

ILC physics to detector

For details **3**/29 Higgs physics session

Higgs couplings deviate from SM certain ways depending on the **structure of the Higgs sector** and it's **underlying dynamics**

Higgs coupling measurements with high precision might point the direction towards New Physics!

What will we be looking at the ILC ?

Model independent measurements of absolute Higgs couplings

ILC, the machine

- E_{CM}: 250GeV 1TeV
 - major Higgs couplings are all accessible at this range.
 - Tunable energy. Focus on optimum energy.
- Other traits
 - Polarization (for e-/e+) : $\pm 80\% / \pm 30\%$ @250 500GeV

$\pm 80\%/\pm$	20%	@1TeV

	St	taging stra			
	E _{CM} (GeV)	250	350	500	1000
# of Rur	nning years	3	(1)	3	3
Canonical	∫£dt (fb⁻¹)	250	(110)	500	1000
Lumi-up	∫£dt (fb⁻¹)	1150	—	1600	2500

> Tunable energy, luminosity and polarization are keys to achieving precision.

ILC, a Higgs factory

ÜĿ

ttH production Top Yukawa coupling

Weapons for hunting down the Higgs@ILC

<ILC weapons used for analysis>

> Model independent precision measurement of absolute couplings become possible

HIGGS COUPLING MEAS.@250GEV

Key to absolute Higgs couplings @250GeV

10/29

TOP YUKAWA COUPLING MEAS.@ILC

Top Yukawa coupling

Main BG:ttZ, tbW, ttg($g \rightarrow$ bb)

Open top 500GeV & 1TeV

factor of 2 enhancement from QCD bound-state effects @500GeV

$\Delta g_{tth}/g_{tth}$	500GeV	+1TeV
Canonical	14%	3.2%
Lumi up	7.8%	2.0%

Key to Higgs couplings

WW fusion dominates at high energies e^+ *W*⁺ /b W^+ W^-/b H $W^ \nu$ absolute normalization g_{HWW} $\sigma_{\nu\nu H}Br_{(H\to bb)} \sim g_{HWW}^2 Br_{(H\to bb)}$ $\Gamma_{tot} = \frac{\Gamma_{HWW}}{Br(H \to WW^*)} \propto \frac{g_{HWW}^4}{\sigma_{yyH}Br(H \to WW^*)}$

 g_{HWW} gives Higgs total width Γ_{tot} absolute normalization of other couplings g_{HXX}

16/29

above 500GeV

Precision	500 fb ⁻¹	2500 fb ⁻¹
g_{HWW}	1.4%	0.7%
Γ _{tot}	~6%	~3%

Higgs self coupling

- What makes the Higgs condense in the vacuum?
 - We need to measure Higgs self-coupling λ , the shape of the Higgs potential

Many Irreducible diagrams

500GeV		1TeV	
$\Delta\lambda$ _ 1	_ Δσ	$\Delta\lambda = 0$	$\Delta \sigma$
$\frac{1}{\lambda}$ - 1.	σ	$\frac{1}{\lambda} = 0$	σ

Counling accuracy	diluted(F=0.5 if no.	RG diagrams)
coupling accuracy		

Δλ/λ	500GeV	+1TeV
Canonical	83%	21%
Lumi up	46%	13%

 $HH \rightarrow bbbb$, bbWW combined

 $\sigma_{ZHH} \sim 0.13$ fb, large BG \rightarrow high polarization & luminosity effective

Higgs Coupling Precision

(model-independent)

Facility		ILC		ILC(LumiUp)
$\sqrt{s} \; (\text{GeV})$	250	500	1000	250/500/1000
$\int \mathcal{L} dt \ (\mathrm{fb}^{-1})$	250	+500	+1000	1150 + 1600 + 2500
$P(e^-, e^+)$	(-0.8, +0.3)	(-0.8, +0.3)	(-0.8, +0.2)	(same)
Γ_H	11%	5.9%	5.6%	2.7%
$BR_{ m inv}$	< 0.69%	< 0.69%	< 0.69%	< 0.32%
κ_γ	18%	8.4%	4.1%	2.4%
κ_g	6.4%	2.4%	1.8%	0.93%
κ_W	4.8%	1.4%	1.4%	0.65%
κ_Z	1.3%	1.3%	1.3%	0.61%
κ_{μ}	_	_	16%	10%
$\kappa_{ au}$	5.7%	2.4%	1.9%	0.99%
κ_c	6.8%	2.9%	2.0%	1.1%
κ_b	5.3%	1.8%	1.5%	0.74%
κ_t	—	14%	3.2%	2.0%

>Overall, 1% or sub-persent accuracy can be achieved

(model-dependent)

