

Top electroweak couplings study using di-leptonic state at \sqrt{s} = 500 GeV, ILC with the Matrix Element Method

LCWS2017, Strasbourg

Yo Sato^A

Akimasa Ishikawa^A, Emi Kou^B, Francois Le Diberder^B, Hitoshi Yamamoto^A,

Junping Tian^C, Keisuke Fujii^D, Ryo Yonamine^A

Tohoku University^A, LAL^B, University of Tokyo^C, KEK^D

Introduction

- Top quark is the heaviest particle in the SM. Its large mass implies that it is strongly coupled to the mechanism of electroweak symmetry breaking (EWSB)
- \rightarrow Top EW couplings are good probes for New physics behind EWSB

$$\mathcal{L}_{\text{int}} = \sum_{v=\gamma,Z} g^v \left[V_l^v \bar{t} \gamma^l (F_{1V}^v + F_{1A}^v) \gamma_5) t + \frac{i}{2m_t} \partial_\nu V_l \bar{t} \sigma^{l\nu} (F_{2V}^v + F_{2A}^v) \gamma_5) t \right] \overset{\text{e}}{\underset{\text{e}}{\longrightarrow}} \mathcal{I}_{1V} (F_{1V}^v + F_{1A}^v) \gamma_5) t + \frac{i}{2m_t} \partial_\nu V_l \bar{t} \sigma^{l\nu} (F_{2V}^v + F_{2A}^v) \gamma_5) t \right] \overset{\text{e}}{\underset{\text{e}}{\longrightarrow}} \mathcal{I}_{1V} (F_{1V}^v + F_{1A}^v) \gamma_5) t + \frac{i}{2m_t} \partial_\nu V_l \bar{t} \sigma^{l\nu} (F_{2V}^v + F_{2A}^v) \gamma_5) t \right]$$

Di-leptonic state of top-pair production has rich observables, so one can get higher intrinsic sensitivity and do multi-parameters fit.

\rightarrow Out target is the di-leptonic state

Use the Matrix Element method to handle many observables and many parameters simultaneously.

\sqrt{s}	500 GeV	
Polarization (P_{e^-}, P_{e^+})	(-0.8, +0.3) "Left" / (+0.8, -0.3) "Right"	
Integrated luminosity	500 fb ⁻¹ (250 fb ⁻¹ for each polarization)	
Generator	Whizard (including ISR/BS, $\gamma\gamma \rightarrow$ hadrons)	
Detector model	ILD_01_v05 (TDR version)	

Sample of events

\Box Signal : $ee \rightarrow bb\mu\mu\nu\nu$

- We focus on only the *di-muonic state* which is the most accurate to be reconstructed in the dileptonic state.
- This includes **top pair production**, single top production and so on.

□ Main background

- $\square ee \rightarrow bbllvv (except for bb\mu\muvv)$
- $\square ee \rightarrow qqll \text{ (mainly } ZZ)$
- $\square ee \rightarrow bblvqq \text{ (mainly top pair production)}$

Process of study

Event Reconstruction

- Isolated muon reconstruction
- \succ γγ → hadrons suppression
- b-jet reconstruction
- Kinematical reconstruction

Analysis and Discussion

- Helicity angles computation
- > Analysis with Matrix Element Method Today's topic
- Optimal variables computation
- Assessment of goodness of fit

Today's topic

Today's topic

Kinematical Reconstruction : Strategy

Neutrinos and photon of ISR cannot be reconstructed by detectors.

There are **7 unknowns** in di-muonic state of top pair production.

 $P_{x,\nu}, P_{y,\nu}, P_{z,\nu}, P_{x,\overline{\nu}}, P_{y,\overline{\nu}}, P_{z,\overline{\nu}}, P_{z,\gamma_{\rm ISR}}$

To recover them, we impose 8 constraints,

- Initial state constraints : $E_{total} = 500 \text{ GeV}, \vec{P}_{total} = \vec{0}$
- Mass constraints : $m_t = m_{\bar{t}} = 174 \text{ GeV}$, $m_{W^+} = m_{W^-} = 80.4 \text{ GeV}$

There are enough constraints to determine the missing variables.

