

Development of Readout ASIC for Pair-monitor with SOI

Yutaro Sato Tohoku Univ. 21 Oct. 2009

Pair-monitor

Pair-monitor is a silicon pixel detector to measure the beam profile at IP.

- The distribution of the pair B.G. is used.
 - The same charges with respect to the
 - oncoming beam are scattered with large angle.
 - The scattered particles have information on beam shape.
- The location will be in front of the BeamCal.

Development of Pair-monitor with SOI technology²

SOI (Silicon On Insulator) pixel detector

- The sensor and electronics are integrated in the SOI substrate.
 - Monolithic device, high speed, low power, thin device, low material

 \rightarrow Monolithic device allows the elimination of bump-bonding process.

We started to develop the pair-monitor with SOI technology. As the first step, only the readout electronics was produced.

Development of the readout ASIC

Design concept of readout ASIC

- Pair-monitor measures the hit distribution of the pair B.G..
- Measurement is done for 16 parts in one train

for the time-dependent measurement.

- 16 hit counts are stored at each part.
- Count rate : $< 2.5 \text{ MHz} / (400 \mu m \text{ x} 400 \mu m)$
- Information of the energy deposit is not necessary.
- Data is read out during inter-train gaps. (~ 200 msec)

The prototype readout ASIC was designed to satisfy these concepts.

Design of readout ASIC

Design of readout ASIC

- 9(3x3) readout pixels
 - Amplifier

ilr

İİL

- comparator
- 8-bit counter
 - \succ to count the number of hits
- 16 count-registers
 - \succ to store hit counts
- Shift-register

Input

 \succ to select a pixel from 9 pixels

Layout of prototype ASIC

Prototype of SOI chip

The prototype of the SOI chip was developed.

Prototype chip

- FD-SOI CMOS 0.2 µm process
- Chip size : 2.5 x 2.5mm²
- # of pixel : 9 (= 3x3)
- Only the readout ASIC was fabricated.
- Package : QFP80

The production of the readout ASIC was done in Aug. 2009.

Test system

The operation test was performed.

Test system

- GNV-250 module was used for the operation and readout .
 - KEK-VME 6U module
- The test-sequence by GPIO is controlled by a PC.

The response of the shift-register was checked.

• The select signal rose at the third clock signal.

The shift-register works correctly.

The output of the pre-amplifier was checked.

The output of the shaping-amplifier was checked.

The response of the 8-bit counter was checked.

- Gray code is used.
 - > two successive values differ in only one bit

in only one bit.

Binary-code	Gray-code
000	00 <mark>0</mark>
001	001
010	011
011	010
100	1 10

Readout of hit counts

Readout of hit counts was checked.

• The hit count was stored at 4 MHz hit rate/ (400µm x 400µm) and read out from the count registers.

The correct hit counts were read out from count-register.

Noise characteristic (1)

Threshold scan was performed.

• Fit to error function (S-curve)

- Threshold : 6.886 ± 0.009 [mV]
- Noise : 0.7152 ± 0.0128 [mV]

The gain was estimated to convert the noise into equivalent noise electrons.

- Gain : 16.94 [mV/fC]
 - Noise : ~260 electrons

Noise characteristic (2)

The noise level was checked as a function of the detector capacitance.

• Each cell have different detector capacitance.

:lr

IIL

 \rightarrow The noise level is 250 ~ 700 electrons.

Noise is much smaller than typical signal level (~20,000 [e])

The stability of the noise was checked.

• The noise was evaluated in adjusting the time constant of amplifier circuits.

The noise level is stable (does not changed greatly).

Pair-monitor for Belle II ?

The availability of the pair-monitor for B-physics experiment @KEK (Belle II) was studied.

Simulation Setup

- Tools
 - CAIN (Pair-background generator)
 - Jupiter (Tracking emulator)
- Virtual detector 1.1 m away from IP.

	ILC	Belle II
Beam energy	250 GeV	7.5 / 4.0 GeV
Crossing angle	14 mrad	80 mrad
Bunch size	(639nm, 5.7nm, 300µm)	(6.2 µm, 23.7 nm, 3 mm)
$(\sigma_x, \sigma_y, \sigma_z)$		(10.6 µm, 26.9 nm, 3 mm)
Magnetic field	3.5 T + anti-DID	1.5 T

Hit distribution of pair background

The hit distribution of the pair-background was checked (@200bunches).

 \rightarrow The total number of hits (N_{all}) has information of σ_{y} .

Principle demonstration of the pair-monitor seems to be possible.
To be more precisely studied.

Summary

- Pair-monitor is a silicon pixel detector to measure the beam profile at IP.
- The development of the pair-monitor with SOI technology was started.
 - > The first prototype which is only readout ASIC was produce.
 - > The operation test was performed.
 - All the ASIC components work correctly.
 - The noise level is much smaller than typical signal level.
- The availability of the pair-monitor for Belle II was checked.
 - > Principle demonstration of the pair-monitor seems to be possible.
 - > To be more precisely studied.

Plan

• The irradiation test will be performed next month.

Thank you for listening!

Backup

Crossing angle

• Large crossing angle leads to high momentum (p_x) .

Nominal e⁺e⁻ hit

Total number of hits

