20min トーク 5min 質問

$B\to K\pi\pi\gamma$ での A_{UD}

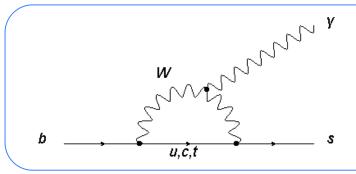
~ Flavor Physics Workshop 2013~

小野 善将 (Yoshimasa Ono) 東北大学D2

話す内容

- 物理解析のモチベーション (P.3~)
- 簡単にBelle紹介(P.6~)
- 研究の流れ (P.8~)
- signal選択(P.9~)
- Background抑制(P.17~)
- まとめ (P.25)

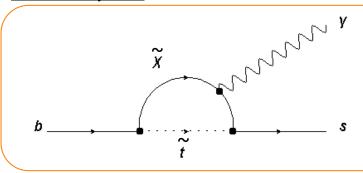
b->sγ / γ 偏極



b->sγ_{pol}

A_{UD} of B->Κππγ

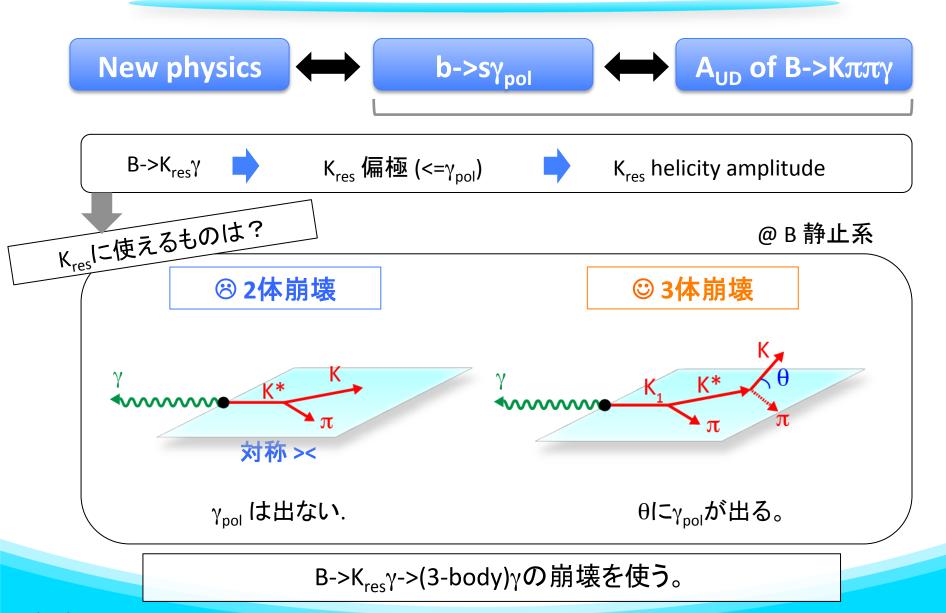
Standard Model


Wは左巻きクォークと結合

しかし~ (m_s/m_b)程度のright-handed が入り込める。

{SM} ほぼ b->syL

New Physics


新物理の粒子には、右巻きクォークと 結合できるものアリ。

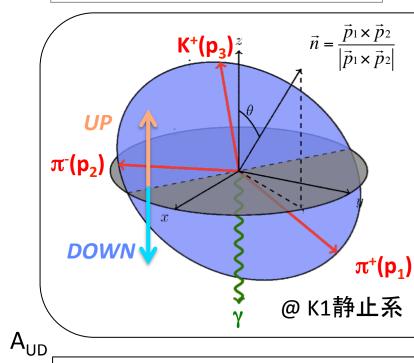
{NP} b->sγ_Rが入れる

b->sy におけるγ偏極で、New physicsを探索できる。

偏極の測定方法

B->K₁γ->KππγでのA_{UD}

New physics



b->sγ_{pol}

A_{UD} of B->Kππγ

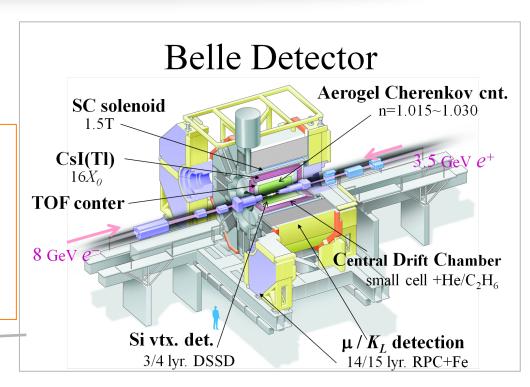
$$K_{res} = K_1(1270), K_1(1400)$$

崩壊形状

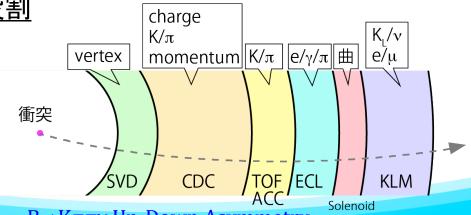
$$\frac{d\Gamma}{ds_{13}ds_{23}d\cos\theta} \propto \frac{1}{4} \left| \vec{J} \right|^2 \left(1 + \cos^2\theta \right) + \lambda_{\gamma} \frac{1}{2} \operatorname{Im} \left\{ \vec{n} \cdot \left(\vec{J} \times \vec{J}^* \right) \right\} \cos\theta$$

