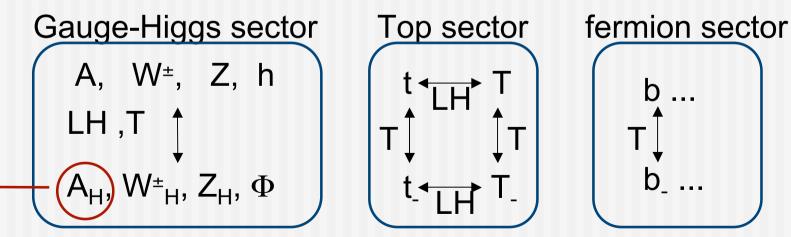
Simulation study of Z_HA_H mode in Littlest Higgs model with T-parity

LCWS 08 Chicago Nov. 18 2008 Tomonori Kusano(Tohoku Univ.) with Theorist : S.Matsumoto(Univ. of Toyama), M.Asano(ICRR) Experimentalist : K.Fujii(KEK), Y.Takubo,R.Sasaki(Tohoku Univ.)

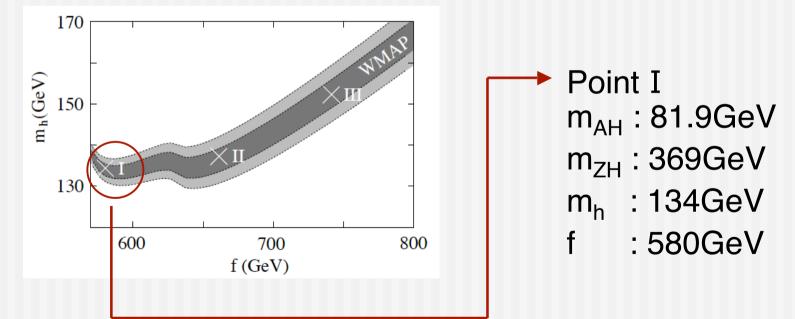
Today's topic


- Introduction
- Simulation Setup
- Event selection
- Mass determination

Introduction

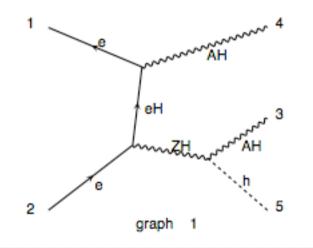
 Little Higgs Model with T-Parity could solve the little hierarchy problem and suggest the DM candidate.

Particle contents


LH: Little Higgs partner T: T-Parity partner

• A_{H} is stable due to T-Parity. \rightarrow Dark matter Candidate! 3

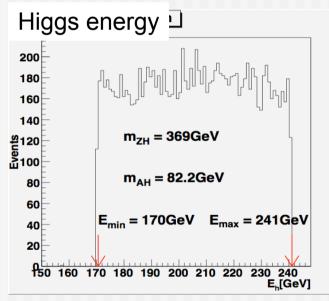
Parameters region


Spectrum in the Gauge-Higgs sector is determined by breaking scale (f) and Higgs boson mass (m_h). f and m_h are constrained by the WMAP experiment.

Heavy Gauge bosons are less than 500GeV. ILC can search them!

Our target Process

• One of the attractive processes in LHT is $e^+e^- \rightarrow Z_H A_H$. ($Z_H \rightarrow A_H + h$ with 100% branching ratio)


DM candidate (A_H) will be produced. This process can occur at ILC for $s^{1/2} = 500$ GeV.

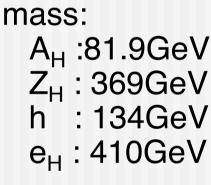
5

Motivation of our analysis

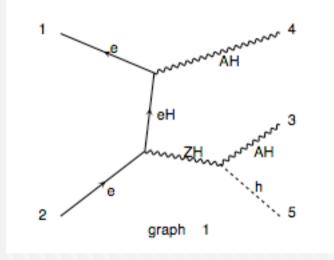
Our goal is the determination of the masses of heavy gauge bosons, Z_H and A_H.

