Dark sector searches on flavor experiments @ FPCP 2017

Thomas Czank for the BELLE and Belle II collaborations

Tohoku University

June 8th, 2017

Outline

1 Dark Sector Motivation

3 Flavor Experiments capable of probing the Dark Sector

4 e^+e^- Colliders

Dark Sector Motivation

 $\begin{array}{c} \mbox{What is the Dark Sector?} \\ \mbox{Flavor Experiments capable of probing the Dark Sector} \\ e^+e^- \mbox{ Colliders} \end{array}$

Galaxy Rotation Problem

Stacy S. McGaugh, Federico Lelli, and James M. Schombert Phys. Rev. Lett. 117, 201101 - Published 9 November 2016

<u>Black dots</u> are the observed rotation curves, dotted lines are gas components, dashed lines are stellar disk, dot and dashed lines are the Bulge and the continuous line is the visible components together

There is extra invisible Matter!

• Could be elegantly explained by Supersymmetry with Weakly Interacting Massive Particle (WIMP), Cold Dark Matter

Dark Sector Motivation

 $\begin{array}{c} \mbox{What is the Dark Sector}?\\ \mbox{Flavor Experiments capable of probing the Dark Sector}\\ e^+e^- \mbox{ Colliders} \end{array}$

Searched Region Map

The Snowmass 2013 Proceedings Organized by APS (FERMILAB-CONF-13-648)

- WIMP Search via Nuclear Recoil Direct Detection
- <10 GeV region could be investigated by flavor experiments

Dark Sector Motivation

 $\begin{array}{c} \mbox{What is the Dark Sector?} \\ \mbox{Flavor Experiments capable of probing the Dark Sector} \\ e^+e^- \mbox{ Colliders} \end{array}$

Positron fraction in Cosmic rays detection experiments

M.Aguilar et al.(AMS Collaboration) Phys.Rev.Lett.110,141102-2013

- Positron fraction excess not expected from SM
- Antiproton fraction excess <u>not</u> observed
- Secluded U(1)_D boson as a possible model
 2 GeV
- aka <u>Dark Photon</u> A

 High intensity low energy experiments can search 1MeV~10GeV region

5/31

 $\begin{array}{c} {\rm Dark \ Sector \ Motivation} \\ {\rm What \ is \ the \ Dark \ Sector'} \\ {\rm Flavor \ Experiments \ capable \ of \ probing \ the \ Dark \ Sector'} \\ e^+e^- \ {\rm Colliders} \end{array}$

Solution to SM gaps?

Vector Portal Diagram

Axion Portal Diagram

Dark Sectors 2016 Workshop:Community Report (1608.08632)

- Neutrino Portal
- Vector Portal
- Higgs Portal
- Axion portal
- Portals are the window to the Dark Sector by SM particles
- Every portal has a Dark Sector SM interaction

 $\begin{array}{c} {\rm Dark \ Sector \ Motivation} \\ {\rm What \ is \ the \ Dark \ Sector \ } \\ {\rm Flavor \ Experiments \ capable \ of \ probing \ the \ Dark \ Sector \ } \\ e^+e^- \ {\rm Colliders} \end{array}$

Dark Sector Models

Dark Photon Flavor experiments typical channel

Dark Sectors 2016 Workshop:Community Report (1608.08632)

• minimal kinetically mixed dark photon

$$\mathcal{L}_{\mathrm{int}_{A'}} \propto \frac{1}{2} \frac{\epsilon}{\cos \theta_{\mathrm{W}}} F^{\mu\nu} F^{'}_{\mu\nu}, \epsilon = \frac{\alpha}{\alpha}$$

- SM gauge group $SU(3)_c \times SU(2)_L \times U(1)_Y$
- Dark vector boson group $U(1)_D$

Flavor Experiments Types

Dark Sectors 2016 Workshop:Community Report (1608.08632)

Summary of dark photon experiments

Dark Sectors 2016 Workshop:Community Report (1608.08632)

