

2015年3月23日 日本物理学会

綿貫峻

山本均、石川明正、Jan Strube(東北大理) 末原大幹^A、藤井恵介^B(A:九州大理、B:KEK)

Etlents//(0.33) $\frac{Zh \rightarrow \mu^{+}\mu^{-}\chi}{E} = 250 \text{ GeV}$ $L_{m} = 250 \text{ fb}^{+}, P(a^{-}, a^{+}) = (+0.8, -0.3)$ Titlad Signalas Fitters Simonal Titled Back 50 apple to the property of the p Comparty topurture the mit 150 130 140 150 M_{recoil} (GeV)

本研究の目的 標準模型(SM)を超える理論(BSM)の検証 ➡ ヒッグスと他の粒子の結合定数 g²haa ∝ Γ(h→aa) = Γ_h×BR(h→aa) =oの比で計算

結合定数のSMからのずれ

結合定数のSMからのずれの精密測定 によりBSMを同定可能 この測定のためにはまず、 生成断面積のの精密測定が不可欠

→反跳手法が使える
 ILCはまさに最適!

ヒッグスの生成断面積と質量の測定精度を見積もる

国際リニアコライダー(ILC)実験

 - e⁺e⁻衝突型の線形加速器
 - E_{CMS}=250,350,500GeV (アップグレードで1TeV)
 - ビーム電子・陽電子の スピン偏極を設定できる

■期待される物理

- トップクォーク精密測定
- LHCでは困難な、カラーレスな新粒子の探索

-ヒッグスの高感度測定

- ・信号事象:e⁺e⁻→Zh→µµh, eeh
- ・背景事象: <a>|+|+|+(<a>+|+(<a>+)(<a>+(<a>+)(<a>+)(<a>+)

Z選別

- ・カロリメータで落としたエネルギーを用いて レプトンを選び、Z質量に最も近いペアを信号 事象候補とする
 - τ由来のレプトンを除くためインパクトパラメータ に上限(μμhチャンネル)
 - eehチャンネルでは制動放射γをリカバリ

- 、信号事象の選別効率は、ヒッグス崩壊モード に非依存としたい。
 - $\delta P_{Tbal} \equiv p_{Tdl} p_{T\gamma} ecos\theta_{missing} Mh \rightarrow \tau \tau \tau \tau \tau$ ドに対してバイアスを持つ

⇒ 選別にエ夫が必要

2015/03/23

9

JPS@早稲田大学

cosθ_{missing}をZの生成角cosθで緩和

JPS@早稲田大学

di∙ ev	-lepton vents		事	象選	BIJ			W	ν μ, e u, e
占	E巻き P(e	e-,e+)=	3.0-)	3,+0.3)				W	v
	μμh	signal		II		llvv		llff	
	No Cut		2603	32453	02	507	166		390041
	After Cut		1588	4	27	2	049		1269
	eeh	signal]]		ΙΙνν		llff	
	No Cut		2729	78310	81	520	624	2	404279
	After Cut		1101	12	56	1	781		833
右	5巻き P(e	e-,e+)=	(+0.	8,-0.3)	€(¹	15, 150		7	
	μμh	signal		II		llvv		llff	
	No Cut		1756	25919	26	51	768	-	330876
	After Cut		1113	2	87		323		650
	eeh	signal				$ _{VV}$		llff	
	No Cut		1844	73439	55	52	853		358595
20	After Cut		742	9 IPS@早稲田大学	27		230		393

Signal検出効率(ヒッグス崩壊別)

- モード別のずれは1%程度
- 断面積の統計誤差(結果の項)は3%程度なので、
 モード依存性は統計誤差に比べて小さい

eff.のずれ < 統計誤差

JPS@早稲田大学

フィットとToy-MC解析

- ・フィット関数
 - Signal: GPETとNovosibirsk関数の畳み込み
 - GPET : Gaussian Peak with Exponential Tail
 - ・Novosibirsk:カロリメータの応答を表す [Nuclear Instruments and Methods in Physics Research A 441 (2000) 401-426]

- BG:3次関数

- これを元に偽実験(Toy-MC)を生成
- PDFの形に関する変数以外(mean, N_{signal}, N_{BG})を 自由パラメータとしてフィット

右巻き偏極、モデル非依存

	NE NULL ELLE ELLE ELLE ELLE ELLE		10 10: 010 ELECTRON DI ELECTRON		
uuh, ee	h	combined			
@250G	eV	左巻き	右巻き		
モデル	Δσ/σ	3.4%	3.2%		
非化仔	∆mass [MeV]	32	30		
準モデル	Δσ/σ	3.1%			
非仫仔	∆mass [MeV]	31			

※準モデル非依存解析では可視エネルギー

15

2015/03/23

JPS@早稲田大学を用いた事象選別を行っている

左巻き偏極、準モデル非依存

左巻き偏極、モデル非依存

GPETによる質量解析の問題点

- ・GPET中心値は質量を正しく表せない
- ・m_HはPDFのテールに影響を与える
 - ヒッグス質量が軽い(重い)ほどISR γのエネルギーが大き く(小さく)なり得る
 - ➡ 反跳質量テールが大きく(小さく)なる。
- ISRなどによる分布の違いを含んだ解析が必要
 ➡ Mass Template Method

質量テンプレート法

異なるヒッグス質量でシミュレーションした テンプレートサンプル (m_H=124.85~125.20GeV)

