· **に**のための高精細CCD崩壊点検出器 読み出し回路の研究

2012.2.7 修士論文発表

加藤恵里子

- 次世代電子陽電子線形加速器
 - 全長31km
 - 重心エネルギー:500GeV(⇒1TeV)
 - 最大ルミノシティー: 2x10³⁴cm⁻²s⁻¹
 - 積分ルミノシティー: 500fb⁻¹(4年間)

■ヒッグス機構の検証

■ 崩壊点検出器 - 高い崩壊点分解能 衝突点近傍に設置 ピクセル占有率~1% - 正確な飛跡再構成 ■ 問題

-ム構造

~200ms

- 低エネルギーe+e-対バックグラウンドが大量に生成。
- 20μmx20μmピクセルの場合、ピクセル占有率10%以上
- 解決策
 - トレインを時間分割(~20回)し、読み出す
 - <u>~1ms</u> - ピクセルを高精細にする(トレイン間読み出し)
- 1トレイン ~1300 バンチ ➢ 高精細CCD(FPCCD)崩壊点検出器を開発 ILCの検出器の正式なオプションとなっている。 5

高精細CCD崩壊点検出器

第二次試作回路

■高精細CCD(FPCCD)崩壊点検出器とは

ASIC全体

• 高精細CCD(FPCCD)

ILC/FPCCD検出器

- ピクセルサイズ: 5 × 5μm²
- 有感領域の厚み:15um
- 全空乏化→電荷の拡散抑制
- 総読み出しチャンネル数 6,080ch
 - 20,000 × 128 pix/ch
- 総ピクセル数: 1.6×10¹⁰
- ジオメトリ:ダブルレイヤー3層構造

第三次試作回路

■ 電荷再分配型ADCとは

- 0の基準と信号の入力電荷を比較。(ビット決定ごとに変化)
- 比較結果によって基準電荷の足し引きを決める。(電荷再分配)
- 基準電荷は、容量に基準電圧を与えることで作り、 ビットに対応した大きさになっている(バイナリ探索)

 ILC/FPCCD検出器
 ASIC全体
 第二次試作回路
 第三次試作回路

 読
 前にの
 前にの
 第二次試作回路

 読
 前にの
 第二次試作回路

 過去の試作回路の結果

▶本研究で要求性能を満たす試作回路の開発を目指す。

ILC/FPCCD検出器 ASIC全体 第二次試作回路

日本試作回路とセットアップ

- 第二次試作完成品
 - 0.35umTSMCプロセス
 - ASICチャンネル数:8 ch
 - チップサイズ:4.3mm×4.3mm
 - 信号 8 ビット(10CK/conversion,100MHz CK)
- セットアップ

第三次試作回路

- CCDの信号を模擬したテストパルス信号を送ってASICの評価を行った

■ 10Mピクセル/秒動作時の各入力電圧に対するADC分布を見た。 - 入力電圧に対して、一定のADC分布をしている。

▶ 10Mピクセル/秒の要求性能の読み出し速度を達成できた。

■微分非直線性(DNL)

入力変換線を導出し、ADC出力→入力信号 変換をする。 DNLは、データの入力変換線(フィット線)からのズレ。

➢ DNLを用いて入力変換線の精度が評価できる。

$$DNL \equiv f(x) - data(x)$$

x: 入力電圧
 f(x): フィット線(入力変換線に相当)
 data(x): 入力電圧に対するADC出力

ペデスタル分布からASICのノイズレベルを見積もった。 (10Mpix/s動作時)

- 室温、低温動作時(-40°C) で6,5電子と同程度。

√入力換算精度² + ノイズ² = 16電子相当 **<30電子**

▶要求性能を満たしている。

17

- 二次試作回路における改善
 - 読み出し速度、ノイズレベル、読み出し精度において改善が 見られ、要求性能を満たすようになった。
- 二次試作回路の問題点
 - 消費電力30.8mW/ch >6mW/ch
 - アナログ、デジタル同程度。シミュレーションと一致。
- > 消費電力を要求性能を満たした三次試作回路を開発する。

ASIC全体 第二次試作回路 第三次試作回路 第三次試作回路 第三次試作回路											
■ 二次試作回路での消費電力 アナログ消費電力と部分回路											
	測定消費電力					■ PRC					
	デジタル消費電力	アナログ消費電力	総消費電力	要求性能	25.2%	45.5%	■ FFロクバッ. ■ chain2	<i>) </i>			
	12.5[mW/ch]	18.4[mW/ch]	30.9[mW/ch]	6[mW/ch]	20.2%	45.6%	 コンパレータ 差動増幅回路 	各			

■ アナログ消費電力対策

- モニター回路オフ可能に。
- 差動増幅回路除去。→ダイナミックレンジ、非線形性も改善
- 使用していない片方のコンパレータをオフに。

■ デジタル消費電力対策

- パラメータ設定信号の受信機で常に電力消費しているのをOに。(10%削減)
- ADCのビットシフトレジスタを全チャンネル共通なものに。

■ 総消費電力対策

– プロセスの微細化。0.35µm→0.25µm

4.11%

シ]		
デジタル消費電力	アナログ消費電力	総消費電力	要求性能
3.8[mW/ch]	1.6[mW/ch]	5.4[mW/ch]	6[mW/ch]

- ▶ 5.4mW/chの消費電力を達成。要求性能をクリア
- プロセス微細化のメリット
 - 電源電圧の低下
 - トランジスタ容量の低下 など....
- ≻ 消費電力削減
- プロセス微細化のデメリット
- > コンパレータの動作速度上昇による微分非直線性の悪化の可能性。

■ コンパレータのスピードコントロール

- コンパレータは、増幅器とビット判断するラッチでできている。
- 動作速度上昇により増幅レベルが不安定になりやすい。
- ラッチで判断間違える。
- ▶ 時定数を調節しラッチの誤動作防止する(スピードコントロール)

■ コンパレータの動作速度に関するパラメータ – プロセスばらつき、温度、電源電圧

▶ デザインパラメータの変動範囲で微分非直線性がスピードコントールにより、±1/2 [LSB]に抑えられている。

- 二次試作回路
 - 読み出し速度、入力信号測定精度の要求をクリア。
 - 消費電力の問題
- 三次試作回路
 - シミュレーション評価より全ての要求性能をクリア。レイアウト設計発注した。
- 今後
 - レイアウトの配線容量、寄生容量を含めたポストレイアウトシミュレーション を行う。5月に製造発注予定。
 - 二次試作回路のセンサーをつけた放射線テストを行う。

試作回路	速度[Mpix/s]	ノイズ[電子]	入力変換精度[電子相当]	消費電力[mW/ch]
要求性能	10	合わせて30	0電子相当以下	6
一次試作	1.5 🗙	40	50	13 @1.5Mpix/s 🗙
二次試作	10 🔘	6 C	15	30.8@10Mpix/s 🗙
三次試作	10 🔘	二次と同程度	1.2	5.4@10Mpix/s 🔵