上下非対称性: A_{UD}

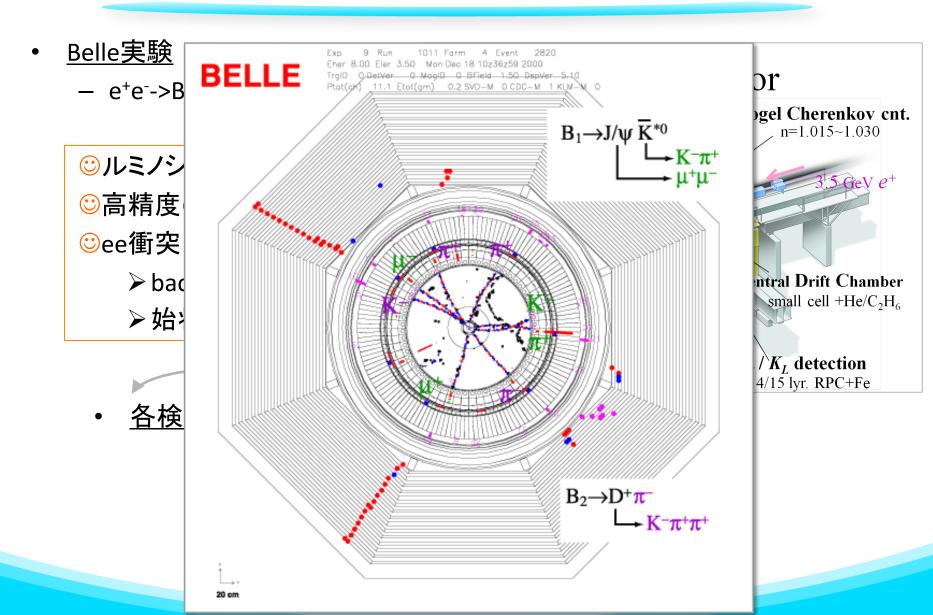
$$A_{UD} = \frac{3}{4} \frac{\left\langle \operatorname{Im} \left(\vec{n} \cdot \left(\vec{J} \times \vec{J}^{*} \right) \right) \right\rangle}{\left\langle \left| \vec{J} \right|^{2} \right\rangle} \lambda_{\gamma}$$


J:K1崩壊のhelicity amplitude

λ,:γ偏極


- ・ γ偏極に依存する。
- K1崩壊過程のK*/ρ 共鳴の干渉から発生する。

簡単なBelleの紹介


- Belle実験
 - e⁺e⁻->BB~を大量に生成
 - **じルミノシティ高い⇒高統計**
 - ◎高精度の粒子識別能力
 - ○ee衝突
 - ➤ background少なめ
 - ▶ 始状態エネルギー

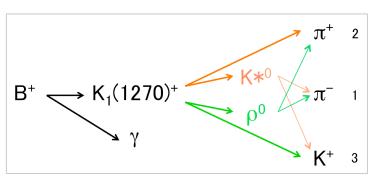
• 各検出器の役割

簡単なBelleの紹介

研究の進め方

- 1. B->KππγはBelleで、どう見えるか? ⇒ Monte Carlo
- 2. Dataに合わせると、こういう結果γ偏極がでる ⇒ 終了!!

signal抽出


signal MC -> 粒子選択

• generator => 以下のカットかけて、Κππγを再構成。

generator

この資料では $K^+\pi^+\pi^-\gamma$ のモードだけ。

decay	B ⁺ ->K ₁ (1270) ⁺ γ->K ⁺ π ⁻ γ
K1 shape	Breit-wigner (Γ=90MeV)
γ pol.	right-handed
phases	no phase

カット&再構成

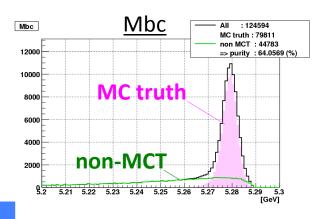
荷電K/π

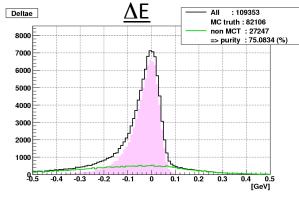
K	π
dp <0.5cm	ı, dz <5cm
p _{CM} >2	200MeV
PID(K/π)>0.6	PID(π/K)>0.4
PID(e/K)<0.9	PID(e/π)<0.9
PID(μ/K)<0.9	PID(μ/π)<0.9

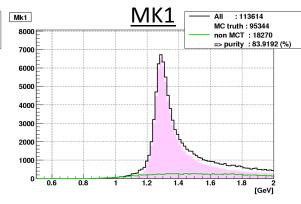
光子γ

γ
1.4GeV < E _γ < 3.4GeV
E(9/25) > 0.95
$33^{\circ} < \theta_{\gamma} < 128^{\circ}$: Barrel
π^{0} prob. < 0.1
η prob. < 0.2

signal選択


13/11/25


non-MC truthイベント??


