Study of Tracking and Flavor Tagging with FPCCD Vertex Detector

Tatsuya Mori, Daisuke Kamai, Akiya MiyamotoA, Yasuhiro SugimotoA, Akimasa Ishikawa, Taikan SueharaB, Eriko Kato, Hitoshi Yamamoto

Tohoku University, KEKA, Kyushu UniversityB
Outline

1. Introduction to FPCCD
2. Development of FPCCD Track Finder
3. Tracking Efficiency
 • with and without pair BGs
4. Flavor Tagging
5. Summary
Introduction to FPCCD
Role of Vertex Detector

one of the ILC physics goals:
Precise measurement of Higgs coupling constant to “c, b-quark, gluon”

Precise identification of $H \rightarrow b\bar{b}$, $c\bar{c}$, gg is required

We need VXD with high performance
FPCCD Vertex Detector

FPCCD (Fine Pixel CCD) Features

- Small pixels: 5-10 \(\mu m \) (see right)
- Sensitive / Total thickness: 15 / 50 \(\mu m \)
- \# of pixels: \(\sim 0.4 \times 10^9 \)
- Possible to see cluster shape for:
 - Extrapolation of tracks
 - Improvement of position resolution
 - Discrimination: BG cluster & signal cluster
- Readout between trains:
 - All bunches in a train are accumulated

Geometry

<table>
<thead>
<tr>
<th>layer</th>
<th>distance from IP (mm)</th>
<th>pixel size ((\mu m^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0, 1</td>
<td>16, 18</td>
<td>5 \times 5</td>
</tr>
<tr>
<td>2, 3</td>
<td>37, 39</td>
<td>10 \times 10</td>
</tr>
<tr>
<td>4, 5</td>
<td>58, 60</td>
<td>10 \times 10</td>
</tr>
</tbody>
</table>

pro:
Noise from Electromagnetic Interference (EMI) can be ignored

con:
Tracking is challenging due to so many hits
Occupancy and Impact Parameter Resolution

- Dominant BG: e^+e^- pair BG

<table>
<thead>
<tr>
<th>E_{CM} (GeV)</th>
<th>occupancy in 0th layer (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>0.8</td>
</tr>
<tr>
<td>350</td>
<td>0.9</td>
</tr>
<tr>
<td>500</td>
<td>2.8</td>
</tr>
<tr>
<td>1000</td>
<td>19.6</td>
</tr>
</tbody>
</table>

- Performance goal of Impact Parameter Resolution (IPR)

$$\sigma_{r\phi} = 5\mu m \oplus \frac{10\text{GeV/c}}{p \cdot \sin^{3/2}\theta} \mu m$$

→ Satisfied and IPR $\sim 1\ \mu m$ in high P region
Development of FPCCD Track Finder
ILD Tracking Algorithm for DBD study

1st phase: stand-alone Silicon Tracking

2nd phase: Silicon Track + TPC Track → Full Track

stand-alone Silicon Tracking:
- VXD + SIT
- Outside-in tracking algorithm
- Track seeding with 24 layer-combinations

Current ILD VXD Configuration for DBD (current VXD sim.)

<table>
<thead>
<tr>
<th>layer</th>
<th>distance from IP (mm)</th>
<th>position resolution (µm)</th>
<th>position resolution (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0, 1</td>
<td>16, 18</td>
<td>2.8 / 6.0</td>
<td>1.4 / 1.4</td>
</tr>
<tr>
<td>2, 3</td>
<td>37, 39</td>
<td>4.0 / 4.0</td>
<td>2.8 / 2.8</td>
</tr>
<tr>
<td>4, 5</td>
<td>58, 60</td>
<td>4.0 / 4.0</td>
<td>2.8 / 2.8</td>
</tr>
</tbody>
</table>

FPCCD
How is tracking efficiency evaluated?
Efficiencies are plotted with respect to MC tracks that stem from a region of 10 cm around the IP with \(p_t > 100 \) MeV and \(\cos(\theta) < 0.99 \), excluding decays in flight and requiring at least 90% purity.

