ILCにおけるトップクォーク電弱結合の研究

ILC夏の合宿2016

東北大学素粒子実験研究室 修士1年 佐藤 瑶

Introduction

トップクォークの質量は電弱対称性破れのスケールにあり、 トップクォークはEWSBに関する新物理に関連していると 考えられる。そういった理由から、トップクォークの電弱 結合は新物理の手掛かりになると期待されている。

新物理モデルにおける、*Zとt_L,t_Rの*結 合の標準模型からのずれと、ILCで予想 される測定精度 **→新物理モデルの選択が可能**!

arXiv:1505.06020 [hep-ph]

Top quark pair production at the ILC トップクォーク対生成はILCにおける重要なチャンネルの一つ トップクォークはほぼbクォークとWボソンに崩壊するため、終状態はW ボソンの崩壊先によって分類できる; (1) Fully hadronic : $t\bar{t} \rightarrow bq\bar{q}bq\bar{q}$ (46.2%) e^+ W (2) Semi leptonic : $t\bar{t} \rightarrow bq\bar{q}blv_1$ (43.5%) (3) Di leptonic : $t\bar{t} \rightarrow b l v_l b l v_l$ (10.3%) 解析に適した状態を選択をする

e.g.) 前後非対称性 → semi-leptonic

Matrix element method \rightarrow di-leptonic

→究極の精度を見積もるために、最終的には全ての終状態を用いる

ILC夏の合宿2016

Matrix element methodについて

Matrix element method

全ての物理量が再構成できる場合に最も効果的な解析方法

マルチパラメータフィットによってフォームファクターを包括的に測定

測定の精度

- クォーク(ジェット):方向○、エネルギー△
- レプトン(*e*,*μ*) : 方向〇、エネルギー〇

(ニュートリノ : 方向×、エネルギー×)

→3) Di leptonic : $t\bar{t} \rightarrow blv_l blv_l$ (10.3%) を採用

力学的再構成によって全ての物理量を再構成する

□ 力学的再構成の結果

arXiv:1503.04247v1 [hep-ph] P.H. Khiem

(ISR, Bremsstrahlung, 検出器の効果等を含んでいないサンプルを使用)

ILC夏の合宿2016

Matrix element methodによる数値解析

$$\mathcal{L}_{\text{int}} = \sum_{\nu=\gamma,Z} g^{\nu} \left[V_l^{\nu} \bar{t} \gamma^l (F_{1V}^{\nu} + F_{1A}^{\nu} \gamma_5) t + \frac{i}{2m_t} \partial_{\nu} V_l \bar{t} \sigma^{l\nu} (F_{2V}^{\nu} + F_{2A}^{\nu} \gamma_5) t \right]$$

 $N(\alpha) = \mathcal{L} \int |\mathcal{M}|^2(\alpha) \text{ dLips} \qquad \begin{array}{l} N: \prec \sim \lor \& L: \mathcal{V} \equiv \mathcal{I} \gg \mathcal{I}, \\ \alpha = \{Re[F_{1V}^v, F_{1A}^v, F_{2V}^v, F_{2A}^v], Im[F_{2A}^v]\}, (v = Z, \gamma) \end{array}$

dLips $\propto d\cos\theta_t \ d\cos\theta_b \ d\phi_b \ d\cos\theta_{\bar{b}} \ d\phi_{\bar{b}} \ d\cos\theta_{l^+} \ d\phi_{l^+} \ d\cos\theta_{l^-} \ d\phi_{l^-} \ dq_t^2 \ dq_{\bar{t}}^2 \ dq_W^2 \ dq_{\bar{W}}^2$

9次元位相空間での分布から、10個のフォームファクターをフィットする 分散共分散行列

停留点α₀を標準模型(LO)の値として、分散共分散行列を計算

$$V_{ij}^{(-1)} \equiv \Lambda_{ij} = N \langle \omega_i \omega_j \rangle_0$$

$$N = N(\alpha_0)$$

$$\omega_i = \frac{\partial |\mathcal{M}|^2(\alpha)}{\partial \alpha_i} \frac{1}{|\alpha^0|\mathcal{M}|^2(\alpha^0)}$$