Facility	LHC	HL-LHC	ILC500	ILC500-up	ILC1000	ILC1000-up
$\sqrt{s} \; ({\rm GeV})$	14,000	14,000	250/500	250/500	250/500/1000	250/500/1000
$\int \mathcal{L} dt \; (\mathrm{fb}^{-1})$	$300/\mathrm{expt}$	3000/expt	250 + 500	1150 + 1600	250 + 500 + 1000	1150 + 1600 + 2500
κ_{γ}	5-7%	2-5%	8.3%	4.4%	3.8%	2.3%
κ_g	6 - 8%	3 - 5%	2.0%	1.1%	1.1%	0.67%
κ_W	4-6%	2-5%	0.39%	0.21%	0.21%	0.13%
κ_Z	4-6%	2 - 4%	0.49%	0.24%	0.44%	0.22%
κ_ℓ	6-8%	2-5%	1.9%	0.98%	1.3%	0.72%
κ_d	10 - 13%	4 - 7%	0.93%	0.51%	0.51%	0.31%
κ_u	14 - 15%	7 - 10%	2.5%	1.3%	1.3%	0.76%

Main assumption :

$$\frac{\Gamma_{tot}}{\Gamma_{tot}|_{\rm SM}} = \sum_{i} \kappa_i^2 B r_i|_{\rm SM}$$

>Overall, approximately one order better

LH SG

BG

500

GeV

others

400

300

200

100

Energy distribution

3000

2500

2000

1500

1000

500

a)

160

_SUSY + SM

 $\widetilde{\chi}_{1}^{+}\widetilde{\chi}_{1}^{-}$

100

80

120

W Boson energy / GeV

140

400

200

H Energy

In the search of a new particle

<Of course if NP happens to be in our reach, we have various weapons to nail it !!>

kinematic edges detection → Discovery + model independent mass measurement:

- e.g. (SUSY) $e^+ e^- \rightarrow \chi_1^+ \chi_1^- \rightarrow \chi_1^0 \chi_1^0 W^+ W^-$
- (Little Higgs) $e^+ e^- \rightarrow Z_H Z_H \rightarrow A_H A_H H I$
- etc..
- Mass measurement $\mathcal{O}(1)$ % order

Model Discrimination with spin information

 $- X^+ X^- \rightarrow W^- W^+ DMDM$

– X: spin 0, 1/2, 1

- ILC sensitive to processes that involve **colorless particles**
 - e.g. light Chargino/neutralino higgsino-dominated \rightarrow mass nearly degenerated
 - Even for sub-GeV mass differences, the charginos/neutralinos can be discovered / measured to O(1)% in mass.

DM + ISR

- Case where only DM is accessible@ILC \rightarrow Can still discover w/ single γ

Polarization

- L&R-handed couplings measurement via cross section
- New particle gauge charge

And more...

Challenges ~what drives technology~

Higgs self coupling, top Yukawa coupling

<u>challenges</u>

Small signal

Large background

(irreducible diagram + combinatorial background)

<u>Key tools</u>

Lumi-up grade Polarization

accelerator

Detector

Lepton selection Flavor tagging Mass resolution

Jet energy resolution, Momentum resolution, Impact para. resolution

Higgs recoil measurements

<u>challenges</u>

Individually g_{HXX}(X:ff,VV,II,inv etc) improve with the same factors as higgs self coupling & top Yukawa. **However..**

model independent precision upperlimit set by recoil precision

Physics is what drives technology to a precision we have never achieved before.

TO DETECTOR(FOCUSING ON ILD)

International Large Detector (ILD)

24/29

Physics to design

İİL

Energy resolution

 $\frac{\sigma_E}{E} \propto \frac{1}{\sqrt{E_0}} \text{ for single jet}$ Boosted jet overlap $\rightarrow \text{compact shower}$ $\rightarrow \text{fine granaralty, dense absorber}$

Is this c, b, or sth else? Many tracks Many beam BG events Position resolution Close to IP Fine segmented sensors Low material

momentum resolution Large # of space points Low material

State of the art detector technology

Summary

- ILC is capable of measuring absolute Higgs couplings model independently with high precision.
- Detector technology mature!
- > We can start our journey to unveil the mystery of the Higgs right now!

Kitakami mountains announced as Japan candidate cite!

Technical Design Report Published!!

International Workshop on Future Linear Colliders

11-15 November 2013, The University of Tokyo

The workshop will be devoted to the study of the physics case for a high energy linear electron-positron collider, taking into account the recent results from LHC, and to review the progress in the detector and accelerator designs for both ILC and CLIC projects.

Website: http://www.icepp.s.u-tokyo.ac.jp/lcws13/ Contact: lcws13@icepp.s.u-tokyo.ac.jp

> LCWS13 will be held at The University of Tokyo 11-15 November 2013 (registration is ongoing) http://www.icepp.s.u-tokyo.ac.jp/lcws13/

Local Organization Committee: