Belle II 実験における B→KTYの解析

4 年生発表 東北大学 素粒子実験グループ 太田恭平

1. Introduction

1.1 B factory

B factoryとは、B mesonを"大量"に作る加速器である。

不確定性原理より、B mesonが瞬間的にhigh energyになり、 質量の大きい粒子を作った後にdecayすることが有りうる。

→luminosity (event数)が大きければ、NPの探索ができる。 Belle(I,II)実験の特徴の一つは、high luminosity実験であるこ とで、NPの探索、CP violationの精密な測定が可能になる。

※SMでは、TreeレベルのFCNCは抑制される。

※SMで入り込むright-handedのγはm_s/m_b程度。

KEKB

LER(Lower Energy Ring) e+ 3.5GeV HER(Higher Energy Ring) e- 8.0GeV LER e+ 4GeV HER e- 7GeV

SuperKEKB

SuperKEKBでは、ナノ・ビーム・スキーム(バンチがぶつかる部分を小さくし、 その部分にビームを絞る方法。IPの前後でビームが広がる"砂時計効果"を緩 和させる)により、IPでのビームサイズを1/20倍にし、かつビーム電流(1s間に 通過する電荷量)を2倍にすることで、KEKBの40倍のルミノシティ(800nb⁻¹s⁻¹) を目指す(BBペアの作られる断面積は約1.09nbなので、一秒あたり約870個の BBペアが得られる)。

※より詳しい事情については、Back upに記す。

1.3 Belle II detector

Belle detector

Belle II detector

Belle II detector(PXDの導入やARICH、TOPによるPIDな どによるBelleのグレードアップ)によって、より精密な 測定を目指す。

各detectorの性能向上に加え、SuperKEKBによるルミノ シティの増加に伴い、ビームバックグラウンドが増加 するので、それに対応することも求められる。

トラック再構成のイメージ <u>http://www.ekp.kit.edu/english/</u> <u>belle2.php</u>より、画像を引用

2. 研究テーマ

2.1 Β→Κπγ

Target modelは、 $B \rightarrow K \pi \gamma$ 、 + α : そのcharge conjugation (解析するneutral K mesonは、Ks)。

$$B^{0} \rightarrow K^{0} \pi^{0} \gamma, K^{+} \pi^{-} \gamma$$
$$B^{+} \rightarrow K^{+} \pi^{0} \gamma, K^{0} \pi^{+} \gamma$$

これらに壊れるモードを包括的に測定し、Branching Fraction を求め、出来ればそれらのresonantやnonresonantを分離して評価したい。 KST0_M

2.2 Х_s→Кπ

B→Kπγの主なモードとしては、

B→X_s γ (クォークレベルでは、b→s γ)において、X_s→K π に 壊れるモードが挙げられる。

具体的には、X_sとして、

 $K^{*}(892), K^{*}(1410), K_{2}^{*}(1430), K^{*}(1680), K_{3}^{*}(1780),$

K₄*(2500)が挙げられる。PDGに記載されているそれぞれ のBFは、K*(892)とK₂*(1430)を除いて、(ある確率で正し いとされる)上限が記されているだけで、存在が確認され ていない。

※各共鳴状態の詳細や、*がついたものばかりがKπに壊れる理由はBack upに記す。

3. Analysis

- 3.1 MCサンプル
- $B^0 \rightarrow K^*(892)^0 \gamma \rightarrow K + \pi \gamma$
- $B^0 \rightarrow K_2^* (1430)^0 \gamma \rightarrow K + \pi \gamma$
- $B^0 \rightarrow K^*(1410)^0 \gamma \rightarrow K + \pi \gamma$
- $B^0 \rightarrow K^*(1680)^0 \gamma \rightarrow K + \pi \gamma$

それぞれのモードについて、2.0×10⁵ eventsを 再構成する。

charged pionに壊れるモードの方がBFが大きく (背景の物理はBack upに記す)、かつneutralよ りもdetectorで検出しやすいため、とりあえず、 そちらのモードを採用することにした。

Y(4S)を100%中性Bペアにdecayさせ、B⁰を下図のようにdecayさせ、B⁰は下図のcharge conjugationにdecayさせた。

3.2 使用した変数

Bを再構成するとき、下の二つの変数を使った。

M_{bc}はBeam Constrained Mass、ΔEはEnergy Differenceと呼ばれる。

E_{CM}は重心系のエネルギーであり、ビームエネルギーから決まる定数である。 正しく再構成できれば、M_{bc}はBの質量(約5.28GeV)にピークを持ち、ΔEは OGeVにピークを持つはずである。

$$M_{bc} = \sqrt{(E_{CM} / 2.0)^2 - (\vec{p}_{K^*} + \vec{p}_{\gamma})^2}$$

$$\Delta E = (E_{K^*} + E_{\gamma}) - E_{CM} / 2.0$$

```
3.3 使用したCut
```

```
Mass Window(fitして-3σ<µ<3σを見積もって決めた)</li>
K*(892):0.83GeV<M<0.97GeV</li>
K<sub>2</sub>*(1430):1.32GeV<M<1.54GeV</li>
K*(1410):1.2GeV<M<1.61GeV</li>
K*(1680):1.45GeV
```