Kinematical Reconstruction : Algorithm

Introduce **4** free parameters : $P_{x,v}$, $P_{y,v}$, $P_{z,v}$, $P_{z,\gamma_{ISR}}$

Other missing variables are defined as follows;

$$P_{x,\overline{v}} = -(P_{x,\text{Visible}} + P_{x,v}), P_{y,\overline{v}} = -(P_{y,\text{Visible}} + P_{y,v}), P_{z,\overline{v}} = -(P_{z,\text{Visible}} + P_{z,v} + P_{z,\gamma_{\text{ISR}}})$$

(All physics variables also can be computed using these parameters.)

Define the likelihood function;

 $L_0 = BW(m_t, 174)BW(m_{\bar{t}}, 174)BW(m_{W^+}, 80.4)BW(m_{W^-}, 80.4)Gaus(E_{total}, 500)$ (BW : Breit-Wigner function, Gaus : Gaussian function, other parameters are written in backup)

To correct the energy resolution of b-jets reconstruction, we add **2** parameters, $E_b, E_{\overline{b}}$, and resolution functions, R, to the likelihood function.

$$L = L_0 * R(E_b, E_b^{\text{reconstructed}}) R(E_{\overline{b}}, E_{\overline{b}}^{\text{reconstructed}})$$

Kinematical Reconstruction

For simplicity, we define $q = -2 \log L + C$ (scaled as the minimum value becomes 0)

There are two possibilities for combination of b-jet and muon.

→ Define *the best candidate* as a candidate having **smaller** q and q_{min} as q of the best candidate. One can check that it is true or miss combination by generator information.

 q_{\min} distribution of Left polarization events (left : whole distribution, right : zoomed one)

 \rightarrow Cut on q_{\min} is useful to reduce the background and miss combination events.

ISR photon

Scatter plots between MC and reconstructed of Left polarization and signal events

(left : $P_{Z,\gamma_{\text{ISR}}}$, right : mass of top pair)

Small correlations between MC and reconstructed are observed.

 \rightarrow Cut on $P_{Z,\gamma_{ISR}}$ or M_{tt} is useful to reduce hard ISR events.

ISR photon

 $P_{Z,\gamma_{ISR}}$ distribution of miss combination events are wider than true combination \rightarrow Cut on $P_{Z,\gamma_{ISR}}$ is also useful to reduce miss combination events

Cut table

250 fb ⁻¹ (-0.8,+0.3) Left	initial	$\mu^+\mu^-$	b-tag1>0.8 or b-tag2>0.8	$q_{ m min} < 3 \ \& \left P_{z,\gamma} ight < 50 \ { m GeV}$
Signal <i>bbμμνν</i> (True)	2061	2725	1921 (80.9%) (e =	945 (90.7%) (e =
Signal <i>bbμμνν</i> (Miss)	2961	(e = 92.0 %)	453 80.2%) (19.1%)	97 35.2%) (9.3%)
<i>bbllνν</i> (except <i>bbμμνν</i>)	23609	387	335	71
bblvqq	104114	40	31	3
qqll (ZZ)	91478	13800	2519	21
<i>ll</i> (weight = 4)	212274 (→ 849096)	74961 (→ 299844)	90 (→ 360)	0
<i>lνlν</i> (<i>WW</i>) (weight = 4)	377058 (→ 1508232)	1884 (→ 7536)	3 (→ 12)	0
lllvlv (llWW)	3021	947	19	0

Matrix Element Method

We assume that full matrix squared, $|M|^2$, includes up to quadratic terms of the form factors, hence the expected number of events also includes up to quadratic terms;

$$|M|^{2} = \left(1 + \sum_{i} \omega_{i} \delta F_{i} + \sum_{ij} \widetilde{\omega}_{ij} \delta F_{i} \delta F_{j}\right) |M|_{\rm SM}^{2}$$
$$N = \left(1 + \sum_{i} \Omega_{i} \delta F_{i} + \sum_{ij} \widetilde{\Omega}_{ij} \delta F_{i} \delta F_{i}\right) N_{\rm SM}$$

where δF_i is deference of the form factor from SM.