signal box

- $-0.2 < \Delta E < 0.1$
- Mbc > 5.27
- •Mk1 < 2.0

• Bを再構成+non-MC truthの原因を探る。

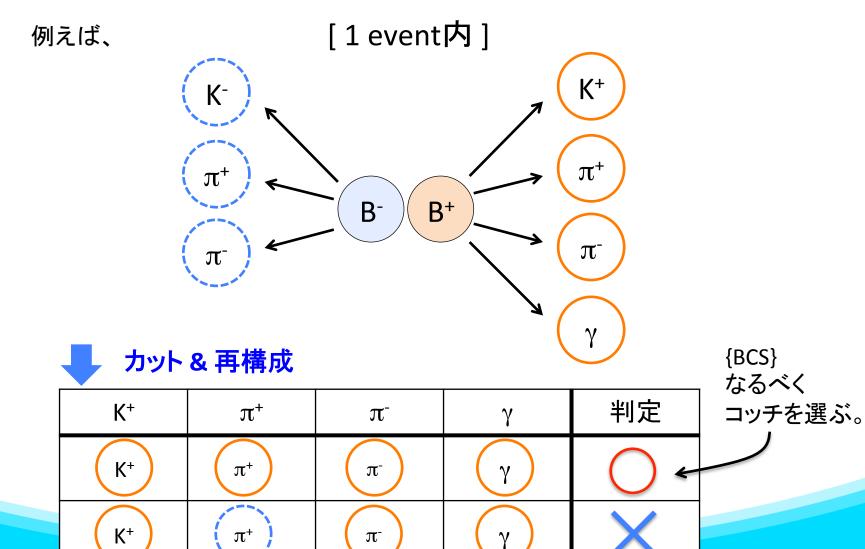
non-MC truth & signal BOXの粒子情報

Nrank	K	π1	π2	r	Contribution[%]([events])
0	K+	pi-	pi+	gamma	90.6068% (12723)
1	pi+	pi-	K+	gamma	2.92693% (411)
2	K+	pi-	mu+	gamma	1.79462% (252)
3	K+	mu-	pi+	gamma	1.02549% (144)
4	pi+	pi-	pi+	gamma	0.769121% (108)
					Mrank

performance in signal box

purity: 84.78 %

efficiency: 15.65 %

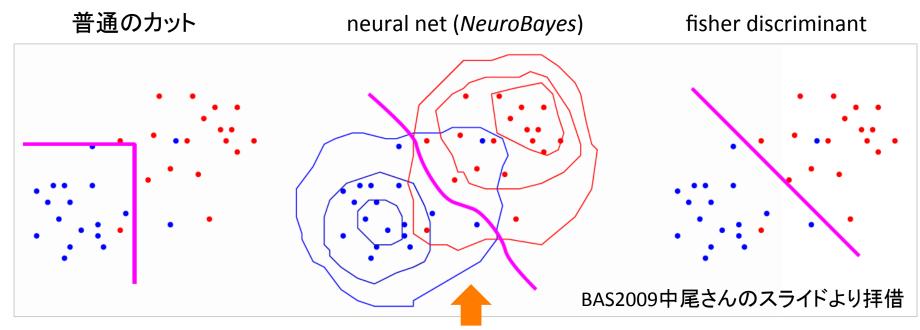

各粒子の親Bは?

Non-MC truthイベントは1π crossfeed(~90%)で起こっている。 Best candidate selectionが重要。

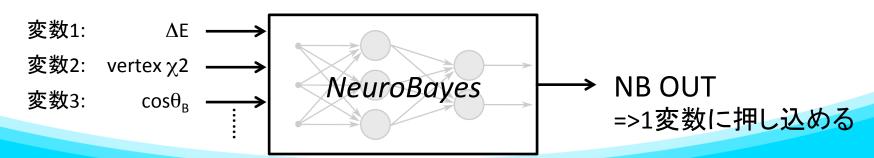
Κ Contribution[%]([events]) π 1 $\pi 2$ Nrank opposite signal 48.2984% (6145) signal signal opposite signal 43.5589% (5542) signal signal 6.21709% (791) signal opposite opposite signal 1.53266% (195) opposite signal signal signal 11 opposite opposite signal 0.275092% (35) signal

Best Candidate Selection??

同じイベント内に複数の候補存在 ⇒ 1つにしぼる。



[方法] best candidate selection


- 再構成できた候補には、同じイベント内のもの⇒Best candidate selection
 - 1. △E=0 :B中間子に最も近い
 - 2. NeuroBayes ??

NeuroBayes??

• <u>効率良い信号抽出方法を特定(トレーニング)⇒ 適用</u>

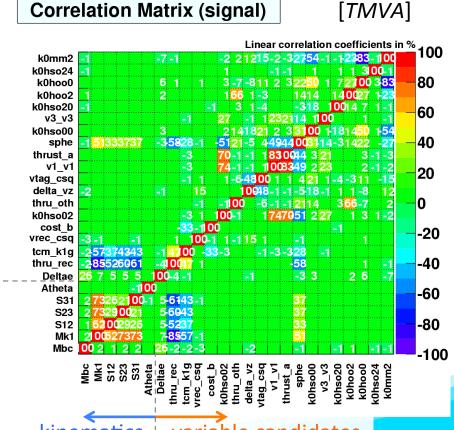
多変数を考慮した効率的なカット/選択ができる。

[方法] best candidate selection

- 再構成できた候補には、同じイベント内のもの⇒Best candidate selection
 - 1. $\Delta E=0$
 - 2. NeuroBayes -

崩壊点の位置情報も使うと精度あがるのでは?