This is higgs energy dist. before the detector simulation.

These masses can be determined from the edges of higgs energy distribution.

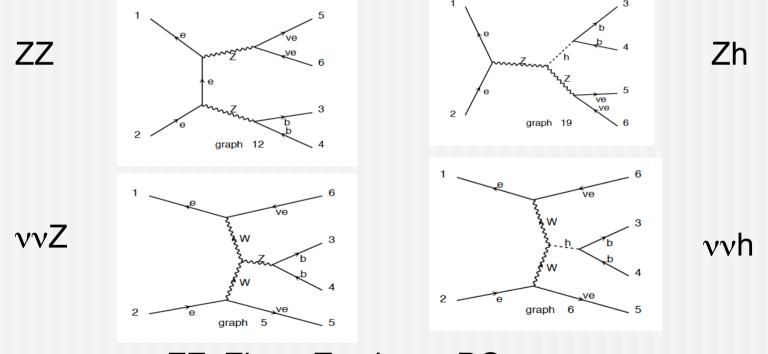

Analysis flow chart

Analysis flow chart is as follows.


```
Event generation : Madgraph (for signal)
and physsim (for BG)
Hadronization : Pythia
Detector simulation : JSF quick-simulator
```

Signal Event generation

Signal Events are generated by MadGraph.
 Parameters : sample point 1



BR(h→bb)= 55% BR(h→WW)=26% BR(h→cc)=6.4% $s^{1/2}$ = 500GeV cross section : 1.9fb

Event generation for BG

The main BG processes are those of the final states with bbvv and ccvv. These are diagrams of BG processes.

ZZ ,Zh, vvZ,vvh are BG.

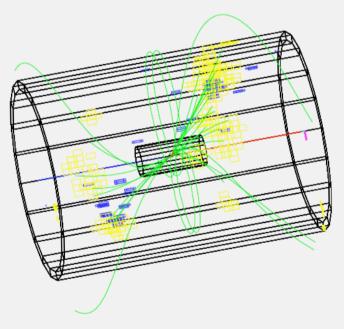
Cross section summary

This is a table of cross section for each process.

process	cross section[fb]	$\times Signal$	
$Z_H A_H$	1.9	1	
$ZZ \rightarrow bb\nu\nu$	25.5	13.4	
$ZZ \to c\bar{c}\nu\nu$	20.1	10.6	
$\nu\nu Z \to b\bar{b}\nu\nu$	44.3	23.3	
$\nu\nu Z \to c\bar{c}\nu\nu$	34.8	18.3	
$Zh \to b\bar{b}\nu\nu$	5.57	2.93	
$Zh \to c\bar{c}\nu\nu$	0.64	0.337	
$\nu\nu h \to b\bar{b}\nu\nu$	34.0	17.9	
$\nu\nu h \to c\bar{c}\nu\nu$	3.91	2.06	

The cross sections for W fusions (vvZ,vvh) are large.

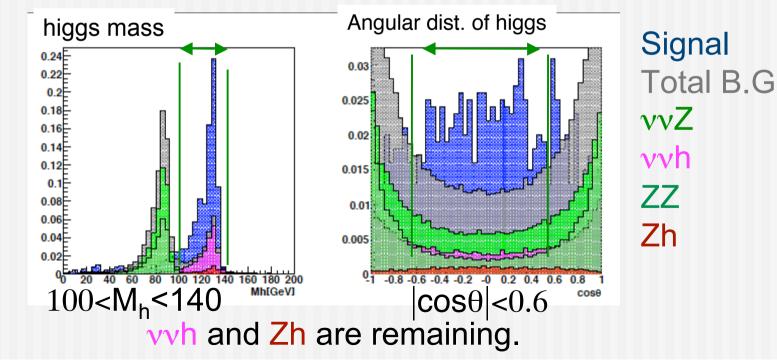
Simulation Setup


 After the event generation, detector simulation is done with JSF quick-simulator. We study for 1000events of signals. (corresponding to about 500fb⁻¹)