ILC夏の合宿2016

Matrix element methodによる数値解析

P.H. Khiem *arXiv:1503.04247v1 [hep-ph]* Matrix element methodによる、統計誤差と共分散の値(at generator with SM LO)

$\mathcal{R}e \ \delta \tilde{F}_{1V}^{\gamma}$	$\mathcal{R}\mathrm{e} \ \delta \tilde{F}_{1V}^Z$	$\mathcal{R}e \ \delta \tilde{F}_{1A}^{\gamma}$	$\mathcal{R}\mathrm{e} \ \delta \tilde{F}_{1A}^Z$	$\mathcal{R}e \ \delta \tilde{F}_{2V}^{\gamma}$	$\mathcal{R}\mathrm{e} \ \delta \tilde{F}_{2V}^Z$	$\mathcal{R}\mathrm{e} \ \delta \tilde{F}_{2A}^{\gamma}$	$\mathcal{R}\mathrm{e} \ \delta \tilde{F}_{2A}^Z$	$\mathcal{I}\mathrm{m} \ \delta \tilde{F}_{2A}^{\gamma}$	$\mathcal{I}\mathrm{m} \delta \tilde{F}^{Z}_{2A}$
0.0037	-0.18	-0.09	+0.14	+0.62	-0.15	0	0	0	0
	0.0063	+.14	-0.06	-0.13	+0.61	0	0	0	0
		0.0053	-0.15	-0.05	+0.09	0	0	0	0
			0.0083	+0.06	-0.04	0	0	0	0
				0.0105	-0.19	0	0	0	0
					0.0169	0	0	0	0
						0.0068	-0.15	0	0
							0.0118	0	0
								0.0069	-0.17
L									0.0100

500GeV, 500fb-1, P(e-:e+)=(-0,8:+0.3),(+0.8:-0.3)

Parton level の解析で1%以下の精度が得られている

→ ISR, 検出器の効果等を取り入れて研究することが目標

Selection study for Di-leptonic channel

最初の取り組みとしてDi-leptonic channelのセレクションを行った

- ▶ 孤立レプトンを見つける (cone cut: #iso_lep =2)
- > Overlay backgroundを除去(k_T algorithm)
- > 2-Jets clustering (Durham algorithm)
- ▶ b-taggingによってb-jetらしさを求める(LCFIPlus package)

(Reconstruction events from their kinematics. \rightarrow Not yet)

→Selection study for di-leptonic final state

Samples : DBD samples, ILCSOFT: v01-16-p05

Current results of cut study of di-leptonic analysis

$\sqrt{s} = 500 \text{ GeV}$, 500 fb⁻¹, P(e^- , e^+) = (-0.8, +0.3)

500 fb ⁻¹ ttbar(-0.8,+0.3)di-leptonic(Signal)		ttbar Semi-leptonic	ZZ semi-leptonic	Single Z ee	
Generated	53289	208505	183053	941270	
	(100%)	(100%)	(100%)	(100%)	
# of lepton = 2	25482	2716	28343	97536	
	(47.8%)	(1.30%)	(15.5%)	(10.362%)	
b-tag1 > 0.8 or	22278	2029	5110	13942	
b-tag2 > 0.8	(41.8%)	(0.973%)	(2.79%)	(1.48%)	
Thrust < 0.9	21612	2022	1524	5727	
	(40.6%)	(0.970%)	(0.833%)	(0.608%)	
Evis< 420	20958	1252	502	1114	
	(39.3%)	(0.600%)	(0.274)	(0.118%)	

Efficiency = 39.3%, Significance $(N_{sig.}/\sqrt{N_{sig.} + N_{bkg.}}) = 135.8$

•ILC夏の合宿2016

□ まとめと今後の予定

- Matrix element methodは物理量が全て得られている場合に、パラ メータを包括的に求めることが出来る手法
- ISR,検出器の効果等を含め実験的な精度を見積もるのが目標
- 大学の夏季休業の間、フランス(LAL)に留学してこの手法について勉強する予定

backup

Cut on the visible energy

The visible energy of the signal is smaller because of two missing neutrinos

● ILC夏の合宿2016

Thrust < 0.9

b-tag1 < 0.8