The precise measurement of Higgs mass and cross section by recoil method

Shun Watanuki^A

H.Yamamoto^A, A.Ishikawa^A, J.Strube^A, T.Suehara^B, K.Fujii

(A: Tohoku University, B: Kyushu University, C: KEK)

Target

One of the advantages of the ILC is model independent (MI) analysis of Higgs properties by recoil method.

• How precise can we measure Higgs <u>mass</u> and <u>cross section</u> by this method? The considered situations are ...

Production Mode	Higgs mass (GeV)	E _{CM} (GeV)	Integrated Luminosity	Spin Polarization	Detector Simulation
e ⁺ e ⁻ ->Zh-> μμh, eeh	125	250	250 fb ⁻¹	$P(e^-, e^+)$ = $(\mp 0.8, \pm 0.3)$	ILD_01_v05 (DBD ver.)

• Using only Zh->llh ($l=\mu$, or e) signal event.

What's the Recoil Method?

- ILC is a **lepton collider**
 - = We already know initial state 4 momentum

Aim for Higgs σ measurement

Directly

Recoil method

It depends on the model of Higgs decay

We can measure Higgs model independently

Keywords of the Study

1. Model independent analysis

This means unbiased selections should be used
 The bias of signal efficiency for each major Higgs decay must be suppressed at least within uncertainty of σ measurement

2. Precise measurement

- Maximize precision while staying model independent
- Comparison between different polarization cases

3. Mass template method

This method is tried in order to estimate Higgs mass ignoring systematic uncertainty

Signal and Background Events

- These are μμh channel signal & BGs.
- For eeh channel study, character of "μ" and "ν" are altered appropriately.

Dominant Background is "μμ", "μμνν", "μμff" events, and other
 BG is rejected significantly.

Lepton Selection

- Muon (electron) selection
 - based on deposited energy in calorimeter
- Good track selection
 - based on error in forward / barrel
- Impact parameter (only for muon)
 - To suppress muons from tau decays
- Bremsstrahlung recovery (only for electron)
 - Photons emitted from electron are recovered.

Bremsstrahlung Recovery

- Only for eeh channel, momentum of photon around final state electron is added to the electron.
 - $-\cos\theta > 0.9995$
 - $-\cos\theta > 0.999 \&\& E_{photon}/E_{electron} > 0.03$
 - not split photon
- This process contributes to the distribution of recoil mass significantly.

X For mass analysis, it is effective not to perform the recovery.

2014/10/07

Left Handed Case

μμh	signal	11	llvv	llff	others
No Cut	2603	3.2M	507166	390041	7.1M
After Cut	1386	322	1479	1054	3
eeh	signal	11	llvv	llff	others
eeh No Cut	signal 2729	11 7.8M	11vv 520624	11ff 404279	others 2.5M

Right Handed Case

μμh	signal	11	llvv	llff	others
No Cut	1756	2.6M	51768	330876	6.3M
After Cut	1113	287	323	650	3
eeh	signal	11	llvv	llff	others
No Cut	1011	7.3M	52853	358595	1.5M
100 Cut	1844	/.3IVI	32633	330393	1.3101

BG with neutrino is suppressed significantly

BG Rejection

Unbiased Selection

Signal efficiencies should be same for each Higgs decay modes, but h->ττ mode tends to have a bias

$$\delta P_{Tbal}$$

- $\delta P_{Tbal} = P_{Tdl} P_{T photon} \notin (-10, 10)$
- h->ττ has long tail

2014/10/07

 $cos\theta_{missing}$

- $\cos\theta$ of all PFOs < 0.99
- h->ττ has uniform distribution

10

Bias Suppression (for δP_{Tbal})

 We can suppress this bias using Energy of photon and invariant mass of each photon pair.

In h $\rightarrow \tau \tau$, there is a peak at $m_{2\gamma} \sim m_{\pi}$

2014/10/07

condition of used y

 $m_{2y} > 0.2 \text{ [GeV]}$

or $E_{\nu} > 60 \text{ [GeV]}$

Shun Watanuki LCWS14@Belgrade, Serbia

Bias Suppression (for δP_{Tbal})

Comparison	efficiency of dPT _{bal} cut					
old & new	bb	ττ	cc	z_1 (BG)		
Simple calc.	99.4%	95.3%	99.0%	14.5%		
My calc.	99.8%	97.8%	99.6%	22.2%		

• In new calculation of δP_{Tbal} , bias will decrease.

Bias Suppression (for cosθ_{missing})

- cosθ of Z boson as additional variable is useful to suppress the bias.
 - $|\cos\theta_{\text{missing}}| < 0.99$
 - or $|\cos\theta_{\rm Z boson}| < 0.8$
- Using these additional condition, efficiency of BG rejection is sacrificed, but it can avoid the bias.