NeuroBayes入力変数決め

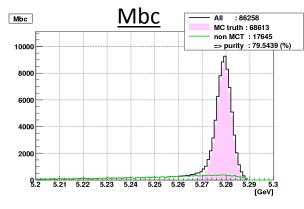

手順

- 1.全ての出力変数の χ² ランク作る。
- 2. kinematics (Mbc/Mk1...)との相関調べる。
- 3. 相関強い変数を除く
- 4. トレーニング+パフォーマンスcheck

使えそうな変数例

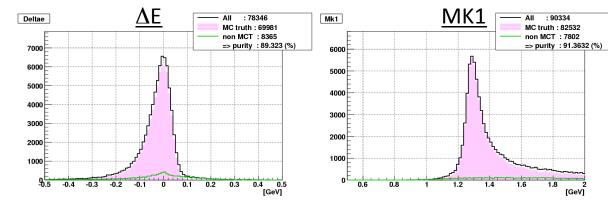
- 1. ΔE
- 2. B候補の崩壊点χ²
- 3. $\cos\theta_{\rm B}$

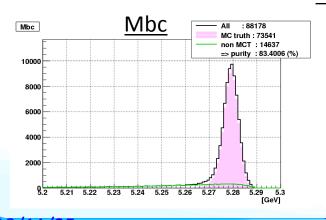
上位9変数を使用する。



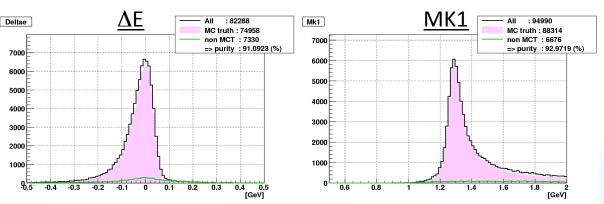
[結果] best candidate selection

• NeuroBayes を使用することに決定。


※BCS前 purity: 84.78%



purity: 92.06 %

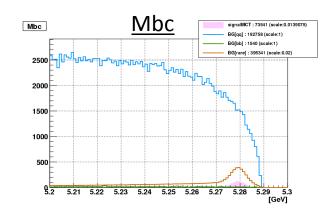


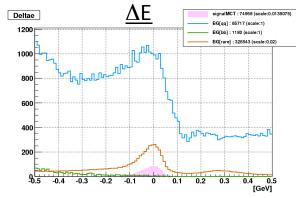
[BCS#2] NeuroBayes

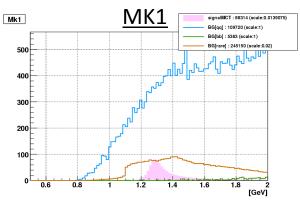
purity: 93.52 %

BG抑制

BGを重ねる


• <u>3種類のBGを使用</u>


– qq : radbskim

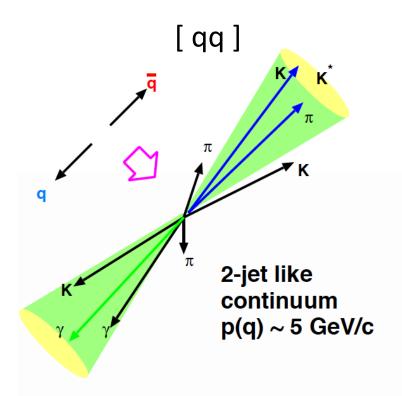

– bb : radbskim

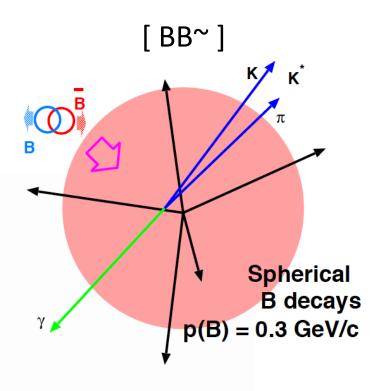
- rare : rare-MC

NeuroBayes BCSを適用 signal MCと重ねる Belle実験1回分の統計

qqが台頭><; => qq抑制をする performance in signal BOX

significance:


$$significance = \frac{N_{sig}}{\sqrt{N_{sig} + N_{bg}}}$$


5.692

ksfw

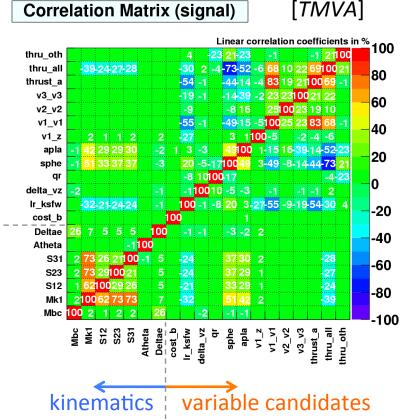
• BB~ / qq でのevent形状の違い ⇒ fisher discriminant ⇒ likelihood ratio

