国際リニアコライダーにおける ヒッグスの質量・断面積・ およびCP混合の解析 東北大学理学研究科物理学専攻 素粒子実験研究室 綿貫 峻

|導入

- 新物理の検証
- 反跳解析の概要
- 実験概要
 - 国際リニアコライダー(ILC)実験
 - ILD測定器
- 断面積・質量解析
 - シミュレーションの条件
 - 事象選別
 - モデル非依存性の確認
 - 準モデル非依存解析

 - 質量テンプレート法
- CP混合解析(SM)
- まとめ

 \sim Introduction \sim

標準模型を超える理論の検証

- 標準模型(SM)は物理を概ね正しく説明できるが、いまだ 問題も残っている(階層性問題、ダークマター、…など) → SMを超える理論(BSM)が必要
 - SUSY
 - Composite Higgs etc…

*LHC*で見つかったヒッグスは *SM*か?*BSM*か?

■そのために、ヒッグスと他の粒子との<mark>結合定数</mark>が知りたい

2015/02/02

Shun Watanuki @修論発表会

~ Collider & Detector ~

国際リニアコライダー(ILC)実験

概要

 - e+e-衝突型の線形加速器
 - E_{CMS}=250,350,500GeV (アップグレードで1TeV)
 - ビーム電子・陽電子の スピン偏極を設定できる

■期待される物理 – トップクォーク精密測定 – LHCでは困難な、カラーレスな新粒子の探索 – ヒッグスの高感度測定

ILD測定器

ハドロンカロリメータ 中性ハドロンのエネルギー測定

ソレノイドコイル 3.5[T]の高磁場を生成

電磁カロリメータ 光子・電子のエネルギー測定

崩壊点検出器 最内層に設置され、 崩壊点を測定

飛跡検出器 荷電粒子のトラッキング、 運動量の測定

シミュレーションの条件

ヒッグス質量	重心系 エネルギー	積分 ルミノシティ	スピン偏極
125 [GeV]	250 [GeV]	250 fb ⁻¹	P(e⁻, e+) =(±0.8,∓0.3)

生成イベントの分類

■Signal:e⁺e⁻→Zh→µµh,eeh ■主なBGはµチャンネルでµµ、µµff、µµvv (fはtとvを除くフェルミオン)

– signal even t – – – – – –	σ (fb)	μチヤン	ンネル	eチャンネル		
h		左巻き	右巻き	左巻き	右巻き	
	Signal	10.4	7.02	10.9	7.38	
μ, е	П	13000	10400	31300	29400	
	$ _{VV}$	2030	207	2080	203	
- μ, e	llff	1560	1320	1620	1430	

Shun Watanuki @修論発表会

解析の流れ

レプトン選別 – Zh→I+I-hのZを再構成 – 最適化のために条件を設ける BG排除

- レプトン対に条件をかけてBGを排除 - Signalのeff.はヒッグスの崩壊モードに非依存 となるよう条件を設定

■フィット & Toy-MC

– 反跳質量分布をフィットしたPDFを元に偽実験 (Toy-MC)を繰り返し、signalのイベント数・ ヒッグス質量の統計誤差を見積もる

レプトン選別

P_{track} μ > 15GeV 選 _____

< 0.5

E_{ECAL}/E_{total}

e > 15GeV

選

別

> 0.6

E_{total}/P_{track}

< 0.3

> 0.9

2015/02/02

Shun Watanuki @修論発表会

cosθ>0.99995 or
 cosθ>0.999かつE_y/E_e>3%

解析の流れ

■レプトン選別

Zh→l+l-hのZを再構成
 最適化のために条件を設ける

■BG排除

- レプトン対に条件をかけてBGを排除
- Signalのeff.はヒッグスの崩壊モードに非依存 となるよう条件を設定

■フィット & Toy-MC

– 反跳質量分布をフィットしたPDFを元に偽実験 (Toy-MC)を繰り返し、signalのイベント数・ ヒッグス質量の統計誤差を見積もる

横運動量差 δP_{Tbal}

δP_{Tbal}∉(-10, 10) GeV

↓ P_{TI+}

20GeV

Md1€(80, 100)[GeV]

di-lepton

pro

events

δp_{Tbal}のバイアス排除

■ δP_{Tbal} = (レプトン対のp_T) - <u>(高エネルギーγのp_T)</u> ■ 単なる高エネルギーという条件ではヒッグス崩壊モードにバイアス

