時間依存CP非保存測定に向けた $B \rightarrow K_S \eta \gamma$ 崩壊過程再構成の最適化

中野浩至、 石川明正、住澤一高^A、山本均、 他 Belle collaboration 東北大理、高工研^A 2012年9月11日

本研究はJSPS科研費23・3221 の助成を受けたものです。

本研究の動機

- もし時間依存CP非保存が見られた場合、新物理の兆候をとらえた事になる!
- 終状態として、Ks η γ を用いる。

各実験での状況

- BaBar 実験
 - Sの測定値は全データを用いて-0.18 $\begin{pmatrix} 0.49\\ 0.46 \end{pmatrix} \pm 0.12$
 - 統計誤差が支配的。
- ・ LHCb 実験
 - pp衝突のため、 π^0 , η 由来の γ 測定が困難。
- Belle 実験
 - BBペアのデータは 770 x 10⁶ と BaBar (470 x 10⁶)の 1.6 倍の統計。
 - まだ1度もSの測定は行われていない。今回が初!

シグナルをどうやって増やすか

Ks の再構成方法の改良

6

「V粒子っぽさ」と「A ではなく Ks らしいか」という2つの出力を NN で得て、 Ks の選別を行う。

これらの分布の違いから、本物の Ks とバックグラウンドの区別を行った

導入

バックグラウンドを減らそう

どの程度向上したか

モンテカルロの結果を、純度 – 効率プロットで比較

- 純度:(本物)/(本物+偽物)
- 効率:カットによって減少するシグナルの割合
- 右上にいく程良い。

同程度の純度の場合、1.15倍多く拾えるようになった!

バックグラウンドをどうやって減らすか

バックグラウンドを減らす方法

結果

10

本解析で行ったバックグラウンド除去は大きく4つ

- 1 qq バックグラウンド除去
 - 軽いクォーク対がBB対の3倍の量生成されるのでこれを落とした。
- 2 $\eta, \pi^0 \rightarrow \gamma \gamma$ 由来の γ の除去
 - K_s η <u>γ</u>のγ候補の主な BG となるため。
- 3 既知の CP 非保存の除去
 - 標準模型で抑制される時間依存の CP 非保存の探索を行うため。
- 4 B→K_sπ⁰γの除去
 - 上の3つの除去後にも多く入ってくるため。

結果

1 ニューラルネットを用いた qq BG のカット

シグナルとqq BG が良く分離できている

シグナルを増やそう

道入

除去の方法

- γ 候補に対して、イベント内から π⁰, η を組めるもっともらしい相手 γ を探し、
 MCの分布に基づき、 π⁰, η 由来である確率を計算する。
- *π*⁰由来の確率、η 由来の確率の高いものを除去する。

 $\gamma \eta$ 、 γ Ks で組んだときの質量が小さな部分を除去

CP を持つバックグラウンドが十分小さくなった(シグナルの7%に相当)。 → (統計誤差) >> (この BG による系統誤差)

4 B→ $K_s \pi^0 \gamma$ の除去

 $B \rightarrow K_s \pi^0 \gamma e a b c 場合、そのイベント e 除去$

 $B \rightarrow K_s \pi^0 \gamma$ の条件

π ⁰ の質量	120 < M < 150 [MeV]	
rのエネルギー	1.6 < E (CM系) < 3.4 [GeV]	
ΔΕ	-0.20 < ΔE < 0.10 [GeV]	$\Delta E \equiv E_B - E_{\text{boxm}}$
beam-energy を用いた B の質量	5.27 < M _{bc} [GeV] λ	$\int \frac{-B}{E} = \frac{-B}{E} = \frac{-B}{E}$
		$P_{\text{bc}} - V P_{\text{beam}} P_B$

	組めなかった	組めた
シグナル	72.1	1.0
$B \rightarrow K_s \pi^0 \gamma BG$	16.6	22.6
その他の BB BG	35.9	4.8
		┝── > 除去

 $B \rightarrow K_s \pi^0 \gamma を 狙って 落と すことが できている$

セレクション最適化と結果

セレクション条件の最適化

セレクションの最適化を行った

- •「qq BG 除去に使う NN の出力」と「セレクション条件」に対して行った。
 - 次のページで紹介(NN は省略)
 - Significance を最大にするようにした。
- ηの崩壊モード、Bの崩壊位置測定の可否によって、3グループに分類。
 - $\eta \rightarrow \gamma \gamma \tau$ Ks によってBの崩壊位置を測定できる
 - $\eta \rightarrow \gamma \gamma \tau$ で Ks によってBの崩壊位置を測定できない
 - $\eta \rightarrow \pi^+ \pi^- \pi^0 \tilde{\sigma} \eta$ によってBの崩壊位置を測定できる

セレクション条件の内容

17

カットによるシグナル、バックグラウンドの変化

導入

シグナルを増やそう

シグナル	qq BG	BB BG	significance
162.1	8252.3	746.9	1.7
104.1	156.7	215.6	4.8
86.4	78.7	134.0	5.0
73.1	41.0	79.9	5.3
72.1	37.0	52.5	5.7
70.5	24.3	24.8	6.5
	シグナル 162.1 104.1 86.4 73.1 72.1 70.5	シグナルqq BG162.18252.3104.1156.786.478.773.141.072.137.070.524.3	シグナルqq BGBB BG162.18252.3746.9104.1156.7215.686.478.7134.073.141.079.972.137.052.570.524.324.8

