Recoil Mass Study using Z→I⁺I⁻ at 250 GeV at ILC

Shun Watanuki^A H.Yamamoto^A, A.Ishikawa^A, J.Strube^A, T.Suehara^B, K.Fujii^C (A : Tohoku University, B : Kyushu University, C : KEK)

Target

One of the advantages of the ILC is model independent(MI) analysis of Higgs properties by recoil method.

How precise can we measure Higgs mass and cross ection by this method? The considered situation is ...

Higgs mass	Center of	Integrated	Spin	Detector
	Mass Energy	Luminosity	Polarization	Simulation
125 [GeV]	250 [GeV]	250 fb ⁻¹	P(e ⁻ , e ⁺) =(-0.8, +0.3)	ILD_01_v05 (DBD ver.)

Using only Zh -> IIh (I= μ , or e) signal event.

What's the Recoil Method?

ILC is a lepton collider

= We already know initial state 4 momentum

Signal and Background Events

Dominant Background is "μμ", "μμνν", "μμff" events, and other BG is rejected significantly.
" f " means fermion except neutrino.

Lepton Selection

Muon (and electron) selection

- Momentum p > 15 [GeV]
- Small (Large) energy deposited in caloriemeters
 - E_{ecal} / E_{total} < 0.5 (> 0.6)
 - $E_{total} / p_{track} < 0.3 (> 0.9)$

Good track selection

 Track with small error (different selections between polar angle of tracks, barrel or end cap) dp / p² < 2.5 x 10⁻⁵ ⊕ 8 x 10⁻⁴ / p (for cosθ < 0.78) dp / p² < 5 x 10⁻⁴ (for cosθ > 0.78)

Impact parameter (only for muon)

To suppress muons from tau decays which tend to have large impact parameters. $D_0 / dD_0 < 5$

dp / p²

Bremsstrahlung Recovery

θ

Only for eeh channel cross section measurements, the photon's momentum final state e around final state electron ($\cos\theta > 0.999$) is added to the electron.

This process contributes to the distribution of recoil mass significantly.

For mass analysis, it is effective not to perform the recovery.

Background Rejection

di-lepton events

Background Rejection

di-lepton events

di-lepton events

Background Rejection

Background Rejection

di-lepton events

Background Rejection

δPT_{bal}∉(-10, 10)[GeV]

 δP_{Tbal} : balance between PT_{dl} and PT of high energy photon (ISR).

Bias Suppression (for δP_{Tbal})

In δP_{Tbal} selection, we look at other particles (photon) besides di-lepton :

 $\delta \mathsf{P}_{\mathsf{Tbal}} \equiv \mathsf{PT}_{\mathsf{dl}} - \mathsf{PT}_{\gamma}$

So there is bias for some Higgs decay mode ($h \rightarrow \tau \tau$ mode).

Bias Suppression (for δP_{Tbal})

We can suppress this bias using Energy of photon and invariant mass of each photon pair.

Bias Suppression (for δP_{Tbal})

In new calculation of δP_{Tbal} , bias will decrease.

di-lepton events

Background Rejection

Efficiency

μμh channel 250 fb⁻¹

l = μ, τ	μμ h	II	$ _{VV}$	IIff
No Cut	2603	~5.5M	539514	788002
After	1436 (55.2%)	707 (0.01%)	2418 (0.45%)	2091 (0.27%)

eeh channel

l = e, τ	eeh		llvv	llff
No cut	2729	~11M	661637	854375
After	1062 (38.9%)	1774 (0.07%)	3039 (1.59%)	1483 (0.50%)

X Other events will be rejected and will not affect results significantly.

Fitting Method

- Signal yields and Higgs mass are extracted by fitting to recoil mass distributions.
- Fitting function
 - signal → Gaussian Peak with Exponential Tail :

$$\begin{cases} Ne^{-\frac{1}{2}\left(\frac{x-\bar{x}}{\sigma}\right)^2} \left(\frac{x-\bar{x}}{\sigma} < k\right) \\ N\left\{be^{-\frac{1}{2}\left(\frac{x-\bar{x}}{\sigma}\right)^2} + (1-b)e^{-k\frac{x-\bar{x}}{\sigma}}e^{\frac{b^2}{2}}\right\} \left(\frac{x-\bar{x}}{\sigma} \ge k\right) \end{cases}$$

• $BG \rightarrow 3^{rd}$ order polynomial :

 $1 + C_1 x + C_2 x^2 + C_3 x^3$

Fitting Method

Procedure

- Fit recoil mass distribution using GPET + 3rd order polynomial PDF.
- Make Poisson random events around this PDF (toy-MC), and fit this toy-MC using same function fixing some parameters (namely, fix function shape).
- Estimate statistical error of cross section and mass from signal yields and mean parameters.