E	ا مام	Duaduat	Detect	$M(M_{a})/)$	Dee	Deam	EDeem	Ih an un /L imp	Dum
Exp	Lab	Product	Detect	wi(wiev)	(Ma)()	Deam	(CaV)	ibeam/Lim	Kun
					(lviev)		(Gev)		
APEX	JLab	e-brem	$\ell^+\ell^-$	65–600	0.5%	e	1.1-4.5	150µA	2010(18)
A1	Mainz	e-brem	e^+e^-	40-300	?	e	0.2-0.9	140µA	2011
HPS	JLab	e-brem	e^+e^-	20-200	1-2 %	e	1–6	50–500nA	2015(18)
DarkLight	JLab	e-brem	e^+e^-	< 80	?	e	0.1	10 mA	2020
MAGIX	Mainz	e-brem	e^+e^-	10-60	?	e	0.155	1mA	2020
NA64	CERN	e-brem	e^+e^-	1–50	?	e	100	$2 imes 10^{11}$ EOT/yr	2017(22)
Super-HPS	SLAC	e-brem	visible	< 500	?	e	4–8	1µA	?
VEPP3	Budker	annih	invis	5-22	1	e^+	0.500	10 ³³ cm ⁻² /s	2019
PADME	Frascati	annih	invis	1-24	2–5	e^+	0.550	$\leq 10^{14} e^+ { m OT/y}$	2018
MMAPS	Cornell	annih	invis	20–78	1-6	e ⁺	6.0	10 ³⁴ cm ⁻² /s	?
BES-III	BEPC II	several	vis/in	$\lesssim 5 { m GeV}$	1	e^+e^-	≤4.63	10 ³³ cm ⁻² /s	2008
BaBar	PEP II	several	vis/in	$\lesssim 12$ GeV	1–5	e^+e^-	9 imes 3.1	3×10 ³³ cm ⁻² /s	2008
KLOE 2	Frascati	several	vis/in	$< 1.1 { m GeV}$	1.5	e^+e^-	0.51	$2 \times 10^{32} cm^{-2}/s$	2014
BELLE	KEKB	several	vis/in	$\lesssim 10$ GeV	1–5	e^+e^-	8 imes 3.5	2×10 ³⁴ cm ⁻² /s	2008
Belle II	SuperKEK	several	vis/in	$\lesssim 10 { m GeV}$	1–5	e^+e^-	7 imes 4	$1\sim 10$ ab $^{-1}/y$	2018
SeaQuest	FNAL	several	$\mu^+\mu^-$	$\lesssim 10~{ m GeV}$	3-6%	р	120	10 ¹⁸ POT/y	2017(20)
SHIP	CERN	several	visible	$\lesssim 10~{ m GeV}$	1–2	р	400	2×10 ²⁰ POT/5y	2026
LHCb	CERN	several	$\ell^+\ell^-$	\lesssim 40 GeV	~ 4	рр	6500	$\sim 10 f b^{-1} / y$	2010(15)

BES III (BEPC II)

Design and construction of the BESIII detector Nucl.Instr.and Meth.A, 614(2010), p.345

- Symmetric Collider
- $2 < \sqrt{s} < 4.63$ GeV collision energy
- τ -Charm factory
- integrated luminosity 10.3fb⁻¹
- $\varepsilon < 10^{-2}$

• $e^+e^- \rightarrow A' \gamma_{\rm ISR} \rightarrow \ell^+\ell^- \gamma_{\rm ISR}$

 $\begin{array}{c} {\rm Dark \ Sector \ Motivation} \\ {\rm What \ is the \ Dark \ Sector?} \\ {\rm Flavor \ Experiments \ capable \ of \ probing \ the \ Dark \ Sector} \\ e^+e^- \ {\rm Colliders} \end{array}$

BES III Dark Photon Search

• 2.93 fb^{-1} data taken at $\sqrt{s} = 3.773$ GeV

•
$$e^+e^-
ightarrow e^+e^-(\mu^+\mu^-)\gamma_{\rm ISR}$$

• lepton invariant mass **no** <u>obvious increase</u> in $1.5 \sim 3.4 \text{ GeV}/c^2$