- 共通のCut π-:piid > 0.5 (piid:pionである確率)、K+:Kid > 0.5 (Kid:kaonである確 率) 5.26GeV<M_{bc}<5.29GeV -1.0GeV<ΔE<1.0GeV E_v>1.5GeV

Fitをしやすくするために、標準的な精度のπとKを採用した。

ある程度のEfficiencyを担保するために、今回はkinematicなcutを殆ど 入れなかった。 3.4 使用したfit関数

M_{bc}はGaussian(signal)とArgus function(background)で、ΔEはCrystal Ball function(signal)と二次関数(background)でfitして、signalの解析を 行った。

※ECLで、γのエネルギーを逃してしまうことがあるため、ΔEは CrystalBallになる。

3.5 結果

isSignal:reconstructionしたB候補の中で、実際にBである数。

- Nsig:reconstructionした中で、フィッティングにより、signalとして見積もられた数。
- Nbg:reconstructionした中で、フィッティングにより、backgroundとして見積もられた 数。

Eff:efficiency=Nsig/N (今回はN=2.0×10⁵) fit誤差:(Nsig-isSignal)/N (今回はN=2.0×10⁵) EffとisSignal/Nとの差。

	K ₂ *(1430)	K* (892)	K*(1410)	K*(1680)
isSignal	87185	88237	77360	76177
Nsig(Mbc)	79148.3	79014.3	68694.8	68160.8
Nbg(Mbc)	20758	16156.5	18481.2	15470.1
$Nsig(\Delta E)$	95810.2	96158.7	84191.6	80599.7
$Nbg(\Delta E)$	3985.98	25.6783	2984.14	3030.13
Eff(Mbc)	0.3957415	0.3950715	0.343474	0.340804
$Eff(\Delta E)$	0.479051	0.4807935	0.420958	0.4029985
fit誤差(Mbc)	-0.0401835	-0.0461135	-0.043326	-0.040081
fit誤差(ΔE)	0.043126	0.0396085	0.034158	0.0221135

・M_{bc} fit 5.28GeVあたりにピークが来てほしいが、左にずれている。

[B0_mbc]

-横軸はGeV。左上がK*(892)γモード由来のM_{bc}。右上がK₂*(1430),左下がK*(1410),右下がK*(1680)。

・ ΔE fit OGeVあたりにピークが来てほしいが、左にずれている。

横軸はGeV。左上がK*(892)γモード由来のΔE。右上がK₂*(1430),左下がK*(1410),右下がK*(1680)。

CM系のK₂*とγの運動量とエネルギー分布

 M_{bc} とΔEが左側にずれているので、原因を調べるために、運動量とエネルギーの大きさを見てみた。左図が $K_2^*(1430)$ とγの運動量分布(横軸が K_2^* 、縦軸がγ。単位はGeV)。右図がエネルギー分布。γの運動量、エネルギーが低い方に尾を引いているように見えた。

尾をCutするように、 E_v >2.2GeVのCutを入れてみた。

ΔEはピークが0に近づいたが、M_{bc}のピークに影響はなかった。何が問題で ピークがずれるのか、確定的にはわからなかった。

- 3.6 まとめと今後
- 3.6.1 まとめ

M_{bc}をfitして求められるsignalは実際の数
(isSignal)より少なく、ΔEをfitして求められる
signalは実際より多い。M_{bc}のsignalは少し尾を引いているので、厳密にGaussianではない。
ΔEのCrystal Ballでは、backgroundの一部をsignalと判定してしまう。

- 3.6.2 今後
 - M_{bc}のピーク位置がずれている理由を見つける。
 - Backgroundの解析を行う。
- ・Mass regionを区切って各粒子を再構成して、M(Kπ)を見積もっていく。

ありがとうございました

parityの 式から、 Lの偶ざら は混ざら ないので L=2にな る。

スピン が上が れば質

量も上 がる

〇量子数のメモ(Sは内部スピン、Lはクォー ク対の相対軌道角運動量、parity=(-1)^{L+1}、n は主量子数) K*(892):spin1(S=1,L=0),parity-1,n=1 K*(1410):spin1(S=1,L=0),parity-1,n=2 <--この中では 唯一,n=2 K*(1680):spin1(S=1,L=2),parity-1,n=1 K₂*(1430):spin2(S=1,L=1),parity+1,n=1 K₃*(1780):spin3(S=1,L=2),parity-1,n=1 K₄*(2045):spin4(S=1,L=3),parity+1,n=1

・Belle II 実験の補足 ~崩壊時間差の測定~

Y(4S)はspin1である。QFTによれば、粒子と反粒子はhelicityが逆でないと下図のよう に反応しない。かつ、電子と陽電子間の軌道角運動量は0である。そこから考えても spin1であることがわかる。 Y(4S)がspin1であることから、BB対間の

