<u>Little Higgs</u> with T parity at ILC

Senior presentation 2010/3/10 Tohoku Univ. Eriko Kato

Out line

Introduction of International Linear Collider(ILC)

- >Introduction of Little Higgs model(LHT)
- > Motivation
- Selection criteria
- ➤ Mass extraction
- ➢ Summary

International Linear Collider(ILC)

<u>High energy e⁺ e⁻ collider</u>

- Clean
- High precision measurements
- (position ,momentum ,energy etc...)

- Search for
- new physics beyond standard model!
- (SUSY, Little Higgs, extra dimension etc...)

new physics beyond standard model

little hierarchy problem

$$m_{Higgs}^2 = m_0^2 + \delta m^2$$

- m_{Higgs}^2 : Higgs mass
- m_0^2 :Bare Higgs mass
- δm^2 :Higgs mass quadrically divergent corrections

$$- \Lambda$$
 :Cutoff scale

$$\delta m^2 \approx (0.27\Lambda)^2$$

- 1. Fine tuning $\Lambda < 1 \text{ TeV}$
- 2. Electroweak precision measurements Λ>10TeV
- Conflict between these two scales

Little Higgs with T parity model

Solution to little hierarchy problem

- Higgs boson is regarded as pseudo Nambu-Goldstone boson of a symmetry at some higher scale.
- T-parity predicts A_H as a dark matter candidate

Motivation

- Little Higgs with T-parity(LHT) predicts new heavy gauge bosons :A_H,Z_H,W_H
 - By measurements of heavy gauge bosons we can find f:vacuum expectation value
- ➤ Analyze $e^+e^- \rightarrow Z_H Z_H$ and see how precise ILC can measure f at 1TeV

 $m_{Z_H} \approx gf$ $m_{A_H} \approx \sqrt{0.2} q f$

Simulation environment

Higgs event reconstruction

• Used χ^2 to assign each jet to reconstruct a higgs with a mass close to 134GeV

> select jet pair with minimum χ^2 as the true solution

$$\chi_H^2 = \left(\frac{M_{H1} - M_H}{\sigma_{M_H}}\right)^2 + \left(\frac{M_{H2} - M_H}{\sigma_{M_H}}\right)^2$$
$$M_H = 134.0(GeV) \quad \sigma_{M_H} = 8.0(GeV)$$

There are ${}_{4}C_{2}/2 = 3$ ways to reconstruct the jets into higgs

Higgs mass distribution

- Success in Higgs reconstruction
 - Signal is buried in background
- Selection cut was studied

χ² distribution

Calculated χ^2

• χ^2 shows mass difference from higgs.

$$\chi_H^2 = \left(\frac{M_{H1} - M_H}{\sigma_{M_H}}\right)^2 + \left(\frac{M_{H2} - M_H}{\sigma_{M_H}}\right)^2$$
$$M_H = 134.0(GeV) \quad \sigma_{M_H} = 8.0(GeV)$$

> We can cut WW background by selecting events χ^2 <80

b-tagging principle

<u>b-tagging algorithm in simulator tags jets as b quark</u> <u>Using the following b quark features</u>

- Light quark jets have short life times
- b-jets have relatively long life times and tend to decay into multiple tracks.

of b-tagged jet distribution

of b-tagged jets

• Br(H→bb) =42.35% Br(H→WW)=39.57%

We can cut WW background by selecting #b-tagged jets>0

acoplanarity

Acoplanarity distribution

Acoplanarity cut

We can cut tt background by selecting acop>25°

<u>results</u>

#Event (efficiency %)	$Z_H Z_H$	WWZ	vvWW	WW	tt	significance
Cross section (fb)	97.97	5.922	6.682	3932	192.9	
No cut	4.973*10 ⁴	2961	3340	8.945*10 ⁵	9.647*10 ⁴	48.60
χ²<80	4.155*10 ⁴ (83.55%)	871 (29.41%)	1607 (48.11%)	1.449*10 ⁵ (16.20%)	6.668*10 ⁴ (69.12%)	82.18
#b-tag>0	2.798*10 ⁴ (56.26%)	114.5 (3.867%)	536.5 (16.06%)	1.321*10 ⁴ (0.1477%)	6.412*10 ⁴ (66.47%)	85.96
acop>25	2.136*10 ⁴ (42.95%)	95.74 (3.093%)	442.8 (13.26%)	8.463*10 ³ (0.09461%)	8.354*10 ³ (8.670%)	108.6

Significance 48.60 108.60
significance
$$\equiv \frac{N_{sig}}{\sqrt{N_{sig} + N_{bg}}}$$

Performing mass extraction

Determining Z_H A_H mass ~

Higgs energy distribution

<u>Determining Z_H A_H masses</u>

Subtract background and fit signal

<u>result</u>

We determined Z_H A_H mass by fitting

<u>summary</u>

- LHT is as a beyond standard model that solves little hierarchy problem .
- Our motive is to investigate how precise ILC can measure LHT parameters .
- When performed cutting , significance was 108.6.
- Introduced and performed mass extraction.
- An reasonable value of $A_H Z_H$ mass was found. $\begin{bmatrix} A_H mass = 83.57 \pm 3.86 \text{GeV} & \text{(true value: 81.9 GeV)} \\ Z_H mass = 371.1 \pm 2.81 \text{GeV} & \text{(true value: 369 GeV)} \end{bmatrix}$

<u>plan</u>

- Continue studying on evaluating background contamination.
- Determine vacuum expectation value f.

Backup slides

Diagram cancellations

Contribution to δm^2

<u>Standard model</u>
top contribution

- _Н - - - -

gauge contribution

Little Higgs with T parity top contribution gauge contribution W.Z W_L,Z_L $= 0\Lambda^2$ No need for fine tuning at **1-loop level** 24

Higgs mass @LHT

Higgs mass constraints by WMAP observation

- $A_H A_H H$ vertex is given by the SM coupling.
- Annihilation cross section depends on m_{AH}and m_H
- > WMAP constraints on Relic abundance $A_{H}:\Omega h^{2}(m_{AH}(f),m_{H})$

b-tagging principle

b-tagging algorithm used in quicksimulator tags jets as b when the events satisfy the following conditions;

- To maximizes significance (Nσ,#tracks)=(3,2)
- Distance of closest approach $\geq N\sigma$
- # of tracks satisfying the above criteria \geq #tracks
- b-tag efficiency is approx.50%

σ=impact parameter resolution

Higgs branching ratio

FIGURE 2.12. The branching ratio for the SM Higgs boson with the expected sensitivity at ILC. A luminosity of 500 fb⁻¹ at a c.m. energy of 350 GeV are assumed; from Ref. [93].

Problem with analyzing H->WW

H->WW H->bb

28