Matrix Element Method

Matrix element method is based on the maximum likelihood method and a likelihood function is written by $|M|^2$ and N;

$$-2\log L(\delta F) = \chi^{2}(\delta F) = -2\left(\sum_{e=1}^{N_{\text{event}}} \log\left(1 + \sum_{i} \omega_{i}(\Phi_{e})\delta F_{i} + \sum_{ij} \widetilde{\omega}_{ij}(\Phi_{e})\delta F_{i}\delta F_{j}\right) - N_{\text{event}}\log\left(1 + \sum_{i} \Omega_{i}\delta F_{i} + \sum_{ij} \widetilde{\Omega}_{ij}\delta F_{i}\delta F_{j}\right)\right)$$

where Φ_e is helicity angles which have sensitivity for the form factors. $\chi^2(\delta F)$ is scaled to 0 at $\delta F = 0$.

If we use the information of yields with Poisson distribution, the second term can be replaced as $N_{\text{event}}(\sum_{i} \Omega_i \delta F_i^{\text{SM}} + \sum_{ij} \widetilde{\Omega}_{ij} \delta F_i^{\text{SM}} \delta F_j^{\text{SM}})$

Matrix Element Method

What we must do to fit the form factors correctly is to reconstruct ω_i correctly.

Indeed the results of fit are related with ω_i and Ω_i which are called **optimal variables**

- $\delta F_i^{\text{Fit}} \simeq \frac{\langle \omega_i \Omega_i \rangle}{\langle \omega_i^2 \rangle}$
- Covariance matrix, V_{ij} : $V_{ij}^{-1} \simeq N_{\text{event}} < \omega_i \omega_j >$

Reconstructed (All Events) are similar with MC Truth

Outliers

A few events are distributed far from other events. It can be caused by detector effects and ISR effects, in other wards they are badly reconstructed events.

These events easily induce biases on results of fit. \rightarrow **Outliers**

We fit $\omega - \Omega$ distribution within a region not including *outliers*. Efficiency cost is only 1.6%(0.8%) for Left(Right) polarization events.

Preliminary Results without Outliers

Results of 10 parameters multi-fit

This precision is comparable with semi-leptonic state analysis considering difference of statistics. *One can fit more parameters simultaneously.*

But there are still small biases. We have room for improvement → Next Slide

Improved method : Binned likelihood analysis

Estimate the number of events in each bin of the ω distribution described as function of δF , $N_b(\delta F)$, from the full MC simulation. Fit $N_b(\delta F)$ to the "data" using the following $\chi^2(\delta F)$.

$$\chi^{2}(\delta F) = \sum_{b=1}^{N_{\text{bin}}} \frac{\left(n_{b}^{\text{Data}} - N_{b}(\delta F)\right)^{2}}{n_{b}^{\text{Data}}}$$

where n_b^{Data} is the number of events in bin *b* of the "data".

This method is by construction unbiased if the full MC simulation describes the "data" and one can use $\chi^2(\delta F)$ to assess the goodness of fit.

Example : Result of 1 parameter fit

 $\delta \tilde{F}^Z_{1V} = 0.010 \pm 0.017 \text{ (CL} = 33\%)$

For the multi-parameter fit, more statistics of the full MC simulation is required.

 ω distribution for δF_{1V}^Z of Left polarization events

Summary

- Missing neutrinos and ISR/BS photon are reconstructed by kinematical reconstruction.
 - $P_{Z,\gamma_{ISR}}$ cannot be reconstructed precisely, but it is useful to reduce the miss combination and hard ISR events.
- $\Box \omega \Omega$ distributions, which called optimal variables, can be reconstructed. One rejects outliers events and fit form factors.

→ Comparable results with semi-leptonic analysis. More parameters can be fitted simultaneously.

Small biases are still observed. (Goodness of fit is also not so great. It is discussed in backup slides)

→ The binned likelihood analysis can measure the parameters without biases and assess goodness of fit.

