

Little Higgs with T-parity measurements at the ILC

2013.11.13 Tohoku Univ. Eriko Kato

Little hierarchy problem

There are 2 predictions on where the energy scale of new physics should emerge.

1. Fine tuning of Higgs mass $m_{Higgs}^{2} = m_{0}^{2} + \delta m^{2}$ $m_{Higgs}^{2} = m_{0}^{2} + \delta m^{2}$ Measured Higgs mass Λ : Energy scale $\delta m^{2} \approx (0.27\Lambda)^{2}$ $\Lambda < 1 \text{ TeV}$

2. Electroweak precision measurement $\Lambda > 10 \text{TeV}$

Conflict between the 2 energy scales.
 Little Higgs model was proposed!

Little Higgs model important features³

<Little Higgs mechanism>

Global Symmetry : SU(5) $f \sim 1 \text{ TeV}$ SO(5) $v \sim <h>$ subgroup : $[SU(2)_{L} \times U(1)_{Y}]^{2} \rightarrow SU(2)_{L} \times U(1)_{Y} \rightarrow U(1)_{Y}$

<Higgs mass contribution>

Quadratic divergent terms cancel at 1-loop order

<features of Little Higgs>

- prediction of top partner
 prediction of gauge boson partner
- Definite relation between model parameters (little Higgs mechanism)

Solves Little hierarchy problem

Littlest Higgs with T-Parity model

LHT masses in gauge & lepton sector can be described with 2 parameters f(VEV): energy scale of global symmetry breaking

- K : lepton Yukawa coupling
- Important parameters which describe how LHT particles obtain masses & solve little hierarchy problem.

Coupling relation @LHT

■ LHT contains a [$SU(2)_L \times U(1)_Y$]² sub-structure + T-parity

This structure is key feature for the model
 LHT coupling relations are the same as SM partner sector
 ➢ We can test 4 types of electroweak coupling relations

Coupling relation @LHT

SM diagram LHT diagram

Study objective @ILC

7/25

- Measure Little Higgs w/ T-Parity (LHT) particle masses (A_H,W_H,Z_H,e_H,v_H)
- 2. Extract model parameters (f, κ) from masses and check consistency.
- 3. Measure as much couplings concerning electroweak sector as possible
- 4. check consistency among couplings with what is expected at the model.

^{8/25} Parameter space & simulation environment

<model parameter space>

Considers..

- Dark matter relic abundance
- Four fermion interaction

■ EWPO

К	f
0.5	580(GeV)

DM Main annihilation mode

Mh=126GeV is within the allowed parameter region here we did simulation for mh~134GeV

<simulation environment>

- Event generation: PHYSSIM
- Hadronization: PYTHIA, TAUOLA
- Detector simulation: JSFQuickSimulator

Analysis process mode

Analysis procedure

1. T-Parity new particles are produced in pairs

2.

- produced new particles decay into SM and LHT particles.
- **3.** Extract LHT mass information by recognizing end point of SM energy. cross section can also be measured
- **4.** Extract model parameters, using the fact that LHT masses are expressed with them. Extract coupling from cross section

MASS & MODEL PARAMETER MEASUREMENTS(@1TEV 500FB-1)

$W_H W_H @ 1 TeV$ (phys. Rev D79.075013)

$Z_H Z_H @ 1 TeV$

Extremely important in knowing lepton sector mass generation mechanism.

e_H mass/parameter extraction

extracted value: f=579.6 \pm 3.0(GeV) K=0.5 \pm 2.8e-3 True value: f=580(GeV), κ =0.5 mass accuracy: e_H:412.8 \pm 1.7(GeV) Z_H:371.2 \pm 1.5(GeV) 0.46% Successfully extract mass and parameters.

$v_{\rm H}$ mass/parameter extraction

extracted value: f=582.0±0.6(GeV) K=0.5±0.6e-3 0.12% True value: f=580(GeV), κ =0.5 mass accuracy: V_H:400.8 ±0.4(GeV) W_H:369.6 ±0.4(GeV) 0.10%

Successfully extract mass and parameters.

VERIFYING LHT COUPLING RELATIONS

Coupling relation @LHT

SM diagram LHT diagram

20/25

■ ILC has various observables which can be used for coupling meas.

- Cross section
- Polarization dependence
- Angular dependence(differential cross section)
- Etc..

> Can be used to disentangle various coupling contributions.

• Observable for $Z_H Z_H$ process: cross section

Xvertex structure(spin, L-R coupling mixed rate) are assumed & fixed

21/25

• Observable for $Z_H A_H$ process: cross section

22/25

Cross section polarization dependence

- e_He_H process cross section polarization dependence
 - Both couplings are not dependent on polarization. However...
 - zeHeH coupling should appear in the interference term!

24/25

• Observable for $W_H W_H$ process: cross section (@ e⁻ pol $\pm 80\%$)

Cross section polarization dependence

- W_HW_H process cross section polarization dependence
 - Both couplings are dependent on cross section

26/25

• Observable for $v_H v_H$ process: cross section (@ e⁻ pol $\pm 80\%$)

Cross section polarization dependence

- $v_H v_H$ process cross section polarization dependence
 - Both couplings are dependent on cross section

Result summary

summary

- Little Higgs model is one of the attractive new physics models which solves little hierarchy problem and the dark matter problem.
- Key characteristics of Little Higgs models are it's mass hierarchy and coupling relations
- We tested Littlest Higgs with T-Parity(LHT) model, by measuring mass and couplings concerning electroweak sector and checking consistency with the model.
- ILC 1TeV 500fb⁻¹ can measure masses of heavy gauge bosons and leptons at a percent level or less. With additional measurements using (for example) polarization ILC can measure 8 different couplings
- > Which can be strong evidence of LHT.