使用するγの制限 ■ h→ττのγは大量のπ⁰中間子が原因 - 2γの不変質量 ~ m_nにピーク - 崩壊を重ねるのでエネルギーはあまり大きくない

2015/02/02

2015/02/02

Shun Watanuki @修論発表会

pro

尤度関数 Likelihood

5¹ *E*(0.2, 3.0) 入力変数(PDF)から信号尤度を計算 ただしBGがSignalピーク付いた cost missing 10

Likelihood

Mrecoil = (115, 150) [GeV]

20GeV

M_{d1}€(80, 100)[GeV]

Likelihoodの入力変数 eehチャンネル

μμhチャンネル

- р_{тdl}
- M_{dl}
- Acolinearity
- $\cos\theta_{dl}$
- 定義に使うPDFのM_{recoil}e(115, 150)

- M_{dl}
- Acolinearity •
- $\cos\theta_{dl}$ \bullet

Shun Watanuki @修論発表会

BG排除結果

左巻き P(e-,e+)=(-0.8,+0.3)

2

μμh	signal		II		llvv		llff	
No Cut		2603		3245302		507166		390041
After Cut		1588		427		2049		1269
eeh	signal		II		llvv		llff	
No Cut		2729		7831081		520624		404279
After Cut		1101		1256		1781		833
「巻き P(e-,e+)=(+0.8,-0.3)								
μμh	signal		II		llvv		llff	
No Cut		1756		2591926		51768		330876
After Cut		1113		287		323		650
eeh	signal		II		llvv		llff	
No Cut		1844		7343955		52853		358595
After Cut		742		927		230		393
					the second se			

Signal検出効率(ヒッグス崩壊別) ■モード別のずれは1%程度 ■断面積の統計誤差(結果の項)は3%程度なので、 モード依存性は統計誤差に比べて小さい

~ 統計誤差

eff.のずれ

準モデル非依存解析

準モデル非依存解析

μμh	signal	II	$ _{VV}$	llff	others
~Likelihood	1588	427	2049	1269	7
E _{rest}	1586	427	641	1269	7
eeh	signal	II	$ _{VV}$	llff	others
eeh ~Likelihood	signal 1101	ll 1256	llvv 1781	llff 833	others 4

 ■IvvのBGに対して効果大
 ■ただしh→ZZモードに バイアス

■h→ZZのBR(SMで2.66%) は十分小さいので、カットの系統誤差は小さくできる

解析の流れ

■レプトン選別

– Zh→l+l⁻hのZを再構成
 – 最適化のために条件を設ける

■BG排除

- レプトン対に条件をかけてBGを排除 - Signalのeff.はヒッグスの崩壊モードに非依存 となるよう条件を設定

■フィット & Toy-MC

– 反跳質量分布をフィットしたPDFを元に偽実験 (Toy-MC)を繰り返し、signalのイベント数・ ヒッグス質量の統計誤差を見積もる

%eeh distribution

150

Signalのフィット関数はGPETとNovosibirskの 畳み込み関数

- GPET: ガウス関数ピークと指数関数テールの組合せ

- Novosibirsk: カロリメータの応答を表現

[Nuclear Instruments and Methods in Physics Research A 441 (2000) 401-426]

BGは3次関数でフィット

データセットがある

データセットがある
 前述の関数でフィットする

2015/02/02

- 1. データセットがある
- 2. 前述の関数でフィットする
- 3. PDFが手に入る

- 1. データセットがある
- 2. 前述の関数でフィットする
- 3. PDFが手に入る
- 4. PDFを元に乱数でイベントを生成する(Toy-MC)

- 1. データセットがある
- 2. 前述の関数でフィットする
- 3. PDFが手に入る
- 4. PDFを元に乱数でイベントを生成する(Toy-MC)
- 5. SignalとBGを合体、擬似的なILC実験の結果を生成

- 1. データセットがある
- 2. 前述の関数でフィットする
- 3. PDFが手に入る
- 4. PDFを元に乱数でイベントを生成する(Toy-MC)
- 5. SignalとBGを合体、擬似的なILC実験の結果を生成
- 6. Signal+BGのPDF(イベント数と 中心値のみ浮動)で分布をフィット