Backup

Top EW Couplings Study

- Top quark is the heaviest particle in the SM. Its large mass implies that it is strongly coupled to the mechanism of electroweak symmetry breaking (EWSB)
 - → Top EW couplings are good probes for New physics behind EWSB

$$\mathcal{L}_{\text{int}} = \sum_{v=\gamma,Z} g^v \left[V_l^v \bar{t} \gamma^l (F_{1V}^v + F_{1A}^v \gamma_5) t + \frac{i}{2m_t} \partial_\nu V_l \bar{t} \sigma^{l\nu} (F_{2V}^v + F_{2A}^v \gamma_5) t \right]$$

In new physics models, such as composite models, the predicted deviation of coupling constants, g_L^Z , g_R^Z (= $F_{1V}^Z \mp F_{1A}^Z$) from SM is typically 10 %

ZIY

Di-leptonic State of the top pair production

Top pair production has three different final states:

- Fully-hadronic state $(e^+e^- \rightarrow t\bar{t} \rightarrow b\bar{b}q\bar{q}q\bar{q})$ 46.2 %
- Semi-leptonic state $(e^+e^- \rightarrow t\bar{t} \rightarrow b\bar{b}q\bar{q}l\nu)$ 43.5%
- **Di-leptonic state** $(e^+e^- \rightarrow t\bar{t} \rightarrow b\bar{b}l\nu l\nu)$ **10.3%**

Advantage

- More observables be computed
- \rightarrow Higher intrinsic sensitivity to the form factors, in principle.

Difficulty

- Two missing neutrinos
- Lower statistics : 6 times less events than the semi-leptonic state

 $((2/3 \times 43.5 \%) / (4/9 \times 10.3 \%) = \sim 6.3)$

Pre-selection

The quality cut is necessary to reject the b-jet miss-assignment events when we don't use the b-charge reconstruction. The cut might be also effective to reject background events.

We use only two loose constraints, called **Pre-selection**, before the kinematical reconstruction of top quark, which is useful to shorten the CPU time.

- 1 isolated μ^- and 1 isolated μ^+
- 1 (or 2) jet has high b-tag value obtained by the LCFI Plus (b-tag1 > 0.8 or b-tag2 > 0.8)

Other constraints that can be considered :

Thrust value, Visible energy, Mass of $\mu^{-}\mu^{+}$, ...

Pre-selection : Cut table

250 fb ⁻¹ (-0.8, +0.3) Left	Initial	$\mu^+\mu^-$	b-tag1>0.8 or b-tag2>0.8
Signal bbμμνν	2961	2725 (e = 92.0%)	2374 (e = 80.2%)
bbllνν (except bbμμνν)	23609	387	335
bblvqq	104114	40	31
qqll (ZZ)	91478	13800	2519
<i>ll</i> (weight = 4)	212274 (→849096)	74961 (→ 299844)	90 (→ 360)
<i>lvlv (WW)</i> (weight = 4)	377058 (→ 1508232)	1884 (→ 7536)	3 (→ 12)
lllvlv (llWW)	3021	947	19

Pre-selection : Cut table

250 fb ⁻¹ (+0.8, -0.3) Right	initial	$\mu^+\mu^-$	b-tag1>0.8 or b-tag2>0.8
Signal bbμμνν	1255	1162 (e = 92.6%)	1040 (e = 82.9%)
bbllvv (except bbμμvv)	10181	160	138
bblvqq	45053	18	12
qqll (ZZ)	46344	6980	1237
<i>ll</i> (weight = 4)	161371 (→ 64524)	57916 (→ 231664)	61 (→ 244)

Cut table

250 fb ⁻¹ (-0.8,+0.3) Right	initial	$\mu^+\mu^-$	b-tag1>0.8 or b-tag2>0.8	$q_{ m min} < 3 \ \& \left P_{z, \gamma} ight < 50 \ { m GeV}$
Signal <i>bbμμνν</i> (True)	1955	1162	874 (84.0%) (e =	437 (94.2%) (e =
Signal <i>bbμμνν</i> (Miss)	1255	(e = 92.6 %)	166 82.9%) (16.0%)	27 37.0%) (5.8%)
<i>bbllvv</i> (except <i>bbμμνν</i>)	10181	160	138	30
bblvqq	45053	18	12	0
qqll (ZZ)	46344	6980	1237	6
<i>ll</i> (weight = 4)	161371 (→ 64524)	57916 (→ 231664)	61 (→ 244)	0

Helicity Angles

All final state particles including two neutrinos can be calculated. The 9 helicity angles which are related to the ttZ/γ vertex can be computed.