For the combined tracking system, the track reconstruction efficiency is on average 99.7% for tracks with momenta greater than 1 GeV across the entire polar angle range, and it is larger than 99.8% for \(\cos(\theta) < 0.95 \).

The effects of background from coherent pair background and from multi-peripheral \(\pi \) hadrons events are taken into account by overlaying the corresponding number of events. For the pair background the correct number of bunch crossings resulting from the foreseen readout times are overlayed.

Some of the counted tracks have imprecise impact parameter resolution because those tracks may not have enough VXD hits due to the requirement.

Having VXD hits is crucial for flavor tagging.
Current ILD Tracking with FPCCD

Tracking Efficiency : $\eta \equiv \frac{\# \text{ of tracks with VXD hits } \geq 5 \& \& \text{ track purity } > 75\%}{\# \text{ of MCParticles creating VXD sim-hits } \geq 6 \& \& \text{ SIT sim-hits } \geq 4}$

Note: $P_{T\text{min}}$ to reach TPC
$R_{in} : 0.4 \text{ GeV/c}$
$R_{out} : 1.8 \text{ GeV/c}$

Sample: $t\bar{t}$ @ 350 GeV (without pairs)

Efficiency : degraded @ $P_T < 1.7\text{GeV/c}$
→ Improvement of Silicon Tracking are needed
Problems in Silicon Tracking (Track Seed)

Track seeds are generated by combining 3 hits on the 3 layers in Φ sector divided into 80 (4.5°)

- the 3 layers (SIT: 8, 6 VXD: 5~0)
 8 6 5 8 6 4 8 6 3 8 6 2 8 5 3 8 5 2
 8 4 3 8 4 2 6 5 3 6 5 2 6 4 3 6 4 2
 6 3 1 6 3 0 6 2 1 6 2 0 5 3 1 5 3 0
 5 2 1 5 2 0 4 3 1 4 3 0 4 2 1 4 2 0

Problems in Track Seed

- 4.5° search windows are too narrow to catch low P_T tracks
 - wider? → larger ghost seeds and CPU time consuming

- # of seeds is too many, especially using inner-most doublet for FPCCD
 → larger ghost seeds and CPU time consuming
Solutions: Track Seed

- Search window enough wide to cover track seeds generated with $P_T > 0.18$ GeV/c tracks is calculated from a hit on the outer layer.

- Combinations of 3 layers are reduced as follows:

 Old:

 8 6 5 8 6 4 8 6 3 8 6 2 8 5 3 8 5 2
 8 4 3 8 4 2 6 5 3 6 5 2 6 4 3 6 4 2
 6 3 1 6 3 0 6 2 1 6 2 0 5 3 1 5 3 0
 5 2 1 5 2 0 4 3 1 4 3 0 4 2 1 4 2 0

 New:

 8 6 5 8 6 4 8 5 4 6 5 4 5 4 3

 Inner-most doublet is not used to reduce ghost seeds.

Results:
We can reduce both CPU time and ghost tracks, and catch low P_T tracks.

Implemented in FPCCD Track Finder
Problems in Silicon Tracking (Extrapolation)

Window for extrapolation: divided by 4.5° in the direction of Φ

Fitter: Simple Helix Fit

Problems in Extrapolation

- Tracks are not extrapolated to neighboring Φ sector
 → Some true hits are ignored

- Φ window is fixed
 → Many false hits are considered

- Fitter is Simple Helix Fit
 → Chi2 of some low P_T tracks is too high
due to not considering multiple-scattering → rejected

red dashed line: window for extrapolation
Solutions for Extrapolation

Solutions:
• Kalman Filter is used as Fitter
• Window for extrapolation is determined from track parameters calculated by the fitter

Implemented in FPCCD Track Finder

Results:
• Flexible window for extrapolation can catch true hits and avoid taking most of false hits
• Chi2 of low P_T tracks is calculated more properly \rightarrow low P_T tracks can survive
Tracking Efficiency
FPCCD Track Finder VS Current Tracking with FPCCD (P_T)

