Development of software for FPCCD vertex detector

ILD software & integration WS 2010/07/06

Tohoku University Daisuke Kamai

FPCCD vertex detector

FPCCD vertex detector

- FPCCD(Fine Pixel CCD)
 - Pixel size : 5µm x 5µm
 - Thickness : 15µm
- The number of pixels : ~10¹⁰ pixels

→The small pixel size enables to reject background hits by using the cluster shapes.

Software for FPCCD

Purpose of this study

- Estimation of the pixel occupancy by pair-background.
- Development of an algorithm to reject background hits based on the cluster shapes.
- Evaluation of the tracking and vertexing performance.
- \rightarrow For this purpose, software for FPCCD vertex detector is

developed.

- FPCCD digitizer
- Overlay processor
- FPCCD clustering
- FPCCD track finder

FPCCD digitizer

FPCCD digitizer

- FPCCD has a large number of pixels.
- The digitizer specialized for FPCCD is necessary.

The hit information of a FPCCD ladder is packed in one element.

Algorithm of FPCCD digitizer (1)

- The hit points and track momenta are obtained from SimTrackerHit.
 - posX = SimTrackerHit->getPosition()[0];
 - momX = SimTrackerHit->getMomentum()[0];
- The hit points and momenta are transformed to the local coordinates on a ladder.

Algorithm of FPCCD digitizer (2)

- The track is calculated by the local point and local momentum.
 - Large momentum \rightarrow Approximated by a linear track.
 - Low momentum \rightarrow Calculated as a helical track.

The energy deposit in SimTrackerHit is calculated by using the path length in each pixel.

Output collection from FPCCD digitizer

Format of LCGenericObject

The first word(32 bits) contains layer number and ladder number of the element.
LCGenericObject

- The number of elements is equal to that of the ladders with hits.
- Data size for one element : $(2 \times N_{hits} + 1)$ words
 - The blank area is reserved for the future use.

Development of Overlay processors

OverlayEvents

The number of the pair-backgrounds for 1 BX is too large to include in one event.

- Divided into about 1800 events in Mokka run.
- →OverlayEvents processor was newly developed to merge these events to a single event record.
- **OverlayBX**
- OverlayBX processor was modified to merge VTXPixelHits.
- If there are more than 2 hits in the same pixel, the processor adds the energy deposit and rewrites Hit quality.
- Hit quality : Single signal hit,
 - Multiple signal hits,
 - Multiple hits by the signal and background,
 - Background hits.

Test of OverlayBX processor

OverlayBX for VTXPixelHits was tested.

The pixel hits on one ladder of the innermost layer are plotted.

- Pixel size : 500 μ m \times 500 μ m (to make easily to see)

The pixel hits are merged correctly.

Estimation of pixel occupancy

<u>The pixel occupancy of the FPCCD VTX innermost layer was</u> <u>checked.</u>

Expected pixel occupancy : ~2.5% for 1train(1312 BX)

The occupancy is about a half of the previous result.

(In the previous study, the overlap hits were not considered.)

Data size & memory usage

Data size of pair-background events

■ Merged data (1 event) : 25 MB/BX.

(Separated data(1800 events) : 40 MB/BX.)

 \rightarrow Data size of VTXPixelHits : 130MB for 1 train.

We will be able to study performance in a realistic condition.

Performance of processor

- Amount of memory used for running processor.
- FPCCD Digitizer : 190 MB
- OverlayEvents: 400 MB
- OverlayBX : ~

~2GB for 1 train
(~300MB for 50BX, ~400MB for 100BX)
→ It is acceptable.

Summary / Plan

<u>Summary</u>

- We developed software for the FPCCD vertex detector.
 - The FPCCD digitizer and Overlay processor were developed.
 - The performance of the FPCCD vertex detector can be studied with background by using these software.

<u>Plan</u>

- FPCCD clustering
 - Development of FPCCD clustering is getting started.
 - Algorithm to reject background hits based on the cluster shapes will be developed.
- FPCCD track finder
 - FPCCD track finder will be developed.