

高エネルギー実験のためのSOI技術を用いた PIXOR(PIXel OR)半導体検出器の研究開発

~ Research & development of the PIXOR(PIXel OR) semiconductor detector for the high energy experiments based on the SOI technology ~

目次

Ⅰ. イントロ(P.3 ~)

- SOI検出器について
- Belle II実験と崩壊点検出器
- II. <u>SOI検出器の課題克服(P.7~):研究内容</u>
 - ▶ 放射線ダメージ
 - センサークロストーク
 - 🗕 電荷収集メカニズム
- Ⅲ. <u>高エネルギー実験用SOI PIXORの開発(P.20 ~):研究内容</u>
 - Belle II崩壊点検出器に向けて開発
- IV. <u>まとめ(P.28 ~)</u>

<u>Belle II実験(2014年スタート予定)</u>

– 加速した電子(7GeV)・陽電子(4GeV)を衝突 → B中間子の崩壊過程を測定

崩壊点検出器:b/cクォークを含む粒子の崩壊点を精度よく求める

<u>崩壊点検出器</u>:

- ビーム衝突点の最近傍に配置され、透過粒子の位置を特定

要求項目	SOI検出器		
(1) 高い位置分解能	0	細かく区切れる	
(2)低い占有率	0	高速動作/細かく区切れる	
(3) 低い物質量	0	モノリシック/薄化可能	
(4) 高い放射線耐性	$\times \rightarrow$ (O)	放射線蓄積に弱い→解決可能	
(5) 高速な読み出し	0	高速動作	

SOI検出器は、どの要求も合理的に満たすことができる

SOI検出器は高エネルギー実験での応用に課題

- 放射線ダメージ
- ・ センサークロストーク
- 電荷収集メカニズム

これらの課題と解決方法を紹介

SOI検出器の課題克服

<u>TID(Total lonizing Dose)効果</u>:

- 放射線蓄積によるBOX層でのホールトラップ
- → 読み出し回路が正常動作しない。

トランジスタ特性Id-Vg特性の変化を測定/計算

×NMOSでは特性シフトが起きる

<u>Middle Siliconに負電圧Vmidをかけて、ホールトラップを相殺</u>

10

センサークロストーク:課題

<u>センサークロストーク</u>:

- センサーと読み出し回路が近接
- → 容量性・抵抗性ノイズの発生 → 読み出し回路が正常動作しない

BNWにより電極間の電流が収まる ⇒ センサー間の抵抗的分離

2層SOI構造により電流値が生じなくなる⇒ センサー/回路間の容量的分離

<u>電荷収集メカニズム</u>:

– センサーと読み出し回路が近接(下図の回路層がある場合に近づく)
 → 電荷収集軌道が悪い方向に変化

×回路層により電場がBOX層に刺さる形状になる

回路層なし

×電荷がSi/BOX界面に到達後にセンサー端子に回収される (→センサー端子間の導通、収集速度の低下...)

センサー端子間の電場形状 センサー端子間のホール密度の時間変化

〇電荷が界面を避けて電極へと回収される

Oセンサー間BNWにより収集速度が上がる

高エネルギー実験用:PIXORの開発

Belle II SVD 最内層(L3)アップグレードでのインストールを目指す 「占有率低下」「物質量低下」

L3 パラメータ	数值	
ラダー数	8	
有感領域(1/2ラダー)	122.88*38.4 mm ²	
ストリップピッチ	φ:50, z:160 μm	
センサー厚	300 <i>µ</i> m	
占有率	6.7 %	

21

	ストリップ	ピクセル
占有率	× : 高い	O:低い
センサー寄生容量	× : 高い	O:低い
ゴースト	×:発生あり	〇:発生なし
読み出し量	0:少ない	×:多い
(位置分解能)	(〇:高い)	(× : 低い)

23

〇位置分解能を保ちつつ、ピクセル型のメリットを得られる。

読み出し回路:デジタル回路 verilogシミュレーション

<u>ヒット時刻からカウントダウン →トリガー信号時刻でのヒット選別</u>

ヒット判定 → カウントダウン開始

トリガー信号&カウンタ1→トリガー時刻でのヒット情報として読み出し

占有率 6.7% → 0.01%、物質量1/3程度を狙う → 16 ORで設計し、回路面積により8 ORを狙う

まとめ 2 & 今後

<u>PIXORの開発</u>: Belle II SVD最内層アップグレードでのインストール

PIXOR構造		SOI PIXOR (16 OR)
 バイナリ判定方式 カウンタを使ったトリガー待ち ヒットアドレス読み出し 	占有率	0.016 %
	センサー厚	100 μ m
	センサーピッチ	φ:20, z:40 μm
	サンプリング周波数	42.33 MHz
➡ PIXOR1を試作	読み出し形式	バイナリ(1bit)

<u>今後</u>

- PIXOR1のチップ評価(2月中旬~)
- PIXOR1の性能 → PIXOR2の試作
- Belle II SVD最内層に向けて最適化
- 2層SOI構造による課題解決を実機で確認

28