

Recent status of FPCCD vertex detector R&D

4th Nov. 2015, LCWS15@Whistler Shunsuke Murai

A. Ishikawa, T. Sanuki, A. Miyamoto^A, Y. Sugimoto^A, C. Constantino^A, H. Sato^B, H. Ikeda^C, H. Yamamoto

Tohoku University, KEK^A, Shinshu University^B, JAXA^C

FPCCD Vertex Detector

Fine-Pixel CCD (FPCCD) feature

Minimum pixel size		$(5\mu m)^2$	high impact parameter resolution
Number of pixels		$\sim 4 \times 10^9$	Low pixel occupancy ~1%
Thickness	Si	$50 \mu m$	Low multiple coulomb
	Epitaxial layer	$15 \mu m$	scattering and low pixel occupancy
Read out		In the train gap ~200msec	No ElectroMagnetic Interference
Temperature		-40℃	Suppression of CTI and dark current

Contents

- ▶ (6µm)² FPCCD prototype
 - Neutron irradiation test
- Ladder R&D
 - Ladder design
 - Assembly
- > 2phase CO2 cooling system
 - Circulation using gas compressor

Neutron irradiation test

Neutron Irradiation Test

- Date: 15–17th Oct. 2014
- Place: CYRIC in Tohoku Univ.
- Fluence: $1.78 \times 10^{10} n_{eq} / cm^2$
 - It corresponds to 19 years at ILC beam time shared by ILD/SiD.
- FPCCD prototype whose pixels size is $(6\mu m)^2$, $(8\mu m)^2$, $(9.6\mu m)^2$ and $(12\mu m)^2$ are irradiated.
- We checked performance of the FPCCD and a R&D status was presented at ALCW2015 and IEEE.
 - I will focus on pixel size $(6\mu m)^2$ in this talk.

Performance of FPCCD

- > 3 Parameters to measure radiation tolerance
 - Average dark current of all pixels
 - Hot pixel fraction
 - Charge transfer inefficiency
- We measured 3 parameters 3, 9, 23 and 199days after irradiation to see the annealing effect.
 - FPCCD chip is kept at room temperature (~23°C).

Performance of FPCCD

		Performance	Annealing effect
Dark current of all pixels	Mean	$(5.4 \pm 0.005) \times 10^{-2}$ [LSB]	Yes
	Mode	$(1.5 \pm 0.002) \times 10^{-2}$ [LSB]	No
Hot pixel fraction		2.76×10^{-5}	Yes
CTI		Maximum charge loss is 63%	No

- Dark current and hot pixel fraction are OK.
 CTI is acceptable level.
 - There is unknown source of charge loss.

Ladder R&D

Ladder for FPCCD VTX

- Ladder design idea
 - Double-sided ladder ~2mm apart
 - 2 CCD chips / side
 - Readout ASICs on both ends

L=160/280 mm

W=12/24 mm

 CFRP-FPC(Kapton/Cu)-Si structure

Ladder for FPCCD VTX

- Ladder design idea
 - Double-sided ladder ~2mm apart
 - 2 CCD chips / side
 - Readout ASICs on both ends
 - CFRP-FPC(Kapton/Cu)-Si structure

CFRP (carbon fiber reinforced plastic) FPC (flexible printed circuit)

Ladder R&D

- Ladder assembly
 - 50µm thick wafer is found bending
 - We need vacuum suction during fabrication (for gluing)
- Thermal issue
 - FPCCD will be operated at low temperature (-40°C)
 - Difference of coefficients of thermal expansion between Si and CFRP is an issue
 - Stress has to be absorbed by soft glue

2 phase CO2 cooling system

2-phase CO2 cooling for FPCCD

Requirement for cooling

- FPCCD will be operated at low temperature (-40°C) to improve radiation tolerance (CTI and dark current)
- Space for cooling pipe (and thermal insulator) inside ILD is very limited
- \rightarrow 2-phase CO2 cooling is the most suitable choice

Options of CO2 cooling

- Circulation by liquid pump
- Circulation by gas compressor → Our R&D choice

Circulating system option

- Circulating system using a liquid pump
 - Getting popular in HE physics experiments
 - Disadvantages: many low temperature parts/equipment

Circulating system option

- Circulating system using a gas compressor
 - For low temperature application, less heat load & less expensive

R&D status of CO2 cooling

- Cooling between -40°C and +15°C has been demonstrated with a prototype cooling system using gas compressor
- Next step
 - Stabilization of cooling temperature (pressure)
 - Manual back-pressure valve → Pressure controller
 - Low-mass heat exchanger near (inside) the detector
 - Study of durable O-ring
 - Small size prototype

Cooling pipe for detector. Frost due to -40°C cooling can be seen.

Summary

- $6\mu m^2$ FPCCD prototype is developed.
 - Neutron irradiation damage has been studied.
 - Dark current and hot pixel are OK.
 - Charge transfer inefficiency (CTI) is acceptable level
- Ladder R&D has just begun
- A prototype 2-phase CO2 cooling system using gas compressor for FPCCD at -40°C has been developed.

Back up

Circulation system using gas compressor

Comparison of two options

- Merit of gas compressor type
 - Near room temperature condensation and transfer ightarrow
 - No need for expensive low temperature chiller (Cooling water supplied to ILC detector hall can be used)
 - No need for thermal insulation for long transfer tube → Flexible tube off the shelf can be used → Merit for push-pull operation of ILC detectors
- Demerit of gas compressor type
 - Heater is needed to completely vaporize CO2 returning to gas compressor

	Liquid pump	Gas compressor
Temperature of pump/compressor	Low (<t<sub>detector)</t<sub>	High
Temperature of condenser	Low (<t<sub>detector)</t<sub>	~ Room temperature
Temperature of transfer tube: plant \rightarrow detector	Low (<t<sub>detector)</t<sub>	~ Room temperature
Temperature of transfer tube: detector \rightarrow plant	Low (<t<sub>detector) (2-phase)</t<sub>	~ Room temperature (Gas) 2