Higgs BR with ZH→vvH & ZH→llH

LCWS2010 & ILC10 27th Mar. 2010 Tohoku University Kohei Yoshida

Introduction

Higgs branching ratio

- The key to verify the Higgs mechanism.
- Higgs coupling is proportional to the mass of particle.
- $Br(H\rightarrow cc)/BR(H\rightarrow bb) = mc^2/mb^2$

The study of Higgs BR with ILD detector

- $ZH \rightarrow vvH$ (K.Yoshida)
- ZH→llH (K.Yoshida)
- $ZH \rightarrow qqH (H.Ono) \rightarrow Next talk!$

 \rightarrow The current status of ZH \rightarrow vvH and llH will be reported in this talk.

Simulation setup

<u>Setup</u>

- Ес.м.: 250 GeV
- Luminosity : 250 fb^{-1}
- Polarization : $(e^{-}, e^{+}) = (-80\%, +30\%)$
- MH : 120 GeV

<u>Software</u>

- Detector simulation : Mokka
- Reconstruction : Marlin

<u>Data</u>

	Signal		Background	
	ZH→vvH	77.4fb	vvll, vlqq, qqqq, vvqq, llqq, llll	42400fb
	ZH→llH	31.9fb	llqq, vlqq	18100fb
*ZH \rightarrow eeH(11.1fb): e-channel, ZH \rightarrow µµH(10.4fb): µ-channel				

Higgs production process e^+ H $e^ Z^*$ $V/l^ V/l^ V/l^-$

Selection criteria

All events are reconstructed as 2jets.

Selection criteria

- Z boson selection
 - 80<Mmiss<140GeV
- Higgs selection

- 20<PT<70GeV, IPLI<60GeV, 100<Mjj<130GeV

- leptonic mode rejection
 - # of charged tracks>10
- v_ττqq rejection
 - P_{max} in event<30GeV, Y₊<0.02
- WW,ZZ rejection
 - 0.2<Y-<0.8

<u>Y</u>+

• Threshold of y-value to reconstruct 2~3 jets

<u>Y-</u>

• Threshold of y-value to reconstruct 1~2 jets

Higgs 2jet mass distribution

Higgs di-jet mass distribution was checked after the selection cuts.

- Background was rejected efficiently.
- Efficiency

ZH→vvcc	ZH→vvbb	Background	
43.22%	44.48%	< 2.5%	

Estimation of Higgs BR

• The ratio of $BR(H\rightarrow cc)$ to $BR(H\rightarrow bb)$ is estimated.

$$\frac{BR(H \to cc)}{BR(H \to bb)} = \frac{r_{cc} / \mathcal{E}_{cc}}{r_{bb} / \mathcal{E}_{bb}}$$

- $\varepsilon_{cc}, \varepsilon_{bb}$ are the selection efficiency.
 - εcc: 0.4322
 - εbb: 0.4448

– r_{cc} , rbb are the ratio of ZH \rightarrow Zcc, Zbb to ZH after the selection cuts.

rcc,rbb are evaluated by 3D template fitting (b,c,bc-likeness)

Template fit

8

Template fit

• Template: 3D histogram (b-likeness vs c-likeness vs bc-likeness)

- H \rightarrow cc, H \rightarrow bb, H \rightarrow other, SM bkg

- Data is prepared by fluctuating the template histogram with statistical error of 250fb⁻¹.
- Scale factor: rcc,rbb,roth,rbkg

Result

Template fitting was done 1000 times.

<u>Result</u>

- rcc: 0.0456 +/- 0.0056(true: 0.046)
- rbb: 0.872 +/- 0.013(true: 0.87)

 \rightarrow BR(H \rightarrow cc)/BR(H \rightarrow bb)= 0.0539 \pm 0.0066(12.26%)

ZH→llH

Lepton identification

Two leptons should be identified.

1. Electron(muon)-like particles are selected.

	e-ID	μ-ID
Eecal/(Eecal+Ehcal)	> 0.9	< 0.5
(Eecal+Ehcal)/P	> 0.7 && < 1.2	< 0.4

- 2. Particles in jet are rejected.
 - 10<E<90GeV && Econe<20GeV</p>
 - Econe: Sum of the energy within 10 degree around a track

- 3. #lepton candidates \geq 3
- \rightarrow The pair is selected to have the nearest invariant mass with Mz.

11

di-lepton recoil mass distribution

di-lepton recoil mass distribution was checked.

• Signal has a peak at MH(120GeV).

Performance	e-ID	μ-ID
Efficiency	88.3%	96.4%
Purity	82.9%	95%

Selection criteria

All events are reconstructed as 2leptons+2jets.

Selection criteria

- Selection of ZH→llH
 - − #leptons≥2, Evis>140GeV
- Z boson selection
 - $-70 < M_{ee} < 110 GeV(e)$
 - $80 < M_{\mu\mu} < 100 GeV(\mu)$
- t-channel background rejection
 - $\cos\theta < 0.8(e,\mu)$
- Higgs selection

- 100<Mjj<140GeV && 110<Mrecoil<140GeV(e)
- $100 < M_{jj} < 140 GeV \&\& 115 < M_{recoil} < 140 GeV(\mu)$

Higgs 2jet mass distribution

Higgs di-jet mass distribution was checked after the selection cuts.

• # of Signal \approx # of Background

Efficiency	ZH→llcc	ZH→llbb	SM bkg
e-ch	54.05%	47.93%	<1%
µ-ch	60.91%	54.1%	<1%

Estimation of Higgs BR

The same procedure as $ZH \rightarrow vvH$ was applied.

Fitting result of template fitting

	e-channel	μ-channel
rcc (true rcc)	0.0461 +/- 0.0164(0.047)	0.0445 +/- 0.0149(0.045)
rbb (true rbb)	0.759 +/- 0.023(0.76)	0.759 +/- 0.022(0.76)

$\underline{BR(H\rightarrow cc)}/\underline{BR(H\rightarrow bb)}$

	e-channel	µ-channel	Combined
Relative BR	0.0518+/-0.0185	0.0517+/-0.0174	0.0517+/-0.0127
Stat. Accuracy	35.78%	33.67%	24.6%

Summary

- $BR(H\rightarrow cc)/BR(H\rightarrow bb)$ was estimated with ILD detector.
 - Ес.м.: 250GeV
 - Luminosity: 250fb-1