カットによるシグナル、バックグラウンドの変化

道入

シグナルを増やそう

まとめ

- $B \rightarrow K_S \eta \gamma$ の時間依存の CP 破れを探索中。
 - 標準模型では抑制されている。
 - CP 破れの観測ができれば、新物理の影響。
- モンテカルロシミュレーションを用いて、
 セレクションの最適化を行った。
 - ニューラルネットを用いた Ks 再構成の手法を導入。
 - バックグラウンド源を特定し、取り除く方法を決定。
 - Significance は **6.5**と、BaBar の解析の 4.0 よりも大きく 精度のよい測定結果が期待できる。

Back up

ニューラルネットの概要

モンテカルロによるシグナル生成と再構成

磁場と垂直な面内での、衝突点とπ候補の軌道の距離 Ks候補の運動量(lab系)とπ候補の運動量(Ks系)のなす角

dec_ang : angle between p_Ks (lab frame) and p_ π (Ks frame)

飛跡検出器の hit 数

SVD information affects low fl event selection which is important for TDCPV analysis.

π/p識別の結果

Distributions of atc_pid(π , p) value of positive/negative child were shown below.

∧ を組んだときの質量

Distributions of "m_lambda" were shown below.

If the pair of $\pi^+ \pi^-$ candidate of kind=1 (Ks) are also in the list of kind=2, 3 (Lambda), "lambda mass" is obtained. **Signal Ks** Lambda BG 4000 6000 # of events of events 3000 4000 2000 ± 2000 1000 0 1.115 1.12 1.105 1.125 1.115 1.12 1.125 1 11 1.13 1.105 1.11 1.13 m_lambda m_lambda [GeV] [GeV] 92% of events are not reconstructed as 92% of events have m_lambda. Lambda. (i.e. m_lambda is set to 0) (i.e. m_lambda \neq 0) The distribution does not have a peak. The distribution has a peak at 1.116 GeV.

qq BG cut 用の NN 入力

Correlation Matrix (signal)										Corre	latio	n N	latr	'ix	(b	acł	kgr	ou	nd)													
Linear correlation coefficients in %											Linear correlation coefficients in %																						
M_bc	1		-1					-1					-1	100		100		M_bc	-9	-10	-9		5		-1	4	7	3	1		100		100
deltae		3	-3	-2					-1	1			100	-1		80		deltae	9	-15	-18	2	-4	-1		-4	6	-4	4	100			80
kx_mass		-8	23	20		}				-20		100				60		kx_mass	-8	25	15	5	-7	-2		-6	-15		100	4	1		60
thru_oth		7	25	-32		-2	-1		-1	24	100						11	thru_oth	-36	i -17	-37		21	6	3	24	61	100		-4	3		
thru_all		-46	-66	-44		74	11	24	75	100	24	-20	1			40	10	thru_all	-49	-76	-55	- 5	70	20	10	72	100	61	-15	6	7		40
thrust_a		-59	-53	-16		84	19	22	100	75	-1		-1			20	9	thrust_a	-52	2 -61	-26	- 7	85	26	12	100	72	24	-6	-4	4	_	20
v3_v3		-21	-18	-45		2 23	23	10	0 22	24				-1		0	8	v3_v3	-9	-8	-36	3	12	80	100	12	10	3			-1		0
v2_v2		-10	-11	19		25	10	0 23	19	11	-1					U	7	v2_v2	-16	i -21	-19		32	100	80	26	20	6	-2	-1			U
v1_v1		-58	-59	-16		100	25	5 23	84	74	-2				-	-20	6	v1_v1	-53	68-68	-27	-	100	32	12	85	70	21	-7	-4	5		-20
		20		-		-		-	-	Ŷ		-			_	-40	<u> </u>				-	•			2		45	-	-	2			-40
apla		15	34	100		-16	19) -45	5 -16	-44	-32	20	-2				4	apla	24	54	100		-27	-19	-36	-26	-55	-37	15	-18	-9		
sphe		44	100	34		-59	-11	-18	-53	-66	25	23	-3	-1		-60	3	sphe	34	100	54		-68	-21	-8	-61	-76	-17	25	-15	-10		-60
lr_ksfw	1	100	44	15		3 -58	-10) -21	-59	-46	7	-8	3		_	-80	2	lr_ksfw	10	0 34	24	-	-53	-16	-9	-52	-49	-36	-8	9	-9	-	-80
cost_b	100	1												1		-100) 1	cost_b	100														-100
	CO	st b	ks/W	he ^a p	la V	1.201	Lut	2.12	3.13	rust_a	u th	u of	mas	llae S	bc				cost b	ksfw	he ^a pl	a V	1 2 11	VX	123	van	ust_a	thr	4 oth	mas	lae -	bc	