Tracking Efficiency: $\eta \equiv \frac{\text{# of tracks with VXD hits } \geq 5 \&\& \text{ track purity } > 75\%}{\text{# of MCParticles creating VXD sim-hits } \geq 6 \&\& \text{ SIT sim-hits } \geq 4}$

Note: P_{Tmin} to reach TPC
R_{in}: 0.4 GeV/c
R_{out}: 1.8 GeV/c

Sample: $t\bar{t}$ @ 350 GeV (without pairs)

Track purity: $\frac{\text{(\# of the MCP's hits of track)}}{\text{(\# of all hits of track)}}$

Efficiency: $\sim 99\%$ @ $P_T > 0.6$ GeV/c

Efficiency: 98%

Efficiency: 98.5%
FPCCD Track Finder VS Current Tracking with FPCCD ($\cos \theta$)

Tracking Efficiency : $\eta \equiv$

\[
\frac{\text{# of tracks with VXD hits } \geq 5 \& \& \text{ track purity } > 75\%}{\text{# of MCParticles creating VXD sim-hits } \geq 6 \& \& \text{ SIT sim-hits } \geq 4}
\]

Note: SIT coverage $\cos \theta < 0.9$

track purity:

\[
\frac{\text{(# of the MCP's hits of track)}}{\text{(all hits of track)}}
\]

Sample: $t\bar{t}$ @ 350 GeV (without pairs), $|P| > 1$ GeV/c

Efficiency : $\sim 99\% \ @ \ cos \theta < 0.9$
FPCCD Track Finder: without / with pairs from 1 train (P_T)

Tracking Efficiency : $\eta \equiv$

\[
\frac{\text{# of tracks with VXD hits } \geq 5 \text{ && track purity } > 75\%}{\text{# of MCParticles creating VXD sim-hits } \geq 6 \text{ && SIT sim-hits } \geq 4}
\]

Note: P_{Tmin} to reach TPC
R_{in} : 0.4 GeV/c
R_{out} : 1.8 GeV/c

Sample: $t\bar{t}$ @ 350 GeV

![Graphs showing tracking efficiency vs. P_T for silicon and full tracks with and without pairs.]

Slightly degraded with pairs @ $P_T < 0.6$ GeV/c
FPCCD Track Finder: without / with pairs from 1 train (cosθ)

Tracking Efficiency : \(\eta \equiv \)

\[
\frac{\text{# of tracks with VXD hits } \geq 5 \text{ && track purity } > 75\%}{\text{# of MCParticles creating VXD sim-hits } \geq 6 \text{ && SIT sim-hits } \geq 4}
\]

Sample: ttbar @ 350 GeV, |P| > 1 GeV/c

Note: SIT coverage

\(\cos\theta < 0.9 \)

track purity:

\[
\frac{\text{(# of the MCP's hits of track)}}{\text{(# of all hits of track)}}
\]

Slightly degraded with pairs
CPU time and memory usage of FPCCD Track Finder

Sample: ttbar 350 GeV/c

- CPU Time
 - without pairs → almost same as ILD tracking
 - with pairs from 1 train → ~ 3 hours / evt
 - Process of track seed consumes CPU time dominantly
 Track seed : Extrapolation = 5 : 1

- Memory
 - with pairs from 1 train → ~ 3.5 GB / evt
 - note: ttbar @ 1 TeV + pairs from 1 train + current ILD Tracking + FPCCD → ~ 50 GB / evt
 - I didn’t check in the case of FPCCD Track Finder, but the situation would be similar
Flavor Tagging
Flavor Tagging

\[Z \rightarrow b\bar{b}, c\bar{c}, q\bar{q} \ (q : u, d, s) \]
@ 91.2 GeV/c (without pairs)

- **b-tag**: efficiency 2% Up @ purity 90%
- **c-tag**: efficiency 4% Up @ purity 70%

By using FPCCD, we can improve efficiency for \(ZHH \rightarrow b\bar{b}b\bar{b}b\bar{b} \)
Summary and Plan

