difference in the radial distribution. R_{max} doesn’t change without CH$_2$ mask.
Measurement of vertical beam size

- Ratio depends on vertical beam size.
 - \(\text{Ratio} = \frac{N_L}{N_{all}} \)

- R-Φ distribution is important for the measurement of the vertical beam size.
 - The effect of \(\text{CH}_2 \text{mask} \) was checked.
R-Φ distribution

R-Φ distribution on pair-monitor was compared with and without CH$_2$ mask in front of the BeamCal.

A R-Φ distribution has similar information without CH$_2$ mask. CH$_2$ mask would not be necessary.
Calculation the 3-D magnetic field

• Preparation of the 3-D magnetic field is ongoing.
 – Software: ANSYS
 – The study is collaboration with Brett Parker and KEK.
 – 3-D solenoid field was calculated.
 – Implementation of anti-DID is ongoing.
Summary

- Possibility to install pair-monitor in front of BeamCal was investigated.
- Radiation dose is ~acceptable in front of BeamCal.
- Pair-monitor can be located in front of BeamCal.
 - There is no significant difference in a radial distribution with/without CH₂ mask.
 - A R-Φ distribution has similar information with/without CH₂ mask.
- Calculation of 3-D solenoid field map for ILD was finished.

Plans

- Performance study of Pair-monitor
- Calculation of 3-D anti-DID field map.