	GPET (signal)			3 rd order	r poly. (E	3G)	Yields	
	mean	width	k	b	p1	p2	р3	Y _{sig}	Y _{BG}
First Fit	float	float	float	float	float	float	float	float	float
toy-MC	float	fix	fix	fix	fix	fix	fix	float	float

il is a standary, b : junction is a standary in the standary in the standary is a standary in the standary in the standary is a standary in the standary in the standary in the standary is a standary in the standary in the standary in the standary is a standary in the sta

Fitting Results and Error Estimation

eeh

μμh

	μμh	eeh	combined
cross section	4.0%	5.9%	3.3%
mass	34 [MeV]	158 [MeV]	33 [MeV]

Bias of Signal Selection

H decay mode	μμ <mark>h efficiency</mark>	eeh efficiency
bb	55.48 ± 0.16	39.14 ± 0.63
WW	55.57 ± 0.21	38.67 ± 0.99
gluglu	55.25 ± 0.25	38.82 ± 1.63
ττ	54.66 ± 0.26	37.85 ± 1.91
CC	55.77 ± 0.28	39.43 ± 2.74
ZZ	55.65 ± 0.28	39.39 ± 3.13

h $\rightarrow \tau \tau$ mode will be rejected more because of δPT_{bal} cut.

 However, difference from other major modes such as bb or WW is ~1%, which is smaller than statistical error (3.3%) of measurement of cross section.

Additional Analysis

Semi Model-Independent Analysis

Ι=μ, τ	μμh			llvv		IIff	
After	1436	large number of	2	2418	0.45%	2091	0.27%
l = e, τ	eeh	remaining Ilvv BG		$\ \nu\nu$		llff	
				· ·			

Since contribution from Higgs invisible decays can be calibrated with data, visible energy selection is effective for reducing these BG.

$$\square E_{vis} := E_{PFOs} - E_{di-lepton} > 5 [GeV]$$

Loose selection is applied to avoid bias in signal selection.

ν

Results of Loose E_{visible} Selection

µµh channel **Ι =** μ, τ μμh llff $\|\nu\nu\|$ ∼ M_{recoil} 1853 3965 1638 5687 1852 1638 3965 E_{visible} 1823 2139 1451 715 779 f eeh channel I = e, τ $|\nu v$ llff eeh ∼ M_{recoil} 10543 4232 1565 7298 4232 Evisible 1564 7298 3712 1483 1061 1000 f_l 1774 combined μμh eeh 3.8% 5.6% 3.1% cross section 32 [MeV] 130 [MeV] 31 [MeV] mass

Efficiency of E_{visible}

H decay mode	μμh (E _{vis} eff.)	After all cut	eeh (E _{vis} eff.)	After all cut
bb	100%	66.31%	98.68%	39.14%
WW	100%	66.00%	98.31%	38.67%
gluglu	100%	65.40%	98.67%	38.82%
ττ	99.94%	65.66%	98.43%	37.82%
CC	100%	66.32%	98.25%	39.43%
ZZ	96.64%	63.98%	94.84%	37.90%

Bias as expected from SM.

Summary

The recoil mass technique is important feature at the ILC to measure Higgs mass and cross section of Zh event. The measurement errors are ...

Float BG yields of toy-MC fitting eeh combined μμh Μ cross section 4.0% 5.9% 3.3% 34 [MeV] 158[MeV] 33 [MeV] mass [MeV] semi Mi cross section 3.8% 5.6% 3.1% 31 [MeV] 32 [MeV] 130[MeV] mass [MeV]

Summary

The recoil mass technique is important feature at the ILC to measure Higgs mass and cross section of Zh event. The measurement errors are ...

	Float BG yields of toy-MC fitting					
Ħ			μμh	eeh	combined	
	M	cross section	4011	5.9%	3.3%	
		mass [MeV]	34 [MeV.]	FRIMeV]	33 [MeV]	
	sen	cross section	3.8%	5.64 an	3.1%	
	hi MI	mass [MeV]	32 [MeV]	130[MeV]	31 [MeV]	

Next Plan

- If possible, we can estimate signal or BG shape :
- BG estimation
 From sideband of some selection, such as M_{dl}.
 - This may be difficult because BG distribution will be changed by some selections.

 $\overline{}$

signal estimation
 From Z-pole of ZZ BG distribution

 \sim

detect

.. And fix some fitting parameters.