Summary

- FPCCD Track Finder has been developed
 - Tracking Efficiency is ~ **99 % @** $P_T > 0.6 \text{ GeV/c}$ & $\cos \theta < 0.9$
 - **The First success** of tracking with pair background
 - Efficiency slightly degrades by pairs
 - FPCCD Track Finder improves flavor tagging performance
 - c-tag efficiency increases by **2.5 % @ purity 70 %**
 - Using FPCCD gives us **better flavor tagging performance than using current VXD in simulator**

Plan

- Further development of FPCCD Track Finder
- Evaluation of flavor tagging in the presence of pairs
- Check physics performance
Backup
About Digitizing Hits

- In this study, digitizer for FPCCD is used (FPCCDDigitizer, FPCCDClustering)

- Pixel hits are created by the digitizer which takes into account Landau distribution, threshold, path length, noise

- Pair background hits is also digitized by the digitizer
For ease,
We don’t consider SIT and FTD

We approximate VXD shape by cylinder
Track seeds are generated by combining 3 hits on each of the 3 layers in each area divided by 4.5° in the direction of Φ.
DBD Silicon Tracking

Track Seed

Extrapolation

Area for extrapolation: divided by 4.5° in the direction of Φ

Fitter: Simple Helix Fit

red dash-line: range of extrapolation
DBD Silicon Tracking

- Track Seed
- Extrapolation
- Combining tracks

If possible, we combine a track and another track.
DBD Silicon Tracking

Track Seed → Extrapolation → Combining tracks → Adding hits

If possible, we add remaining hits to tracks

VXD layers

Adding remaining hits
DBD Silicon Tracking

- Track Seed
- Extrapolation
- Combining tracks
- Adding hits
- Refit with Kalman Filter

VXD layers
If possible, we combine TPC tracks with silicon tracks, and then refit tracks with Kalman Filter.
Differences between DBD ver. and FPCCD ver.

- Track Seed
 - changed

- Extrapolation
 - changed

- Combining tracks

- Adding hits

- Refit with Kalman Filter

- Combining TPC tracks
FPCCD Track Finder

We calculate Φ width enough to generate track seeds with $P_T > 0.18$ GeV/c on the basis of a hit on the outer layer.

We generate a track seed from 3 hits within the calculated Φ width on each of the 3 layers.

- 3 layers for search (SIT: 8, 6, VXD: 5~0)

DBD version:

<table>
<thead>
<tr>
<th>DBD version</th>
<th>DBD version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 6 5 8 6 4 8 6 3 8 6 2</td>
<td>8 5 3 8 5 2 8 4 3 8 4 2</td>
</tr>
<tr>
<td>6 5 3 6 5 2 6 4 3 6 4 2</td>
<td>6 3 1 6 3 0 6 2 1 6 2 0</td>
</tr>
<tr>
<td>5 3 1 5 3 0 5 2 1 5 2 0</td>
<td>4 3 1 4 3 0 4 2 1 4 2 0</td>
</tr>
</tbody>
</table>

FPCCD version:

<table>
<thead>
<tr>
<th>FPCCD version</th>
<th>FPCCD version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 6 5 8 6 4 8 5 4 6 5 4</td>
<td>5 4 3</td>
</tr>
</tbody>
</table>

(FPCCCD version)
FPCCD Track Finder

(FPCCD version)
Fitter : Kalman Filter

Φ width for extrapolation : determined from track parameters from the fitter

Algorithm for matching hit clusters : optionally available : purity ↑
Algorithm for matching hit clusters

If there are many cluster hits in an area for extrapolation, we can reduce misextrapolations by using cluster shape.

1. We calculate inner dot between candidate cluster and a cluster on the neighbor layer.
2. If the dot is < 0.4, the candidate cluster is excluded from the candidates.
Flavor Tagging (b-tag Misidentification Rate)

b-tag misidentification rate: slightly improved
Flavor Tagging (c-tag Misidentification Rate)

- **blue**: b-jet mis-ID
- **green**: q-jet mis-ID
- **solid line**: CMOS + DBD Track Finder
- **dot-dot line**: CMOS + FPCCD Track Finder
- **dash-dot line**: FPCCD + FPCCD Track Finder

c-tag misidentification rate: improved