 $\theta_t, \theta_{W^+}^{t \text{ frame}}, \phi_{W^+}^{t \text{ frame}}, \theta_{\mu^+}^{W^+ \text{ frame}}, \theta_{W^-}^{\overline{t} \text{ frame}}, \phi_{W^-}^{\overline{t} \text{ frame}}, \theta_{\mu^-}^{W^- \text{ frame}}, \phi_{\mu^-}^{W^- \text{$

The optimal variables ω are defined at this 9-dimention phase space.

Relation of the helicity angles of μ^{\pm} and $\omega - \Omega$

When we don't use the $\phi_{\mu^{\pm}}^{W^{\pm}}$ or $(\phi_{\mu^{\pm}}^{W^{\pm}}, \theta_{\mu^{\pm}}^{W^{\pm}})$, the $\omega - \Omega$ distribution becomes sharper, hence the sensitivity becomes lower.

→ $(\phi_{\mu^{\pm}}^{W^{\pm}}, \theta_{\mu^{\pm}}^{W^{\pm}})$ has a sensitivity to the ttZ/γ .

AWLC2017

Parameters of Likelihood function

Breit-Wigner function of mass of top and W

$$BW(m) \propto \frac{1}{1 + \left(\frac{m - m_0}{m_0 \Gamma_0}\right)^2}$$

$$m_{t,0} = m_{\bar{t},0} = 174, m_{W^+,0} = m_{W^-,0} = 80.4, \Gamma_0 = 5$$

Gaussian function of Beam energy spread

$$Gaus(E_{total}) \propto \exp\left[-\left(\frac{E_{total} - 500}{0.39}\right)^2\right]$$

Energy resolution of b-jets

$$G(\sigma_j, K; E_b^{\text{Measurement}})$$

$$\propto \exp\left[-\left(\frac{E_b^{\text{Measurement}} - E_b^{\text{MC}}}{\sigma_j * \left(E_b^{\text{Measurement}}\right)^K}\right)^2\right]$$

Define the resolution function R as

$$R = c_1 G_1 + c_2 G_2 + c_3 G_3$$

Results of fit :

$$c_1 = 0.50, \sigma_{j,1} = 0.77, K_1 = 0.45$$

 $c_2 = 0.48, \sigma_{j,2} = 6.4, K_2 = 0.31$
 $c_3 = 0.02, \sigma_{j,3} = 4.7, K_3 = 0.69$

Goodness of Fit

The confidence level is just computed from δF^{Fit} (or $\chi^2(\delta F^{\text{Fit}})$)

\rightarrow Need to assess goodness of fit in another way

Reminder of our assumption for the Matrix Element Method

$$|M|^{2} = \left(1 + \sum_{i} \omega_{i} \delta F_{i} + \sum_{ij} \widetilde{\omega}_{ij} \delta F_{i} \delta F_{j}\right) |M|^{2}_{SM}, N = \left(1 + \sum_{i} \Omega_{i} \delta F_{i} + \sum_{ij} \widetilde{\Omega}_{ij} \delta F_{i} \delta F_{i}\right) N_{SM}$$

→ One can define PDF as
$$f(\delta F) = \frac{(1+\sum_{i} \omega_i \delta F_i + \sum_{ij} \widetilde{\omega}_{ij} \delta F_i \delta F_j)}{(1+\sum_{i} \Omega_i \delta F_i + \sum_{ij} \widetilde{\Omega}_{ij} \delta F_i \delta F_i)} f_{SM}$$
 where $f_{SM} = \frac{|M|_{SM}^2}{N_{SM}}$ is PDF of SM.

Expected value of ω_i and $\widetilde{\omega}_{ij}$ for given δF can be computed from the PDF

 $<\omega_i>(\delta F) = \int \omega_i f(\delta F) d\omega d\widetilde{\omega}, \qquad <\widetilde{\omega}_{ij}>(\delta F) = \int \widetilde{\omega}_{ij} f(\delta F) d\omega d\widetilde{\omega}$

 $< \omega_i > (\delta F), < \tilde{\omega}_{ij} > (\delta F)$ should be close to $< \omega_i >_{data}, < \tilde{\omega}_{ij} >_{data}$ if our assumption is correct.