Dark Photon Search in the Mass Range Between 1.5 and 3.4 GeV/ c^2 (1705.04265) - 2017

lines for the J/ψ resonance exclusion region

BES III Dark Photon EL

Dark Photon Search in the Mass Range Between 1.5 and 3.4 GeV/ c^2 (1705.04265) - 2017

BABAR (PEP II)

The BaBar detector: Upgrades, operation and performance Nucl.Instr.and Meth.A,729(2013) p.615

- Asymmetric collider
- B-factory
- $\bullet~9.0\,\times\,3.1~GeV$
- integrated luminosity 557 fb⁻¹
- $10^{-4} < \varepsilon < 10^{-3}$
- $e^+e^-
 ightarrow \gamma A'/A'2\ell$ as well as displaced Vertex
- Single energetic photon trigger

BABAR Dark Photon Search

J.P.Lees et al.(BaBar Collaboration) Phys.Rev.Lett. 113 201801

1

m_A. (GeV)

BABAR Leptophilic Dark Gauge Search

- $e^+e^- \rightarrow \mu^+\mu^- Z^\prime \rightarrow \mu^+\mu^-\mu^+\mu^-$ search
- $Z^{'}, \mu$ coupled dark gauge
- no signal found
- $M_{Z^{'}} \propto g^{'} < S >$

KLOE 2 (DAΦNE)

The tracking detector of the KLOE experiment Nucl.Instr.and Meth.A,488(2002),p.51

- Symmetric collider
- φ-factory
- $m_\phi \simeq 1.019 \; {
 m GeV}$
- integrated luminosity 1.8 fb⁻¹
- Apart from usual channel, $\phi
 ightarrow \eta A^{'}$
- Kinetic mixing range $10^{-4} < \varepsilon < 10^{-3}$

KLOE 2 Dark Photon Search

0 200 400 600 800

 $M_{\rm U} \,({\rm MeV})$

• new constraints on ε

Belle (KEKB)

The Physics of B factories - 2014

- Asymmetric collider
- B-factory
- integrated luminosity 1040fb⁻¹

- $e^+e^-
 ightarrow \gamma A^{'}/A^{'}h^{'}/A^{'}2\ell$, as well as displaced Vertex
- Better resolution for charged final states compared to BaBar, but no single energy photon trigger

 $\begin{array}{c} {\rm Dark \ Sector \ Motivation} \\ {\rm What \ is the \ Dark \ Sector?} \\ {\rm Flavor \ Experiments \ capable \ of \ probing \ the \ Dark \ Sector} \\ e^+e^- \ {\rm Colliders} \end{array}$

Belle Dark Photon, Dark Higgs Search

Search for the Dark Photon and the Dark Higgs Boson at Belle Phys.Rev.Lett.114.211801 - 2015

•
$$e^-e^+ \rightarrow A^{'}h^{'}, h^{'} \rightarrow A^{'}A^{'}, A^{'} \rightarrow \ell^-\ell^+ \text{ or } \pi^+\pi^-$$

- $1.1 < m_{A'} < 3.5 \text{ GeV}/c^2$
- 2.2 < $m_{h'}$ < 10.5 GeV/ c^2

$$P_X = P_{e^+e^-} - P^1_{A'_{e^+\ell^-}} - P^2_{A'_{e^+\ell^+}}$$

- $A'h' \rightarrow 3A' \rightarrow 6\pi$ $m_A^{1'}$ highest mass, $m_A^{3'}$ lowest mass
- no signal found

 $\begin{array}{c} {\sf Dark \ Sector \ Motivation} \\ {\sf What \ is the \ Dark \ Sector?} \\ {\sf Flavor \ Experiments \ capable \ of \ probing \ the \ Dark \ Sector} \\ e^+e^- \ \ Colliders \end{array}$

