The 3rd GCOE International Symposium on "Weaving Science Web beyond Particle-Matter Hierarchy" (17-19, Feb. 2011 @ Tohoku University)

Study of $B\pi$ -tagging Method at the Y(5S) Resonance for Measurement of CP-violation Parameter $sin 2\phi_1$ **Yutaro Sato Physics, Tohoku Univ.**

Belle experiment is B-factory experiment at High Energy Accelerator Research Organization (KEK) at Tsukuba. A large number of B mesons are generated at the KEKB accelerator and the B decay is measured precisely by the Belle detector surrounding the collision point.

- Circumference : ~ 3 km

World's highest luminosity collider

- Instantaneous luminosity : 2.11×10^{34} cm⁻² s⁻¹
- Integrated luminosity : ~ 1000 fb⁻¹

Designed to measure B decay

- Large solid angle coverage
- Good particle identification
- Vertex location with precision
 - on the order of tens of micrometers.

What is $sin 2\phi_1$?

M. Kobayashi and T. Maskawa were awarded the 2008 Nobel Prize in physics for their Kobayashi-Maskawa theory. Belle experiment contributed greatly to confirmation of the theory. The measured parameter is CP-violation parameter $\sin 2\phi_1$ then.

$sin2\phi_1$ measurement

 $\sin 2\phi_1$ was measured through the Y(4S) decay. We need to know initial state of neutral B meson for the measurement of CP-violation in the B meson (flavor tagging). In Y(4S) decay, the flavor of B meson(B_{CP}) in a CP side is tagged from B meson(B_{tag}) in a tag side using quantum interference.

> $e+e- \rightarrow Y(4S) \rightarrow B^0 B^0$ If B_{tag} is \underline{B}^0 , B_{CP} is \overline{B}^0 Tag side If B_{tag} is \overline{B}^0 , B_{CP} is B^0 B_{tag} Y(4S)

Y(4S) and Y(5S)

Upsilon meson(Y) is a bound state, which formed from a bottom quark and its anti-particle (bottomonium). Y(4S) has a mass above the threshold for BB pair production. Most data in Belle was recorded on the Y(4S)resonance.

 $-Y(4S) \rightarrow BB (>96\%)$

Y(5S) is about 286 MeV heavier than Y(4S).

- Y(5S) \rightarrow B^(*)B^(*)(π)(π)(π)(\sim 60 %)
- Y(5S) \rightarrow B_S^(*)B_S^(*)(~ 20 %) $-Y(5S) \rightarrow Y(nS) + X$

$B\pi$ -tagging method

 $\sin 2\phi_1$ can be measured through the Y(5S) decay using B π -tagging method. Y(5S) decays to charged-neutral B pair with pions. In such decay, the initial flavor of the neutral B meson can be tagged only from the charge of the pion. $B\pi$ -tagging method can produce independent physics results.

> Neutral B meson has a flavor quantum number opposed to the charged B meson at the moment of Y(5S) decay.

The excellent flavor tagging algorithm and precise vertexing produced precise measurement of $\sin 2\phi_1$. $\sin 2\phi_1$ can be observed in proper time (Δt) distribution.

$e^+e^- \rightarrow Y(5S) \rightarrow B^0 B^- \pi^+$ If direct π is π^+ , neutral B is B⁰ $\rightarrow \overline{B}^0 B^+ \pi$ If direct π is π^2 , neutral B is \overline{B}^0

└→ Charged B meson has a charge opposed to the pion.

Summary

Dataset No.

Evaluate the measurement accuracy of $sin2\phi_1$

 $B\pi$ -tagging method is a flavor tagging method used in Y(5S) decay. can produce independent physics results. The measurement accuracy of $\sin 2\phi_1$ was estimated with Montecarlo datasets. - $\sin 2\phi_1$ error is about 0.8. Belle is upgrading to Belle II.