BAS2009中尾さんのスライドより拝借

変数例: Reduced Fox-Wolfram moment

$$R_2 = \frac{H_2}{H_0} = \frac{\sum_{i,j} |p_i| |p_j| P_2(\cos \theta_{ij})}{\sum_{i,j} |p_i| |p_j|}, \quad P_2(x) = \frac{1}{2} (3x^2 - 1)$$
 [qq] R₂ ~ 1 [BB] R₂ ~ 0

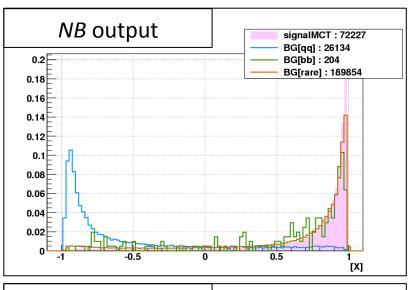
[方法] qq抑制 = ksfw & NeuroBayes

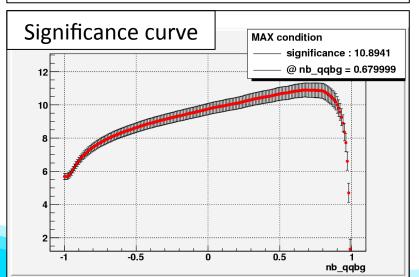

• qq抑制⇒ NeuroBayes を適用。ksfw likelihood ratioをinput変数にする。

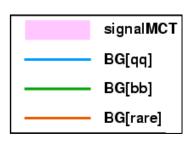
NeuroBayes 入力変数

- 1. ksfw likelihood ratio
- 2. $\cos\theta_{\rm B}$
- 3. BB~間の崩壊点距離
- 4. flavor tagの質
- 5. 9 event形状変数
 - ・ sphericity, thrustなど。

内3変数がkinematicsと強い相関を持っている ⇒除外。


10変数をNBの入力に使用。

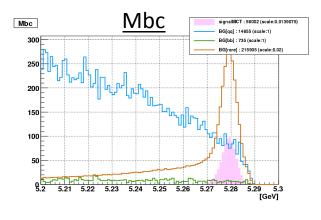


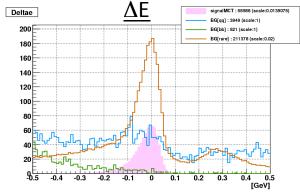

significanceを最大化する

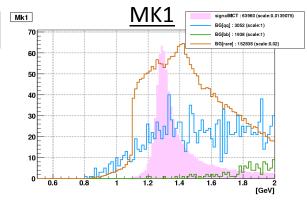
significanceを最大化するカットを決める。

signalとqqキレイに両端へ分離。

NB出力のカットをスイープして、 significanceが最大になる点を探す。


significance: 10.89


@ nb_qqbg : > 0.68

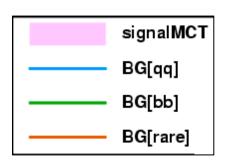

[結果] qq抑制

• NB カット (> +0.68)をかけると。。。

NeuroBayes BCS適用後

signal box

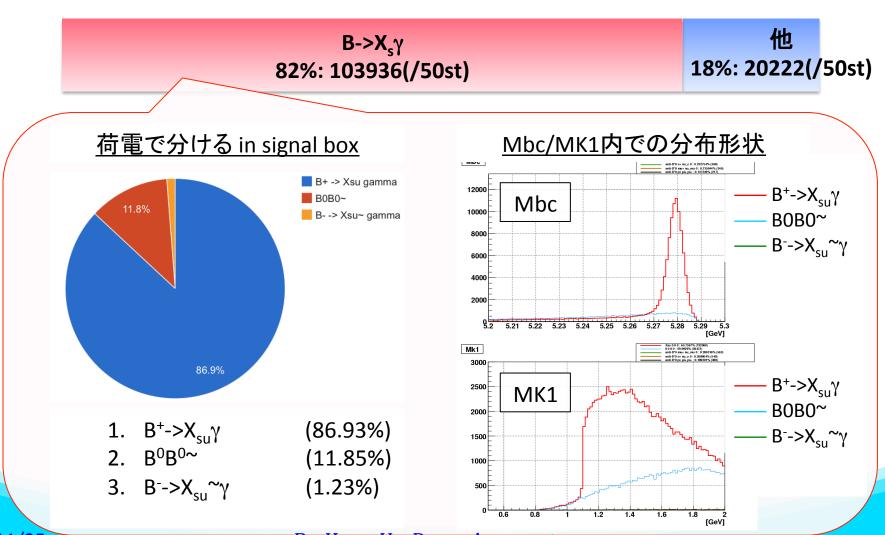
- $-0.2 < \Delta E < 0.1$
- Mbc > 5.27
- -Mk1 < 2.0


performance in signal BOX

nbqq cut : > 0.68

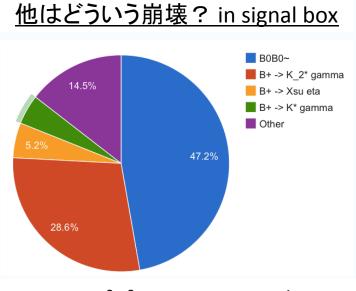
significance: 10.89

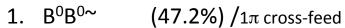
purity: 94.64 (%)


efficiency: 11.00 (%)

