Development of Readout ASIC for FPCCD Vertex Detector at the ILC

IEEE/NSS 2012 @Anaheim, USA

Eriko Kato

FPCCD ILC vertex detector

- ILC (International Linear Collider)
 - precision measurement of Higgs couplings
 - High efficiency, purity flavor tagging

- Need high impact parameter resolution

- vertex detector
 - High impact para. resolution near IP
 - Accurate tracking pixel occupancy~1%

- Finely segmented pixel

- FPCCD (FinePixelCCD) vertex detector
 - Pixel size 5x5μm²: 😊 high position resolution, ☹️ faint signal
 - total # pix: 1.6 × 10¹⁰: 😞 high speed readout
 - Fully depleted epi-layer: 15μm, Si total 50μm: ☑️ high 2 track separation capability
 - inter-train time readout: 😊 free from beam induced RF noise

- Develop Readout ASIC for FPCCD

2012/10/29

2012 IEEE Nuclear Science Symposium
Requirements for FPCCD readout ASIC

- **Readout speed** > 10Mpix/sec
 - 6000 ch parallel readout of all pixels within inter-train time (200ms)

- **Signal meas. accuracy** < 30 e-
 - Faint signal level: ~500 e-
 - Noise + AD conversion accuracy < 30 e-

- **Power consumption** < 6mW/ch (ASIC)
 - < 10mW/ch (CCD)

- Placed in -40°C cryostat

➢ Develop readout ASIC that satisfies all requirements
Overall ASIC design

- **Power consumption <6mW/ch**
 - Main power source is ADC
 - Implement charge sharing ADC
- **Readout speed >10 M pixel/s**
 - Use two 5Mpixel/s parallely
- **Meas. accuracy of CCD signal <30 e-**
 - Noise: implement LPF & Correlated double sampling (CDS).
 - AD conversion: multi bitADC (over 5bit)

![Channel design diagram](image)
FPCCD2B prototype design 1

- FPCCD2B(2nd prototype ASIC)
 - For Readout speed and meas. accuracy requirements
 - 0.35\textmu mTSMC process, 8 ch
 - Chip size: 4.3mm × 4.3mm

- SAR ADC design
 - 8 bit signal
 - 8 consecutive capacitor blocks for charge sharing
FPCCD2B prototype design 2

- High speed and precision measurements
 - Suppress the effect of stray capacitance attached to switches and in between GND.
 - Increase current supply to ADC comparator by increasing # of pins 80→100

![Charge sharing ADC diagram]

- Dummy switches
- Match M value in switches to correspond to bit weight

![comparator]

Divide capacitance, Attach to GND
FPCCD2B results

- Power consumption
 - 30.8mW/ch (>6mW/ch) \(\rightarrow\) improved in next prototype

- \textit{meas. accuracy} = \sqrt{\text{DNL}^2 + \text{pedestal width}^2}
 - \textit{meas. accuracy}@100MHzCK = \sim 16 \text{ e}^-

\(<30 \text{ e}^- \text{ required}\)
FPCCD2B results with CCD

- CCD (Manufactured by Hamamatsu Photonics)
 - 12x12um² two phase CCD
 - thickness: epi layer 15um, Si total 50um

- Fe55
 - irrad time 10s, -40°C, 3000 frames
 - S/N : 37 (Single pixel hit ext)
 - energy resolution: 120 eV

- Pedestal analysis
 - Dark current suppressed under ILC conditions (200ms -40°C)
 - Noise ~55 e-
 (CCD readout main source)

- FPCCD2B overall satisfies all requirements except power consumption
AFFROC01 design

- AFFROC01 (3rd prototype ASIC)
 - Low power consuming prototype
 - TSMC CMOS process 0.25um
 - Chip parameter 3.7x3.75mm²
- Power consumption modifications
 - Circuit simplification
 - Substitute with more energy conserving circuit
 - Process modification (0.35→0.25um)
- Modifications due to process modification
 - Comparator operation speed increases
 - Enable comparator speed control and improve DNL
 - Succeeded in 100MHz CK operation

Test board

![Test board diagram]
AFFROC01 improvement results

- **INL (integral non linearity)**
 - Shows curvature in linearity.
 - Caused upstream circuits.

- **Baseband transmission**
 - 10Mpix/s = 100MHz ADC comparator CK
 - Return zero → non return zero
 - Longer high period (10ns), Easy sampling

Measured LVDS output signal

FPCCD2B: return zero

AFFROC01: non return zero

INL 17% \(\rightarrow\) < 2%
DNL @ low frequency
- capacitance ratio in SAR ADC capacitor displaced from bit weight

DNL @ high frequency (100MHz CK)
- meta-stable state @ bit change. Thus causes bit jump @high freq.

Process change + Speed control @3rd prototype

Improvement seen

<FPCCD2B>

AFFROC01 3rd prototype

Improved!!
Summary

- FPCCD2B ASIC (2nd prototype)
 - Power consumption 30.8 mW/ch
 - Measurement accuracy 16 e- @100MHzCK
 - 55 e- when attached to 12um² CCD
 - Able to operate detailed CCD evaluation tests.

- FPCCD2B overall satisfies all requirements except for power consumption.

- AFFROC01 (3rd prototype) is working@100MHz CK
 - Improved Power consumption of 4.8mW/ch
 - As well as meas. accuracy and other improvements(INL, LVDS signal, DICEFF radiation tolerance)
FPCCD impact parameter resolution & pixel occupancy

FPCCD can improve the Impact Parameter resolution.
– Significant improvement in high momentum region

<table>
<thead>
<tr>
<th>Layer</th>
<th>500 GeV (sb2009wTF) [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.1</td>
</tr>
<tr>
<td>2</td>
<td>1.7</td>
</tr>
<tr>
<td>3</td>
<td>0.09</td>
</tr>
<tr>
<td>4</td>
<td>0.07</td>
</tr>
<tr>
<td>5</td>
<td>0.017</td>
</tr>
<tr>
<td>6</td>
<td>0.015</td>
</tr>
</tbody>
</table>
Charge sharing ADC

- Charge sharing ADC
 - Compare standard 0 level & input charge (modified after determining every bit)
 - Determine to subtract or add stored charge (charge sharing)
 - There are 8 types of stored charge, each are binary weighted. (binary search)

- Low power consumption
 - SAR → one comparator

- High accuracy
 - Binary search

- Readout speed
 - Relatively high speed enough for requirement
FPCCD2B frequency dependence

Detailed frequency dependency

@ low frequency
- SAR ADC capacitor, capacitance ratio displacement from bit weight

@ high frequency (100MHz CK)
- meta-stable state @ bit change. causes bit jump @ high freq.