← Previous

← New

2014/10/07

 $\cos\theta_{\text{miss}} < 0.99$

or $|\cos\theta| < 0.8$

99.3%

Shun Watanuki LCWS14@Belgrade, Serbia

99.1%

99.8%

74.6%

Signal Efficiency

• After that, bias of signal efficiency for Higgs decay is eliminated.

H decay mode	μμh efficiency [%]	eeh efficiency [%]
bb	55.61	45.62
WW	55.39	44.95
gluglu	55.16	45.02
ττ	55.42	44.49
cc	55.60	45.14
ZZ	54.04	45.51

- Systematic error due to efficiency in decay modes is 3%.
- (If we could use the information on measured cross section for higgs decay modes, the error should be much smaller)

Visible Energy Selection (Semi-MI analysis)

μμh	signal	11	llvv	llff	others
After Cut	1386	322	1479	1054	3
		Ш	llvv	llff	others
here seems	to be large	1496	2203	937	4

There seems to be large number of remaining llvv BG.

☐ Since contribution from Higgs invisible decays can be calibrated with data, visible energy selection is effective for reducing these BG.

■ Loose selection is applied to avoid bias in signal selection.

Fitting Function

- GPET is constructed by Gaussian peak and exponential tail.
- Novosibirsk can express uncertainty of lepton detection.
 - For detail of Novosibirsk function, please check
 [Nuclear Instruments and Methods in Physics Research A 441 (2000) 401-426]
- For BG fitting, 3rd order polynomial is used. (BG shape is determined separately from signal shape determination)
- In pseudo-experiments, PDF shape is fixed and only number of signal and BG is floated.

16

Fitting Results (Left Handed)

L=250fb ⁻¹	μμh		eeh		combined	
P(e-,e+)=(-0.8,+0.3)	MI	semi-MI	MI	semi-MI	MI	semi-MI
Δσ/σ	4.2%	3.8%	6.0%	5.6%	3.4%	3.1%
Δmass [MeV]	34	33	231	89	34	31

Fitting Results (Right Handed)

L=250fb ⁻¹ P(e-,e+)=(-0.8,+0.3)	μμh	eeh	combined
Δσ/σ	3.8%	6.0%	3.2%
Δmass [MeV]	31	214	31

Mass Template Method

- To avoid systematic bias of mass parameter, mass template method is tried.
- Fit dataset by PDFs from template samples with different Higgs mass.
- Template samples with $M_{Higgs} = 124.85$, 124.90, 124.95, 125.00, 125.05, 125.10, 125.15, and 125.20 are used (8points).
- Signal PDF is used as histograms reconstructed from template samples.
- BG PDF is used as 3rd order polynomial from DBD sample fitting.
- Toy-MC is made for data points, and mean of χ^2 values is plotted and fitted by parabola.
- Mass value at minimum χ^2 point is estimated Higgs mass.

Fitting Result

• Minimum position :

$$x = 125.018 \pm 0.021$$
 (GeV)

Summary and Next Plan

 The recoil mass technique is an important feature at the ILC to measure Higgs mass and cross section of ZH.

μμh, eeh @250GeV		μμh		eeh		combined	
		Left	Right	Left	Right	Left	Right
MI	cross section	4.2%	3.8%	6.0%	6.0%	3.4%	3.2%
	mass [MeV]	34	31	231	214	34	31
semi-MI	cross section	3.8%		5.6%		3.1%	
	mass [MeV]	33		89		31	

- Using the mass template method, the Higgs mass can be decided within 21MeV.
- I will estimate also the sensitivity to Higgs CP-mixture, which can obtain a non-zero value from anomalous coupling in 2HDM, from the Z production angle.

BACK UP SLIDES

Lepton Selection

- Muon (electron) selection
 - Momentum p > 15 [GeV]
 - Small (Large) energy deposited in calorimeters
 - $E_{\text{ecal}} / E_{\text{total}} < 0.5 \ (>0.6)$
 - $E_{total} / p_{track} < 0.3 (> 0.9)$
- Good track selection
 - Track with small error (different selections between polar angle of tracks, barrel or end cap) dp / $p^2 < 2.5 \times 10^{-5} \oplus 8 \times 10^{-4}$ / p (for cosθ < 0.78) dp / $p^2 < 5 \times 10^{-4}$ (for cosθ > 0.78)
- Impact parameter (only for muon)
 - To suppress muons from tau decays which tend to have large impact parameters. $D_0 / dD_0 < 5$

 dp/p^2

Efficiency of E_{visible}

H decay mode	μμh (E _{vis} eff.)	After all cut	eeh (E _{vis} eff.)	After all cut
bb	100%	66.31%	98.68%	39.14%
WW	100%	66.00%	98.31%	38.67%
gluglu	100%	65.40%	98.67%	38.82%
ττ	99.94%	65.66%	98.43%	37.82%
cc	100%	66.32%	98.25%	39.43%
ZZ	96.64%	63.98%	94.84%	37.90%

Bias as expected from SM.

X Some selections are optimized for semi-MI analysis, so that eff. is different from MI case.