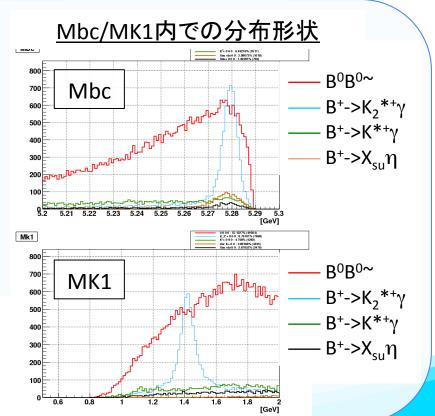
- ◎ qq成分がうまく抑え込まれている。
- ⊗ しかし、rare-MCが残っている。

rare MC の中身


• rare-MCの中身を探る⇒B->X_sγイベントかどうかで分ける。



rare MC の中身


• rare-MCの中身を探る⇒B->X_sγイベントかどうかで分ける。

B->X_sγ 他 82%: 103936(/50st) 18%: 20222(/50st)

- 2. $B^+->K_2^*+\gamma$ (28.6%)/ $K_2^*->K\pi\pi\gamma$
- 3. $B^+->X_{SII}$ η (5.23%) $/X_{SII}$ η->Κππγ
- 4. $B^+ > K^* + \gamma$ (4.42%) $/2\pi$ cross-feed

まとめ & 予定

まとめ

- B->KππγにおけるA_{UD}から新物理を探る。
- Κππγの選択⇒BCS⇒qq 抑制⇒rareMCの中身確認まで終了。
- 次はMbc/Mk1 fitで、signal成分を分離していく。

• <u>予定</u>

- 次はMbc/Mk1 fitで、signal成分を分離していく。
- もう一方のK1(1400)でも試す+他の荷電の組み合わせも やる。

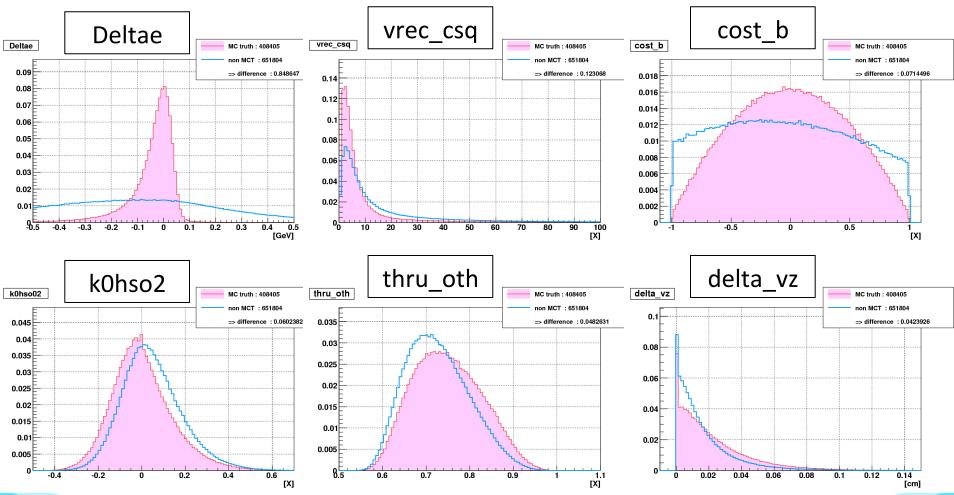
- 過去のK1研究
- NB BCS 変数
- NB qq 変数
- rare MC 元
- 変数

BACKUP

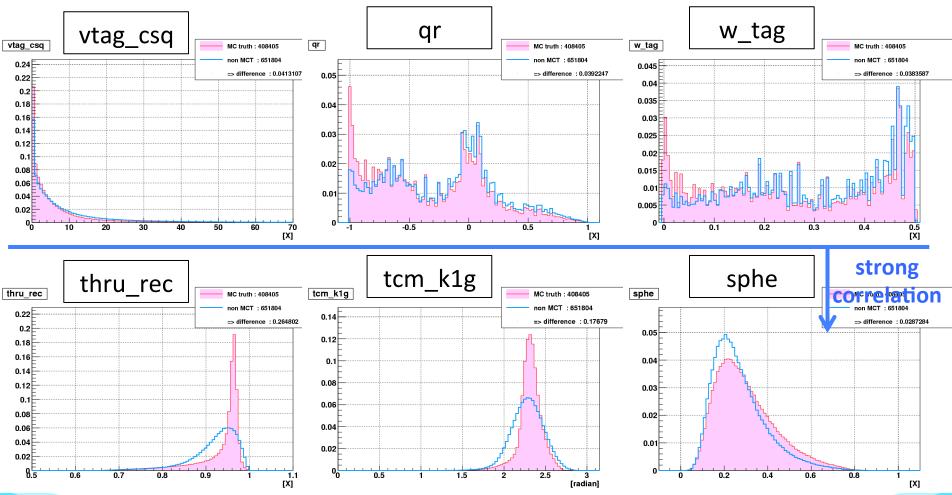
過去のK1 study

- [Belle] (2002) B-> Kπγ and Kππγ, S. Nishida
- [Belle] (2005) B->K1(1270)+γ, Heyong Yang
- [Belle] (2011) B->J/ ϕ K1, H. Guler
- [BABAR] (2008) B->Kππγ, B.Aubert
- [ACCMOR] (1981) pK -> pKππ, C.Daum
- [BES-II] (2006) J/ ϕ -> K*K π , M. Ablinkim
- [COMPASS] (2012) pK -> pKππ, P.Jasinski {D-thesis}

