

高エネルギー加速器実験に向けた SOIPIX:PIXORの全体動作確認試験

東北大学 篠田直幸、小野善将、石川明正、山本均高エネ研 新井康夫、坪山透
東京大学 小貫良行
A-R-Tec 今村俊文、岩田穆、大本貴文
他 SOIPIXグループ

目次

1. イントロ

- SOIPIXについて
- SOIPIXの崩壊点検出器への応用
- II. 高エネルギー実験へ向けた崩壊点検出器
 PIXORの開発
- III. 試作機PIXOR1の全体動作確認
 ゲインの測定
 ペデスタル値、ノイズレベルの測定、S/N計算

SOIPIX(SOI PIXel 検出器)

SOIPIXの崩壊点検出器への応用

要求性能	SOIPIXとの相性
高い位置分解能	 SOI CMOSの導入: 有感面積を細かく区切れる(<u>10μm</u>)
低い占有率	 空間的:ピクセルサイズの縮小化が可能 時間的:Chip-On-Sensorによる、各ピクセル同時
	読み出しが可能 -> <u>0.1%以下</u>
低物質量	Ο センサーの薄型化が可能(センサー厚 100 or 50μm)
高速読み出し	○ 複雑なデジタル回路を搭載でき、Hit情報のみを読み出せる(Intelligent)
放射線耐性	▲ SEU(単発現象)には強いが、TID(積算線量)に対しては 不十分 →対策が可能 (>10Mrad)
	<u>(Belle II へ向けてのパラメータ: 目標)</u>
Belle IIなどの	次世代高エネルギー加速器実験において有望

PIXOR(PIXel OR)の開発

Super Pixel(n×nピクセルの集合体)

要求性能に応じてOR数を変更が可能! (位置分解能、回路面積、ゴーストヒットの低減、etc)

PIXORの特徴

- <u>PIXORのメリット</u>
- PIXOR構造を用いることで位置分解能が改善する
 ▶ 回路面積が小さくなるので、より小さなピクセルを導入できる
- <u>バイナリヒット判定</u>
 - ▶ 早期にHit情報を2値化し、大型のキャパシタが不要に
- バイナリカウンタによるトリガー待ち

▶ トリガー時間をカウンタで管理し、回路面積の縮小

<u>PIXOR1のパラメータ</u>

Pixel Unit	φ : 25 z : 40 (μm)
Pixel OR	16
Sampling rate	42.33MHz
Trigger Latency	5 (μs)
Point resolution	φ : 7.2 z : 11.5 (μm)

PIXOR1の開発・試験状況

• <u>本講演内容</u>

PIXOR1の試験ボード

X, Y方向において同じ波形を観測

Discriminator閾値設定試験

◆目的:PIXOR1のDiscriminatorの閾値をノイズレベルの十分上に設定する

②ゲイン測定

- ◆測定の手順
 - 複数の入力電荷に対応 するTest Pulseを送り、
 S-CurveによるFit
 - > V_{amp}を得る
 Ⅱ. チャネルごとにQinに 対するV_{amp}の変化をFit
 - III. 線形に増加している領域から、傾き = Gainを計算

Qin = {500e-, 1100e-, 1500e-, 2000e-, 2500e-}

ペデスタルとノイズレベル測定

Jイズレベル分布(Qin = 0)

ペデスタル分布(Qin = 0)

S/N

➢ MIP 4000e-, Gain 100(µV/e-)を仮定 S = 4000 * 100 ~400(mV), N ~ 13(mV)(実測値) よって、S/N = 400/13 ~ 31

- SOI技術を用いたPIXORを次世代の高エネルギー実験における 崩壊点検出器のために開発
- PIXOR1の全体動作確認試験を行った
 達成事項: PIXOR処理、デジタル+アナログ回路の一連動作確認 ゲイン測定(~100mv)、簡易的なS/N計算(~31)