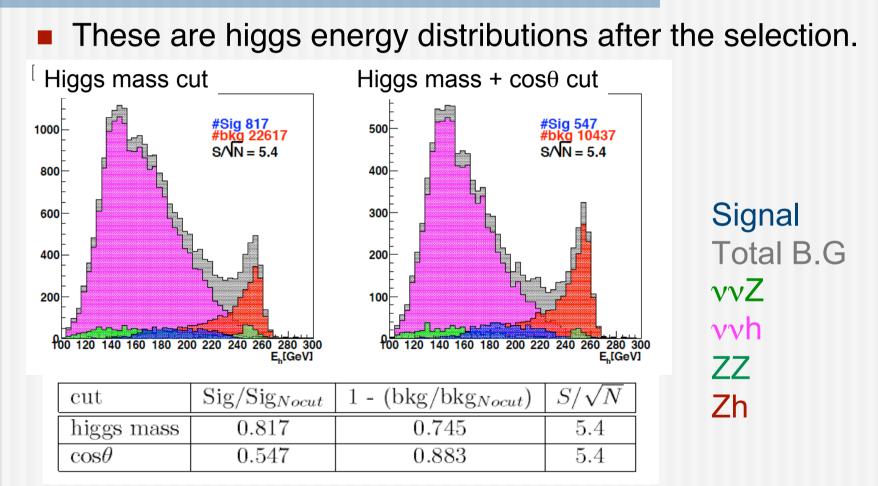
BR(h \rightarrow bb)=55%, BR(h \rightarrow WW)=26%, BR(h \rightarrow cc)=6.3%.

 Signal events are reconstructed from only two jets mode. (Force 2-jets)

Event Display


This is an event display for Z_H[A_Hh] A_H after the detector simulation.

Jets from higgs can be seen.


Event selection

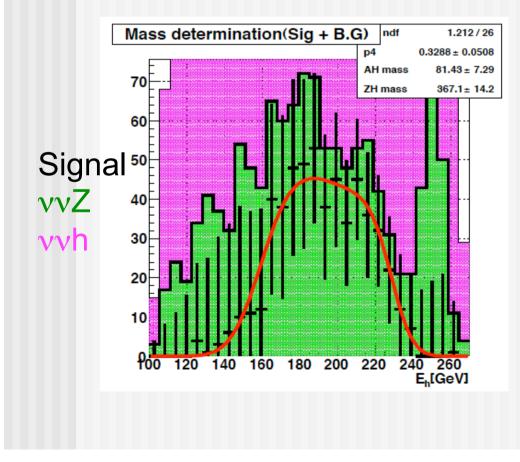
Only Energy - independent selection can be applied since energy is fitted for mass determination. Reconstructed higgs mass and angular distribution of higgs are used. # of Signal and total B.G are normalized to 1 in the figures bellow.

13

Reduction Summary

Large contribution from vvh and Zh can be seen.

Procedure of mass fit


The energy distribution is fitted to determine the masses of new particles from the edges. Fit func is (Error func) × (6th order polynomial).

$$(1 + Erf(\frac{E_h - E_{min} - \Delta E_{min}}{a\sigma_{Emin}\sqrt{E_h}})) \times (1 - Erf(\frac{E_h - E_{max} - \Delta E_{max}}{a\sigma_{Emax}\sqrt{E_h}})) \times p_4(1 + E_h(p_5 + E_h(p_6 + E_h(p_7 + E_h(p_8 + E_h(p_9 + E_h(p_{10} + E_h))))))))$$

 E_h : higgs Energy E_{min}, E_{max} : Fit parameters with mass info.

Result of mass fit

• This is a result of mass fit.