NB BCS 変数


• NB BCSに使用した変数達。

	変数名	意味	χ^2
1	Deltae	ΔΕ	0.8486
2	vrec_csq	再構成したB候補のχ²	0.1231
3	cost_b	$\cos \theta_{\mathtt{B}}$	0.07145
4	k0hso02	ksfw の変数	0.06024
5	thru_oth	B候補を除いたthrust	0.04826
6	delta_vz	BB~ の崩壊点の距離	0.04239
7	vtag_csq	反対側のB候補のχ²	0.04131
8	qr	flavor tagの質	0.03922
9	w_tag	flavor tagの間違え率	0.03836

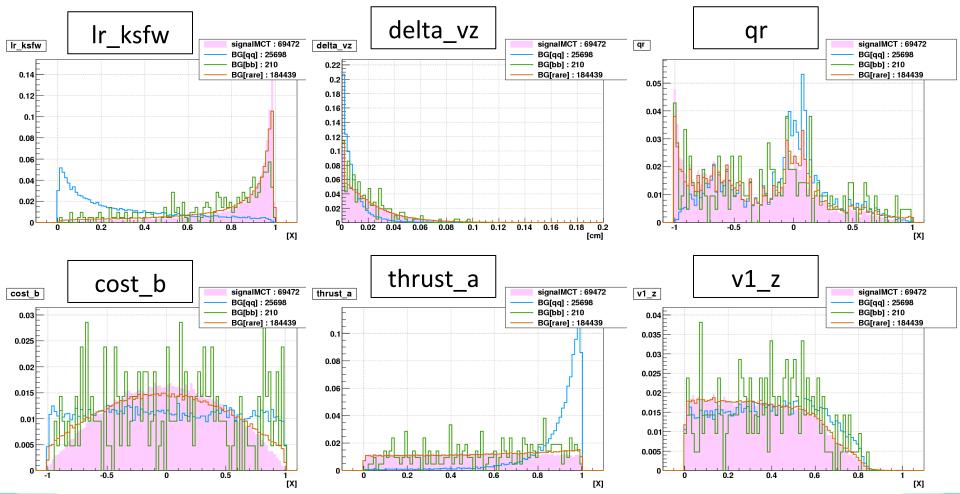

kinematics と強い相関 アリ⇒除外

Х	thru_rec	再構成したB候補のthrust	0.2648
Х	tcm_k1g	K1とγ間の角度@CM系	0.1768
х	sphe	spherisity	0.02873

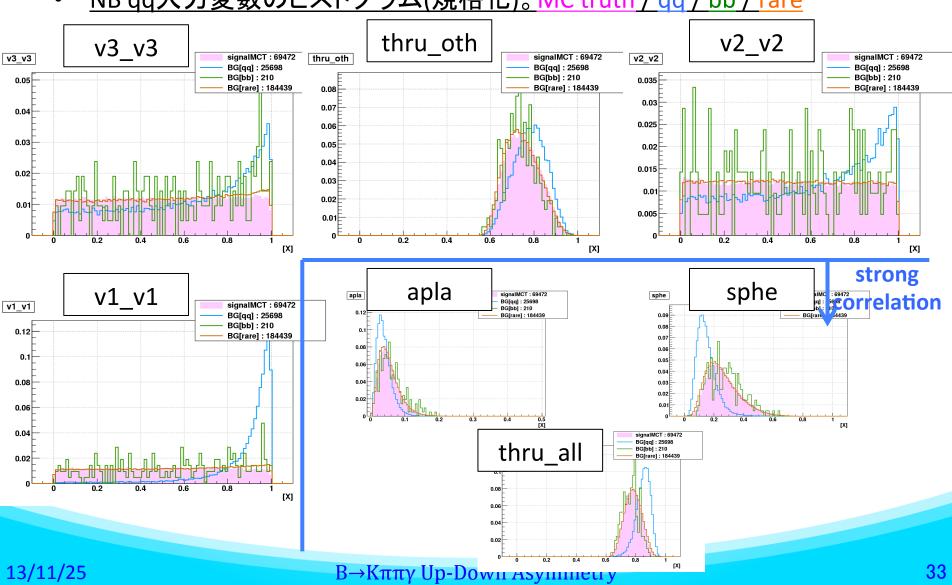
• NB BCS入力変数のヒストグラム(規格化)。 MC truth / non-MC truth

