Little Higgs with T-parity model at 1TeV using quick simulator

ILD workshop,LAL Tohoku Univ. Eriko Kato

M. Asano, K. Fujii, R. Sasaki, T. Kusano S. Matsumoto, Y. Takubo ,H. Yamamoto

Little Higgs model

New particles that Little Higgs model predicts contribute to solving Higgs mass fine tuning problem.

New particles manifest at Terascale.

Littlest Higgs with T-Parity model

LHT masses in gauge & lepton sector can be described in 2 parameters f(VEV): energy scale of global symmetry breaking K : lepton Yukawa coupling

Important parameters which describe how LHT particles obtain masses & solve little hierarchy problem.

Aim of study

Evaluate ILC's sensitivity on ...

- 1st aim : extracting model parameters(f&kappa)
 - 2nd aim: completing the mass spectrum and checking consistency with parameters

Strong proof that discovered particles are indeed LHT.

Simulation environment

Experiment environment

- CM energy: 1TeV
- luminosity : 500fb⁻¹ (4 years)
- beam/bremstrahlung, beam energy spread are included.
- Software for quick simulation
- Physsim(generate basic particles)
 - Helicity amplitude: HELAS
 - Numerical integration: BASES
 - Event generation: SPRING
- JSF hadronizer (time evolution)
 - Hadronization: Pythia
 - Tau decay : TAUOLA
- JSF Quick simulation: LCLIB

JSF Quick simulator

- Components: beam pipe, VTX detector ,Inner Tracker ,Central drift chamber, ECAL ,HCAL
- Beam cross angle taking into account.
- all detector hits are smeared according to the resolution table below.
- PFA like simulation
 - For charged particles: CDC tracks and calorimeter clusters are linked.
 - For neutral hadrons: charged hadron overlap removed from HCAL cluster.

Detector	Resolution	Coverage
Vertex detector	$\sigma_b = 7.0 \oplus (20.0/p \sin^{3/2} \theta) \ \mu \mathrm{m}$	$ \cos\theta \le 0.90$
Drift chamber	$\sigma_{P_T}/P_T = 1.1 \times 10^{-4} p_T \oplus 0.1\%$	$ \cos\theta \le 0.95$
ECAL	$\sigma_E/E = 15\%/\sqrt{E} \oplus 1\%$	$ \cos \theta \le 0.90$
HCAL	$\sigma_E/E = 40\%/\sqrt{E} \oplus 2\%$	$ \cos \theta \le 0.90$

Analysis

Analysis procedure

1. T-Parity new particles are produced in pairs

2.

- produced new particles decay into SM and LHT particles.
- 3. Extract LHT mass information by recognizing end point of SM energy.
- Extract model parameters, using the fact that LHT masses are expressed in them.

W_HW_H @1TeV (phys. Rev D79.075013)

Z_HZ_H @1TeV

e_He_H @1TeV

Aim: extract lepton Yukawa coupling κ by measuring e_H mass.

Extremely important in knowing lepton sector mass generation mechanism.

e_H mass/parameter extraction

v_Hv_H@1TeV

AIM: extract v_H mass and complete LHT mass spectrum

- \lor v_Hv_H(eW_HeW_H) (tot xsec :1036fb)
 - Signal: eeqqqq(2W) $A_H A_H$ (25.96fb)
 - M_{νH}≒√2κf=400GeV

v_H mass/parameter extraction

Jet energy resolution

- Jet energy is used for determining LHT masses & determining masses used for background rejection.
 - Difficult to reconstruct jets in LHC →can't perform LHT mass precision measurement.
- (jet) energy resolution determines mass measurement precision.
- @1TeV Jet density increases.
- Reconstruction becomes difficult.

Mass resolution is proportional to energy resolution & energy

Other important performances

I Flavor tagging

- Flavor tagging is also used as a power tool for background rejection.
- b-tagging requirement: existence of over 2 tracks with 3σ displacement from the IP.(σ :impact parameter resolution)
- Efficiency approx.55% @ Z-Higgs study.
- Can be improved with Full simulation.

Ζ

 \mathbf{Z}^*

e

Summary

- High precision parameter extraction & mass measurement are extremely important in studying LHT's mass generation mechanism and verifying the model.
- To achieve high precision, good jet energy resolution and reasonable flavor tagging performance are needed.

particle	mass	sensitivity			
A _H	81.9(GeV)	1.3%			
W _H	369(GeV)	0.20%			
Z _H	368(GeV)	0.56%	parameter	True value	Measurement accuracy
e _H	410(GeV)	0.46%	f	580(GeV)	0.16%
ν _H	400(GeV)	0.001%	К	0.5	0.0001%

plan

- Cross section can be measured when changing polarization.
- Normalization $h_0 \rightarrow cross \ section: \sigma \rightarrow \sigma_{LH}, \sigma_{RH} \rightarrow coupling$
- Error = $\Delta h_0 / h_0$
- Assuming 0.25% polarization error.
- > Coupling will be derived.

Mode	σ@0%pol	σ meas. accuracy
Z _H Z _H	99fb	0.89%
e _H e _H	3.6fb	2.7%
N _H N _H	25fb	0.77%
W _H W _H	1 06fb	0.41%