Y(4S)がspin1であることから、BB対間の 軌道角運動量Lは1になる。BB対は B $\leftarrow \rightarrow$ B という振動を起こすが、boson であるために、互いが同じ粒子になる場 合は入れ替え対象でなければならない。 しかし、Lが1であるために反対称になる。 よって、片方がB(B)として壊れれば、そ の時もう片方が pureなB (B)であることが 保証される。

非対称衝突→BB対の崩壊時間差が測定可能になる

ローレンツ因子と速度で 距離を伸ばす $\Delta z = \beta \gamma c \Delta t$ $\beta \approx 3 GeV / 10.58 GeV \approx 0.283$

BとBの崩壊時間差(CPVの測定に必要)をdetectorで測定するために、Y(4S)を走らせ、 BB対の崩壊位置の距離差から時間差を求める。Y(4S)を静止したまま生成しても、Bの 寿命は短いため、殆ど飛ばず、測定が非常に困難である。 物理的補足① ~アイソスピンの保存~

charged pionに壊れるモードは、アイソスピンの保存から、neutral pionに壊れるモードの約2倍(massの差による効果があるので"約"となる)のBFになる。

例: BF(K*0→K+ π -)=2×BF(K*0→K $^{0}\pi^{0}$)

※直感的には、π⁰=1/√2(uu-dd)のように、中間子nonet の中心の粒子は、異なるフレーバーのクォーク対の重ね 合わせとなっていることから理解出来る。

定量的には、アイソスピンの保存(強い相互作用では保存する)を使うと、 Clebsch-Gordan係数から求められる。※ケットベクトルは、||,|₇>を表す。

|K⁰π⁰>は |1/2,-1/2> |1,0> |K⁺π⁻>は |1/2, 1/2> |1,-1> |1/2,-1/2> = √1/3|1/2,-1/2>|1,0> -√2/3|1/2,1/2>|1,-1> |K^{*0}> |K⁺π⁻> BFはClebsch-Gordan係数の2乗で効くので、1:2の関係になる。この関係 性はπだけでなくρにも言える(isospin tripletで共通の性質)。

- 物理的な補足② ~Parityの保存~
- Kmに壊れる粒子は、*がついたもの(spinが奇数ならparity=-1,spinが偶数なら parity=+1)ばかりである。

その理由は、パリティの保存と全角運動量の保存によるものである。

大きさが j_1 、 j_2 の角運動量を合成したとき、合成後の角運動量の大きさをjと すると、 $j_1+j_2 \ge j \ge |j_1-j_2|$(A)である。これを使って少し考察する。 $j_1+j_2 \ge j \ge |j_1-j_2|$(A)

例1:K*(892)→Kπ

K*(892)のspinは1なので、j=1。j₁をKπ系のspin、j₂をKπ間の相対軌道角運動量 とすると、pseudoscalar2個へのdecayなので、j₁=0であり、Parityは(-1)^{j2}で決 まる。(A)を満たすようなj₂は1だけなので、Parityは-1となり、Parityが保存 していることがわかる。

一般的に、(pseudo)scalar 2個へのdecayでは、j₁は0にfixされるので、(A)を満たすj₂はjのみとなる。よって、*がつく粒子は(pseudo)scalar 2個に壊れることができる(pseudoscalar 1個とscalar 1個や、pseudoscalar 3個などはダメ)。

逆に、*がつかないK₁などでは、(pseudo)scalar2個へはdecayできないことがわかる。vector 1 個とpseudoscalar1個へのdecayは可能である。

 $j_1+j_2 \ge j \ge |j_1-j_2|$(A)

少し余談

K*(892)はほぼ100%Kπに壊れる(質量的に、Kpには行けない)

→ふとした疑問

K*(1410)やK*(1680)なら、KpやK*(892)πなどのvector 1 個とpseudoscalar1個 にdecayすることは可能だろうか?

例2:K*(1680)→Kρ

K*(1680)のspinは1なので、j=1。j₁をKp系のspin、j₂をKp間の相対軌道角運動 量とすると、pseudoscalar1個とvector1個へのdecayなので、j₁=1であり、 Parityは(-1)^{j2}で決まる。(A)を満たすようなj₂は0、1、2であるが、Parityの保 存から、j₂=1である。

よって、K*はpseudoscalar1個とvector1個にdecayすることも可能であること がわかる(K*(892)は、ほんの少しだけKγ(電磁相互作用)に壊れるが、それ もParityを保存している)。 MC (Monte Carlo) シミュレーション

MCシミュレーションとは、予測される確率分布(bのエネル ギースケールでは、effective theoryで計算)に従うように、 乱数を発生させて行うシミュレーションのことである。

素粒子の相互作用は量子力学的な反応なので、本質的に確率 的な反応であり、MCシミュレーションによって、客観的にシ ミュレーションを行うことができる。

- MCシミュレーションの手順(outline)
- 1. Event generation

ターゲットの物理過程を再現する。

2. Detector simulation

ターゲットの物理過程がdetectorでどのような信号になるのか を再現する。

3. Event reconstruction

2で得られた信号から、targetとなる事象を再構成する。

4. Signal extraction/Background study シグナルとバックグラウンドについて考察を行う。