• NB BCS入力変数のヒストグラム(規格化)。 MC truth / non-MC truth

NB qq 変数

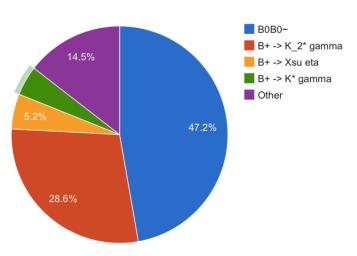

NB qqに使用した変数達。

	name	meaning
1	lr_ksfw	ksfw likelihood ratio
2	delta_vz	BB~ 崩壊点の距離
3	qr	tag の質
4	cost_b	$cos\theta_\mathtt{B}$
5	thrust_a	cos(thrust angle)
6	v1_z	sphericity変数
7	v3_v3	sphericityg変数
8	thru_oth	B候補の粒子以外のthrust
9	v2_v2	sphericity
10	v1_v1	sphericity


kinematics と強い相関 アリ⇒除外

Х	thru_all	イベント内全粒子のthrust
Х	apla	aplanarity
Х	sphe	spherisity

• NB qq入力変数のヒストグラム(規格化)。MC truth / qq / bb / rare


• NB qq入力変数のヒストグラム(規格化)。MC truth / qq / bb / rare

rare MC 元

• B->X,γでないrare-MCが、どのように形成されているか?を探る。

contributions in signal box

- 1. $B^0B^{0\sim}$ (47.2%) $/1\pi$ cross-feed
- 2. $B^+->K_2^*+\gamma$ (28.6%) / $K_2^*->K\pi\pi\gamma$
- 3. $B^+->X_{su}η$ (5.23%) $/X_{su}η->Kππγ$
- 4. $B^+->K^*+\gamma$ (4.42%) $/2\pi$ cross-feed

<u>Kππγ parent B in each BG.</u>

Nrank	K	π1	π2	r	Contribution[%]([events])
0	B ⁰	B ⁰	B ⁰	B ⁰	60.7477% (4940)
1	B ⁰	B ⁰	B^0	B ⁰	18.667% (1518)
2	B ⁰	B ⁰	B ⁰	B ⁰	10.8829% (885)
3	B ⁰	B ⁰	<mark>B</mark> ⁰	<mark>B</mark> ⁰	5.04181% (410)
4	<mark>B</mark> ⁰	B ⁰	B ⁰	B ⁰	1.83227% (149)

2.	$B^+ -> K_2^* + \gamma$	V
	2	ı

1. B⁰B⁰∼

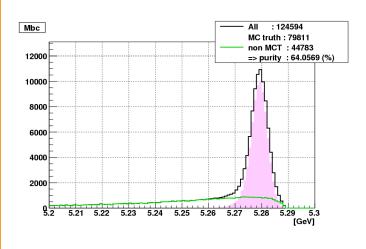
Nrank	K	π1	π2	r	Contribution[%]([events])
0	B ⁺	B ⁺	B ⁺	B ⁺	91.9866% (5200)
1	B ⁺	B ⁺	B ⁻	B ⁺	3.36105% (190)
2	B ⁺	B ⁻	B ⁺	B ⁺	3.02494% (171)
3	B ⁺	B ⁻	B ⁻	B ⁺	1.3798% (78)
4	B ⁻	B ⁺	B ⁺	B ⁺	0.159208% (9)

3	$R^+->X$
Э.	$B^+->X_{su}\eta$

Nrank	K	π1	π2	r	Contribution[%]([events])
0	B ⁺	B ⁺	B ⁺	B ⁺	85.0386% (881)
1	B ⁺	B ⁻	B ⁺	B ⁺	6.85328% (71)
2	B ⁺	B ⁺	B ⁻	B ⁺	5.01931% (52)
3	B ⁺	B ⁻	B ⁻	B ⁺	2.41313% (25)
4	B ⁻	B ⁺	B ⁺	B ⁺	0.579151% (6)

AE Mbc

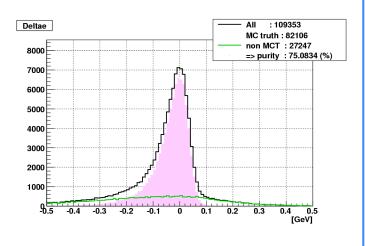
• ビームエネルギーのブレを考慮したBのenergyと質量。


再構成したBの運動量: (E_B, p_B)

@CM系

ビームエネルギー: E_{beam}

Mbc


$$Mbc = \sqrt{E_{beam}^2 - |p_B|^2}$$

Bの質量:5.28GeVに近づく

 ΔE

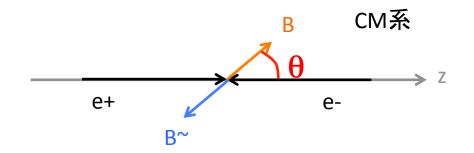
$$\Delta E = E_B - E_{beam}$$

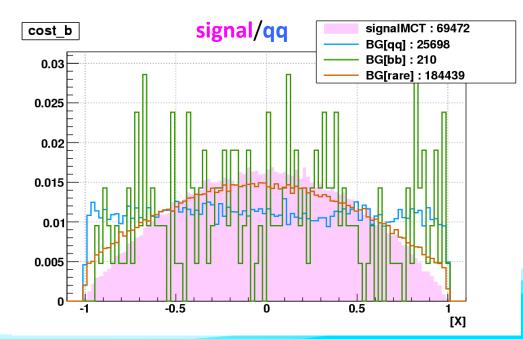
エネルギーずれ: OGeVに近づく

独立

変数

$\cos\theta_{B}$


cosθ_B: ビーム軸(z)に対するBの放出角@CM系



$$d_{1,0}^1 = -\frac{\sin\theta}{\sqrt{2}}$$

$$PDF \propto \left| d_{1,0}^1 \right|^2 \propto 1 - \cos^2 \theta$$