- 1. データセットがある
- 2. 前述の関数でフィットする
- 3. PDFが手に入る
- 4. PDFを元に乱数でイベントを生成する(Toy-MC)
- 5. SignalとBGを合体、擬似的なILC実験の結果を生成
- 6. Signal+BGのPDF(イベント数と 中心値のみ浮動)で分布をフィット
- 7.1実験分のパラメータを得る (イベント数と中心値)

- 1. データセットがある
- 2. 前述の関数でフィットする
- 3. PDFが手に入る
- 4. PDFを元に乱数でイベントを生成する(Toy-MC)
- 5. SignalとBGを合体、擬似的なILC実験の結果を生成
- 6. Signal+BGのPDF(イベント数と 中心値のみ浮動)で分布をフィット
- 7.1実験分のパラメータを得る (イベント数と中心値)

8. 4~7を繰り返し、
 Signalのイベント数とM_{recoil}の中心値のヒストグラムを得る
 ➡ 幅がヒッグスの断面積と質量の統計誤差に対応する

偽実験

~ Results ~

2015/02/02

2015/02/02

~ Mass Template Method ~

偽実験解析における質量測定の問題点

- GPET中心値は質量を正しく表せない(pull分布にずれ) ■ m_HはPDFのテールに影響を与える
 - ISRにかかる制限が変わるため
- ■偽実験解析はビームスペクトラムによる系統誤差を考慮 できない
- ISRなどによる分布の違いを含んだ解析が必要
 Mass Template Method

量テンプ

異なるヒッグス質量でシミュレーションした テンプレートサンプル (m_H=124.85~125.20GeV)

テンプレートPDFの m_H が 真値に近いほど χ^2 は小さい

χ²の分布から最尤のm_Hを推定

テンプレート法のフィット結果

■ x²プロットを2次関数で フィット ■ 最小点がm_Hの測定値に対応 ■ x²を+1上昇させる幅が Amassに対応 ■ m_H=125.018±0.021GeV

※ LHCの最新の結果: m_H=125.36±0.37±0.18GeV と比べて非常に高精度な測定が可能

~ Additional Higgs Search ~

ヒッグスCP混合

■SMではヒッグスhのCPは完全にeven ■SUSYに代表される2HDM(2 Higgs Doublet Model)ではCP oddのヒッグスAがSMのヒッグ スhと量子的混合状態を取り得る $M_{\phi Z} = M_{hZ} + (\eta \cdot) M_{AZ}$ その際ee→Zhイベントのd σ /dcos θ 分布が 前後非対称性を持つ: $\frac{d\sigma}{d\cos\theta} = \frac{G_F^2 M_Z^6 \beta}{16\pi} \frac{1}{D_Z(s)} \left(v_e^2 + a_e^2 \right) \left[1 + \frac{s\beta^2}{8M_Z^2} \left(1 - \cos^2\theta \right) + \eta \frac{v_e a_e}{v_e^2 + a_e^2} \frac{2s\beta}{M_Z^2} \cos\theta + \eta^2 \frac{s^2\beta^2}{4M_Z^4} \left(1 - \sin^2\frac{\theta}{2} \right) \right]$ ➡ Zボソンの生成角度の非対称性からnを計算

Shun Watanuki @修論発表会

2015/02/02

CP混合解析(SM)

■SM(η=0)のサンプルを用いる

- cosθ_{dl}分布をM_{recoil}分布のフィットにより取得 - MCから得られたeff.による補正を行う

- cosθ_{dl}を2次関数でフィットし理論式からηを計算 偽実験を用いた解析により統計誤差を見積もる

η= (-3.03±6.09)×10⁻³

~ Summary ~

まとめ(1/2)

 反跳を用いたヒッグス精密測定は、国際リニアコ ライダーにおける最も重要な物理のひとつである
 本研究の反跳質量解析により高い精度でZh生成断 面積・ヒッグス質量を測定可能であり、結合定数 の精密測定からBSMの検証を行うことができる

μμh, eeh@250GeV		combined				
		左巻き	右巻き			
モデル非依存	Δσ/σ	3.4%	3.2%			
	∆mass [MeV]	34	31			
準モデル非依存	Δσ/σ	3.1%				
	∆mass [MeV]	31				

