KEK B-factory のアップグレード における IR loss factor の シミュレーション研究

東北大 中野浩至

山本均,阿部哲郎,宇野彰二,金澤健一,柴田恭,幅淳二, 岩崎昌子, Clement Ng, 他Belle MDI Group

発表内容

- ・IRの発熱計算の結果
- Nano beam optionにおける
 IR周辺の発熱計算の結果

KEK B-factory

アップグレードのオプション

ルミノシティを上げる、2種類のオプション

	現在(設計値)	High current (電流を上げる)	Nano beam (ビームを絞る)
I(A)	2.6/ 1.1	9.4 / 4.1	3.7 / 2.1
$\sigma_{x}^{st}\left(\mu m ight)$	44	69 / 60	5.9
$\sigma_y^*(\mu m)$	1.1	0.85 / 0.73	0.034 / 0.044
$L~(cm^{-2}s^{-1})$	1×10^{34}	$5.3 imes10^{35}$	$10 imes 10^{35}$

*LER/HER

ビームパイプの発熱増加 → 見積もりが必要

発熱の原因には3種類ある

1、バンチ通過の際、パイプ表面の電荷が 引きずられることによる発熱

> Image current 公式を用いた

2、パイプの形状により 電磁場が乱れ発生する熱

> HOM (High Order Mode) シミュレーションで計算した

3、シンクロトロン放射による熱

<u>Image currentの計算方法</u>

発熱の公式を用いた

※Gaussian bunch を仮定

HOMの計算方法

IRの発熱の計算結果

下図のようなモデルで発熱を見積もった

IR の熱はマスクのHOMが大部分を占めると考えられる

<u>交差部分の発熱の計算結果</u>

Nano beam optionに関してはパイプ交差部分の発熱も見積もった

Image current	約180 [W]	
HOM	65 [W]	

Image currentによる熱 > HOMによる熱

<u>Loss factor変化の説明</u>

交差角が小さくなるとloss factorが小さくなる理由

交差角が小さいと電磁場がLER側に残らない為、lossが小さい。

その他の形状案

パイプ交差部分の形を少し変えて(さらに2種類)計算した

先ほどの形と比べても発熱量に大きな差はない。妥当。

KEKBアップグレードのIRと、パイプ交差部分の発熱量を見積もった

Back up

Optionの表

*LER/HER

		現在(設計値)	<mark>High current</mark> (電流を上げる)	<mark>Nano-beam</mark> (ビームを絞る)
	I(A)	2.6/ 1.1	9.4 / 4.1	3.7 / 2.1
	$\sigma^*_{x}~~_{(\mu m)}$	44	69 / 60	5.9
	σ_y^* $_{(\mu m)}$	1.1	0.85 / 0.73	0.034 / 0.044
	$L~(cm^{-2}s^{-1})$	1×10^{34}	$5.3 imes 10^{35}$	$10 imes 10^{35}$
	$N_{e^{\pm}}(1/bunch)$	$3.3 \ / \ 1.4 \times 10^{10}$	$12 / 5.25 \times 10^{10}$	$6.78 \ / \ 3.89 \times 10^{10}$
	$N_{e^{\pm}} \times e(C)$	5.28 / 2.24 × 10 ⁻⁹	19.2 / 8.4 × 10^{-9}	$10.8 \ / \ 6.22 \times 10^{-9}$
$\frac{N_{bunch}}{3016(m)} \times c(m/s)$	$ f(s^{-1})$	$5.0 imes 10^8$	5.0×10^8	$3.4 imes 10^8$
	$N_{bunch}(1/circle)$	5000	5000	3425
	$\sigma_{oldsymbol{z}\ (mm)}$	4	5 / 3	6

マスク幅を変えた

HOM heating of two shapes was compared.

Two shapes should be similar when mask width or value g are large.

③微小体積あたりに生じる熱dPは

$$dP=rac{j^2}{\sigma}dV$$
 j :電流密度 $j=
ho c$

したがって、単位長さあたりに生じる熱 P/I は

$$P/l = \frac{Q^2 c}{4\pi r \delta \sigma \sigma_z} \ (J/bunch)$$

710W(LER) 130W(HER) が得られた

IRビームパイプデザイン

Calculated in various crossing angles

交差パイプの詳細

	·			
	а	b	С	Beam energy loss[W]
$\frac{1}{\sqrt{2}}$	100	480	7.0	36
	100	580	7.0	35
	100	680	7.0	41
	150	480	5.5	44
	150	580	5.5	48
	150	680	5.5	44

<u>より細かいメッシュで確認</u> 64W

HER b' LER a'

Type-1,2ともに発熱が小さいのは交差角が小さいから。

シミュレーションについて

3次元電磁場計算コード "GdfidL" を使用。 Loss factor を計算することができる。 $Heat[W] = \frac{Loss \ factor[V/C] \times I[A]^2}{f[s^{-1}]}$ バンチの交差頻度

ビームのエネルギーロス→発熱 ただし、すべてのエネルギーが<u>その場で熱になるわけではない</u>。

今回はビームパイプを完全導体と仮定して計算した。

シミュレーションについて

「メッシュサイズ」をより細かくとるほど現実の値に近づく。

さらに結果の信頼性を確かめるため、 1つの形状にたいして様々な計算方法を用いて確認した。

Segmentation of calculation area

The calculation time can be reduced by considering the spatial symmetries.

Software:GdfidL(3D Electric Magnetic field simulator)

How to grid the space

mesh

There are two calculation methods.

1. fixing the grid to a bunch (window wake = yes)