 Assuming contributions from all B.G are measured, only signal (points with error bar) is fitted.
 Errors of signal are set to √(#Sig + #All B.G)

Input : $m_{AH} = 81.9 \text{ GeV},$ $m_{ZH} = 369 \text{ GeV}$ fit results : $m_{AH} = 81.4 \pm 7.3 \text{ GeV},$ $m_{ZH} = 367 \pm 14 \text{ GeV}$

Summary and Plan

- Summary
 In e⁺e⁻→Z_HA_H process, Dark matter candidate could be produced at s^{1/2}=500 GeV.
 S/√N = 5.2 for BG reduction of ZZ, Zh, vvZ and vvh.
 The result of mass fit is
 - $m_{AH} = 81.4 \pm 7.3 \text{ GeV}, m_{ZH} = 367 \pm 14 \text{GeV}.$

Plan

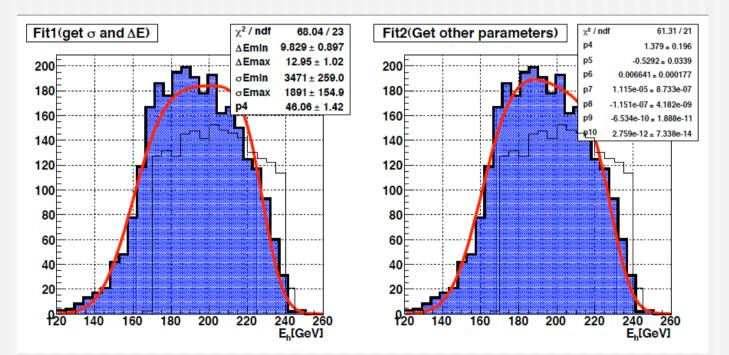
Other BG study (tt and $Z\gamma(Z\rightarrow bb)$).

Backup

Procedure of mass fit

The energy distribution is fitted to determine the masses of new particles from the edges. Fit func is (Error func) × (6th order polynomial).

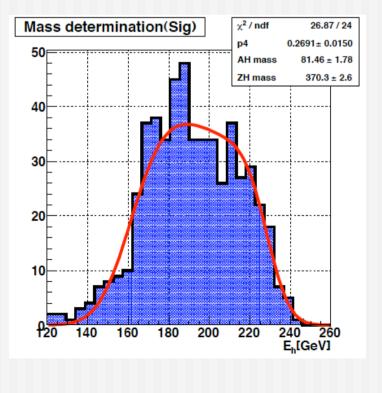
$$(1 + Erf(\frac{E_h - E_{min} - \Delta E_{min}}{a\sigma_{Emin}\sqrt{E_h}})) \times (1 - Erf(\frac{E_h - E_{max} - \Delta E_{max}}{a\sigma_{Emax}\sqrt{E_h}})) \times p_4(1 + E_h(p_5 + E_h(p_6 + E_h(p_7 + E_h(p_8 + E_h(p_9 + E_h(p_{10} + E_h))))))))$$


Mass fit is done as following 4 steps.

step	motivation	$luminosity[fb^{-1}]$	E_{min}, E_{max}	$\sigma_E, \Delta E$	\mathbf{p}_4	$p_5 - p_{10}$
1	Get σ and ΔE	Sig 5 \times 500	cheated	free	free	fixed to 0
2	Get other shape par	Sig 5 \times 500	cheated	fixed	free	free
3	Fit edge	Sig 500	free	fixed	free	fixed
4	Fit edge with B.G	Sig + B.G 500	free	fixed	free	fixed

"Cheated" means edges are calculated from Z_H and A_H masses.

Results of mass fit(1)


These are fit results of 1st and 2nd step of the fit. (Edges are cheated, and 5× signal events are used.)

The shape parameters are obtained.

Results of mass fit(2)

Fixing the shape parameters, mass are obtained from the fit.

input : $m_{AH} = 81.9 \text{ GeV},$ $m_{ZH} = 369 \text{ GeV}$ fit results : $m_{AH} = 81.5 \pm 1.8 \text{ GeV},$ $m_{ZH} = 370 \pm 2.6 \text{ GeV}$ -0.2 σ and 0.4 σ respectively.

Fit procedure seems to be O.K.