テンプレートPDFの m_H が 真値に近いほど χ^2 は小さい

χ²の分布から最尤のm_Hを推定

テンプレート法のフィット結果

 χ²プロットを2次関数で フィット
 最小点がm_Hの測定値に対応
 χ²を+1上昇させる幅が Δmassに対応
 m_H=125.018±0.021GeV

※ LHCの最新の結果: m_H=125.36±0.37±0.18GeV と比べて非常に高精度な測定が可能

JPS@早稲田大学

まとめ

まとめ(1/2)

- 反跳を用いたヒッグス精密測定は、国際リニア コライダーにおける最も重要な物理のひとつである
- 本研究の反跳質量解析により高い精度でZh生成 断面積・ヒッグス質量を測定可能であり、結合 定数の精密測定からBSMの検証を行うことがで きる

uuh, eeh@25	50GeV	combined			
		左巻き	右巻き		
モデル非依存	Δσ/σ	3.4%	3.2%		
	∆mass [MeV]	32	30		
準モデル非依存	Δσ/σ	3.1%			
	∆mass [MeV]	31			

まとめ(2/2)

■またテンプレートサンプルを用いることにより ビームスペクトラムの効果を含めてヒッグス質 量を測定することができる

■ヒッグス質量の測定はΔm_{Higgs}=21MeVの精度で可 能である

- ・h→WW*のBRの測定に必要
- 片方のWがoff-shellのため、ヒッグス質量に依存 ・真空の安定性(ヒッグスもトップ質量と同じ く重要なパラメータ)

レプト

JPS@早稲田大学

E_{ECAL}/E_{total}

2015/03/23

p_{track} (GeV)

インパクトパラメータ

• $\tau^{\pm} \rightarrow |\pm v_{|}$ 由来のレプトンを除くため、 μ トラックの xy平面でのインパクトパラメータに上限 (D₀/ δ D₀<5)

> τの崩壊由来のレプトンは インパクトパラメータ の分布にテール←

インパクトパラメータ分布

ττννなどのBGを削減

Ī

JPS@早稲田大学

制動放射リカバリ

 特にe[±]は制動放射により エネルギーを失いやすい ➡ 反跳分布のテール悪化の原因
 ・e[±]に近い方向のγの(E, p)を足す
 = 制動放射リカバリ

 cosθ>0.99995 or cosθ>0.999かつE_v/E_e>3% •

質の悪いトラックの除去

 ・エラーの大きいトラックは除く
 > dp / p² < 2.5 × 10⁻⁵ ⊕ 8 × 10⁻⁴ / p (for cosθ < 0.78)
 > dp / p² < 5 × 10⁻⁴ (for cosθ > 0.78)

バレルと - エンドキャップで 異なるカット

バレル

エンドキャップ

クオリティの高いトラックを厳選できる

2015/03/23

δP_{Tbal}∉(-10, 10) GeV

高エネルギーγの

横運動量の差

ISRが高p_Tを持つとI+I⁻ BG

のp_{тdl}のバランスが崩れる

δP_{Tbal}:レプトン対と

➡ I+I-γ BGに効果的

p_{TI+}
 p_{TI-}

>20GeV

Male (80, 100)[GeV]

 $cop \in (0.2, 3.0)$

JPS@早稲田大学

coso missing

Mrecoil

2015/03/23

di-lepton

events

δp_{Tbal}のバイアス排除

- δP_{Tbal} = (レプトン対のp_T) (高エネルギーγのp_T)
- ・単なる高エネルギーという条件ではヒッグス崩壊モードにバイアス

使用するγの制限

- ・h→ $\tau\tau$ の γ は大量の π^0 中間子が原因 - 2 γ の不変質量 m_{π} にピーク
 - 崩壊を重ねるのでエネルギーはあまり大きくない

JPS@早稲田大学Gを排除しつつバイアスを低減 34

2015/03/23

cosemissing分布とSignalの偏り

h→πモードはvを頻繁に出すの で平坦な分布 ¶を持ってしまう

COS H_{missing} 選別の緩和

2015/03/23

JPS@早稲田大学

尤度関数 Likelihood

Likelihood $cop \in (0.2, 3.)$ 入力変数(PDF)から信号尤度を計算 ただしBGがSignalピーク付近に バンプを持たないように注意

Likelihood

<0.9

Mrecoil = (115, 150) [GeV]

>20Gel

Mdl = (80, 100)[GeV]

JPS@早稲田大学

cosomissing

Likelihoodの入力変

- μμhチャンネル
 - p_{Tdl} M_{dl}

 - Acolinearity
 - $\cos\theta_{dl}$
 - 定義に使うPDFのM_{recoil}∈(115, 150)

- eehチャンネル
 - M_{dl} •
 - Acolinearity •/
 - COSθ_{dl}

準モデル非依存解析

準モデル非依存解析

μμh	signal	ll	$ _{VV}$	llff	others
~Likelihood	1588	427	2049	1269	7
E _{rest}	1586	427	641	1269	7
eeh	signal	II	$ _{VV}$	llff	others
eeh ~Likelihood	signal 1101	ll 1256	llvv 1781	llff 833	others 4

- ・IIvvのBGに対して効果大
- ・ただしh→ZZモードに バイアス
- ・h→ZZのBR(SMで2.66%)
 は十分小さいので、カッ
 トの系統誤差は小さくで
 きる