- 閾値電圧設定後、Cd-109を用いたクラスターサイズの測定
- PIXOR1を元にヒットしたチャネルのアドレスを読み出すArbiter 等、IntelligentなDigital回路を搭載したPIXOR2の性能評価を 行う(10月~)
- 第3日(9月13日)にPIXORを考案した小野さん(東北大 D1)の 講演があります

Back Up

ハイブリッド型検出器

- センサー層と処理回路を個別に作り、金属バンプにより接合

PIXOR1デジタル回路

• Synchronizer

▶ 入力信号を動作CLKに同期させ、1CLKに整形する

• SEQ(Sequencer)

▶ カウンタの使用状況を判断し、Hit信号をカウンタへ送る

- Hit Time Counter
 - ▶トリガー時間Hit情報を格納し、カウンタの値が9'b1で Enable信号を生成し、外部TRGとの一致でHitと認識

PIXOR処理

■ 2-diode構造

➤ 二つのダイオードにより、センサーからの信号を均等に二 方向へ分ける

2-diodeA

2-diodeB

S-Curveによる測定

S-Curveによるフィッティング

➢ VthをShaper出力のbaseline付近から振幅が最大となる値 まで変化させ、その最大値となる点を測定(ペデスタル値)

補正用DACを用いた閾値調整

- 各チャネルの閾値を揃える

◆閾値調整の手順

- I. 補正bitの変化幅を調整し、 変化幅を最小に
- 4'b0のmax, 4'b15のmin
 の中間の値を揃える値にした
- III. 各チャネル、補正用DACを用いて上の値に調整

調整前に比べ、閾値の分布幅が 小さくなった →ちゃんと補正用DACを調整出来 ている(スライド13の上の図)

③DACを用いたDiscriminator閾値調整

• DACを用いた閾値調整

③DACを用いたDiscriminator閾値調整

• S-Curveによる測定

ノイズレベルの分布

■ 入力電荷なしでのノイズレベルの分布

ゲインの測定

- 複数の入力電荷に対応するTest Pulseを入力
- それぞれをS-CurveによりFittingし、V_{amp}を得る
 ▶ 各チャネルごとにQinに対するV_{amp}の変化をFitする

Qinの増加に比例してV_{amp}は増加 -> Gain = V_{amp}/Qin 増加部分の最小値をそのチャネル でのQinとする

V_{amp}:shaper出力の振幅

B中間子を多量に生成し稀崩壊を精度よく測定し、 標準模型を超える物理の探索を行う

- ・ 地下11m, 円周3kmの地下トンネル
- e⁺: 4.0GeV , e⁻: 7.0GeV
- 1秒間に800個のB中間子ペアを 生成(→Belle実験の40倍!)

Belle 実験の約10年分のデータ量をわずか3か月で収集できる

現在、アップグレード中 → 2015年実験開始予定

Belle II 実験への導入

- PIXORをBelle II検出器のSVD最内層(Layer3:r~38mm)ヘインストール

Belle II SVDのジオメトリ

Pixel型とStrip型

・ Strip型

メリット

・占有率(Hitピクセル数/全ピクセル数) が小さい

・ゴースト発生なし

デメリット

・位置分解能に制限

- ・読み出しに時間がかかる(Offセンサー)
- メリット
 DSSD

 ・読み出し時間が短い

 ・位置分解能が小さい

 デメリット

 ・占有率が大きい

 ・ゴーストの発生

2層SOIによる放射線対策

- <u>2層SOI構造</u>
 - ▶ 長期的な放射線の蓄積により生じるトランジスタの 閾値変動を解決する

今回の測定における成果

■ 達成事項

- I. PIXOR処理後の波形を確認
- II. Test Pulseによるアナログ+デジタル回路の正常動作確認
- III. DACを用いたDiscriminator閾値電圧調整確認

■ 未達成事項

Cd-109を用いたHitデータ習得 > ~9月に行います