まとめ(2/2) ■またテンプレートサンプルを用いることにより ビームスペクトラムの効果を含めてヒッグス質量 を測定することができる

■質量テンプレート法によりヒッグス質量の測定は Δm_{Higgs}=21MeVの精度で可能である

■Zボソンの生成角度の非対称度から、CP evenの ヒッグスhとCP oddのヒッグスAとの混合ηを測定 可能である

■この手法によりSM(η=0)の場合のη測定は、 Δη=6.09×10⁻³の精度であることが分かった

ご清聴ありがとうございました ~Thank you for listening~

~ The Backup Slides ~

Tohoku University

Laboratry

クオリティの高いトラックを厳選できる

カットテーブル

選別項目	信号事象 µµh	背景事象	11	$ll \nu \nu$	llff	others
No Cut	2603	11266736	3245302	507166	390041	7124227
μ selection	2406	1498071	1304146	127360	65825	740
precut	2278	41430	17200	16286	7874	70
$p_{Tdl} \ge 20 \text{ GeV}$	2161	30972	9965	14095	6852	59
$M_{dl} \in (80, 100) \text{ GeV}$	2036	21883	7891	8147	5808	37
$acop \in (0.2, 3.0)$	1903	19824	6825	7659	5306	33
$\delta p_{Tbal} \not\in (-10, 10) \text{ GeV}$	1894	14490	1751	7518	5189	33
$\cos \theta_{missing} \leq 0.99 \lor \cos \theta \leq 0.8$	1882	13621	1257	7517	4815	30
$M_{recoil} \in (120, 140) \text{ GeV}$	1730	5239	536	3116	1575	12
${\rm Likelihood}{\geq}0.25$	1588	3752	427	2049	1269	7

選別項目	信号事象 µµh	背景事象	11	$ll\nu\nu$	llff	others
No Cut	1756	9303174	2591926	51768	330876	6328604
μ selection	1627	1077417	1017274	13545	46201	397
precut	1540	18118	12073	1883	4137	26
$p_{Tdl} \ge 20 \text{ GeV}$	1461	12289	7110	1659	3504	16
$M_{dl} \in (80, 100) {\rm GeV}$	1375	9538	5560	1125	2843	9
$acop \in (0.2, 3.0)$	1285	8433	4766	1052	2607	8
$\delta p_{Tbal} \not\in (-10, 10) \text{ GeV}$	1278	4739	1155	1039	2537	8
$\cos \theta_{missing} \leq 0.99 \lor \cos \theta \leq 0.8$	1270	4214	853	1039	2313	8
$M_{recoil} \in (120, 140) \text{ GeV}$	1166	1486	345	391	747	3
Likelihood ≥ 0.18	1113	1263	287	323	650	3

背景事象

|| 11

 $ll\nu\nu$

llff

others

信号事象 eeh

選別項目	信号事象 eeh	背景事象	11	$ll \nu \nu$	llff	others
No Cut	2729	11266736	7831081	520624	404279	2510752
e selection	2169	3767540	3443775	154387	160969	8409
precut	1998	144342	104825	27701	11663	152
$p_{Tdl} \ge 20 \text{ GeV}$	1889	88263	55029	24213	8897	124
$M_{dl} \in (80, 100) \text{ GeV}$	1736	52283	32214	13532	6468	68
$acop \in (0.2, 3.0)$	1622	43514	25160	12430	5868	56
$\delta p_{Tbal} \not\in (-10, 10) \text{ GeV}$	1601	28287	10524	12137	5573	53
$\cos \theta_{missing} \leq 0.99 \lor \cos \theta \leq 0.8$	1592	26254	8904	12137	5162	52
$M_{recoil} \in (120, 140)$	1448	10558	3601	5228	1714	15
Likelihood≥0.44	1101	3873	1256	1781	833	4

選別項目

No Cut

 $\frac{\text{precut}}{p_{Tdl} \ge 20 \text{ GeV}}$

e selection

 $M_{dl} \in (80, 100) \text{ GeV}$

 $\delta p_{Tbal} \not\in (-10, 10)$ GeV

 $M_{recoil} \in (120, 140) \text{ GeV}$

 $\cos \theta_{missing} \leq 0.99 \lor \cos \theta \leq 0.8$

 $acop \in (0.2, 3.0)$

Likelihood>0.50

CP混合解析(SM)

TDR sample