BELLE quark coupled dark sector search

Search for a dark vector gauge boson decaying to $\pi^+\pi^-$ using $\eta \to \pi^+\pi^-\gamma$ decays Phys.Rev.D.94.092006

- dark sector gauge boson $U^{'}$
- $D^{*+} \rightarrow D^0 \pi^+$, $D^0 \rightarrow K^0_S \eta$, $\eta \rightarrow U' \gamma$, $U' \rightarrow \pi^+ \pi^-$
- $\alpha_{U'} = \frac{g_{U'}^2}{4\pi}$
- baryonic fine structure $10^{-3} < \alpha_{U'} < 10^{-2}$
- 290 $< m_{U'} < 520 {
 m MeV}/c^2$
- no signal found

Blue curve is the PDF fitted over the pion pair invariant mass distribution

Belle II (SuperKEKB)

The Belle II Experiment and SuperKEKB Upgrade, Boqun Wang for Belle II (1511.09434v2) - 2016

- e^+e^- annihilation at $\sqrt{s}\sim 10~{
 m GeV}$
- Single Photon trigger planned
- Watch Elisa and Riccardo Talks tomorrow for whole Belle II
 Physics prospects and current status
- $A^{'}$ mass range 20MeV 10 GeV, for $\gamma\ell^+\ell^-$
- $e^+e^-\to \gamma A^{'}/A^{'}h^{'}/A^{'}2\ell,$ as well as displaced Vertex, (BELLE channels)

 $\begin{array}{c} {\rm Dark \ Sector \ Motivation} \\ {\rm What \ is the \ Dark \ Sector?} \\ {\rm Flavor \ Experiments \ capable \ of \ probing \ the \ Dark \ Sector} \\ e^+e^- \ {\rm Colliders} \end{array}$

Belle II Dark Photon Search prospects

- extrapolation based on BABAR dark photon search
- bigger luminosity and momentum resolution will improve dark photon search

Flavor experiments prospects

- BES III
 - $J/\psi \rightarrow A' \ell^+ \ell^-$
 - dark higgstrahlung
- KLOE 2
 - $\phi \to \eta A'$
 - dark higgstrahlung $e^+e^- \rightarrow A^{'}h^{'}$
 - invisible A['] decays to light dark matter

- BABAR
 - invisible decays and displaced vertex decays
- BELLE
 - $e^+e^-
 ightarrow A' \gamma_{\rm ISR}$ channel
 - $Z^{'}$ prompt decays $\mu^{+}\mu^{-}$
 - invisible decays and displaced vertex decays

Summary

- no evidence for WIMPs, other dark sector models to be searched
- no signal found for different coupling models of the Dark Photon
- Still many signal searches have not been performed
- Many experiments are currently concluding upgrades

Backup

Positron fraction explanations

GALEX, JPL-Caltech, NASA; Drawing: APS/Alan Stonebraker

- Standard Model predicted decreasing e⁺ fraction with increasing energy
- Pulsar accelerated e^{\pm}
- Dark matter decays

Visible Dark Photons

Dark Sectors 2016 Workshop:Community Report (1608.08632)

 $\mathcal{L}_{\rm kin.mix} = \frac{1}{2} \epsilon F^{\mu\nu} F^{'}_{\mu\nu} \ {\rm with} \ F^{'}_{\mu\nu} = \partial_{\mu} A^{'}_{\nu} - \partial_{\nu} A^{'}_{\mu}$

- e⁻ beam bremsstrahlung after collision with W target
- $A^{'}$ bump hunt in 65 $< m_{A^{'}} <$ 600 MeV

PADME (Frascati)

The PADME experiment at LNF M. Raggi on behalf of the PADME Collaboration 2017

- 550MeV e^+ beam incident on diamond target
- looking for the $e^+e^- \to A^{'}\gamma,$ missing mass , γ prompts shower in the calorimeter

Sea Quest (FNAL)

• 120GeV p beam incident on diamond target

• looking for the $q ar q o {\cal A}^{'} o \ell^+ \ell^-$, proton-bremsstrahlung, others