Goodness of Fit

Define $\chi^2_{GoF,i}(\delta F)$ and $\tilde{\chi}^2_{GoF,ij}(\delta F)$ to assess the Goodness of Fit.

$$\chi^{2}_{\text{GoF},i}(\delta F) = \frac{\left(\langle \omega_{i} \rangle_{\text{data}} - \langle \omega_{i} \rangle(\delta F)\right)^{2}}{\langle \omega_{i}^{2} \rangle_{\text{data}} - \langle \omega_{i} \rangle^{2}_{\text{data}}}, \qquad \tilde{\chi}^{2}_{\text{GoF},ij}(\delta F) = \frac{\left(\langle \widetilde{\omega}_{ij} \rangle_{\text{data}} - \langle \widetilde{\omega}_{ij} \rangle(\delta F)\right)^{2}}{\langle \widetilde{\omega}^{2}_{ij} \rangle_{\text{data}} - \langle \widetilde{\omega}_{ij} \rangle^{2}_{\text{data}}}$$

Table of $\chi^2_{GoF,i'}$ $\tilde{\chi}^2_{GoF,ij}$ of Left polarization events

LCWS2017, Strasbourg

Goodness of Fit : Outliers

Large χ^2_{GoF} implies that our assumption might be wrong.

However, there is another possibility of reason \rightarrow **Outliers**

A few events are distributed far from other events. It can be caused by detector effects, ISR effects, etc.

 \rightarrow These events might be outliers and induce so large χ^2_{GoF}

Goodness of Fit

Reject events which have too large(small) ω , $\tilde{\omega}$:

$$|\omega_i - \Omega_i| > 10\sigma[\omega_i^{SM}], \qquad |\widetilde{\omega}_{ij} - \widetilde{\Omega}_{ij}| > 10\sigma[\omega_{ij}^{SM}]$$

Criteria are selected very preliminary.

Efficiency cost is only 1.6%(0.8%) for Left(Right) polarization events.

Most of large $\chi^2_{GoF,i}$, $\tilde{\chi}^2_{GoF,ij}$ **become much better.** It implies such large values are induced by outliers. Although some still have large values (~11), one may reduce them changing criteria for outliers.

But some of $\tilde{\chi}^2_{GoF,ij}$ are still 3-4. We suppose it comes from ISR effects and detector effect

Preliminary Results without Outliers

Results of 10 parameters multi-fit

 $\begin{bmatrix} \mathcal{R}e \ \delta \tilde{F}_{1V}^{\gamma} & -0.0138 \pm 0.0132 \end{bmatrix}$ $\mathcal{R}e \ \delta \tilde{F}_{1V}^{Z} + 0.0284 \pm 0.0229$ $\mathcal{R}e \ \delta \tilde{F}_{1A}^{\gamma} + 0.0171 \pm 0.0183$ $\mathcal{R}e \ \delta \tilde{F}^{Z}_{1A} + 0.0537 \pm 0.0285$ $\mathcal{R}e \ \delta \tilde{F}_{2V}^{\gamma} - 0.0847 \pm 0.0401$ $\mathcal{R}e \ \delta \tilde{F}_{2V}^Z + 0.1132 \pm 0.0642$ $\mathcal{R}e \ \delta \tilde{F}_{2A}^{\tilde{\gamma}} -0.0160 \pm 0.0239$ $\mathcal{R}e \ \delta \tilde{F}_{2A}^{Z} - 0.0539 \pm 0.0408$ $\mathcal{I}m \ \delta \tilde{F}_{2A}^{\gamma} + 0.0428 \pm 0.0265$ $\mathcal{I}m \, \delta \tilde{F}^{Z}_{2A} + 0.0222 \pm 0.0372$

 $\begin{bmatrix} \mathcal{R}e \ \delta \tilde{F}_{1V}^{\gamma} & -0.0148 \pm 0.0129 \end{bmatrix}$ $\mathcal{R}e \ \delta \tilde{F}_{1V}^Z + 0.0232 \pm 0.0226$ $\mathcal{R}e \ \delta \tilde{F}_{1A}^{\gamma} + 0.0140 \pm 0.0184$ $\mathcal{R}e \ \delta \tilde{F}_{1A}^{\tilde{Z}} + 0.0309 \pm 0.0286$ $\mathcal{R}e \ \delta \tilde{F}_{2V}^{\gamma} - 0.0736 \pm 0.0371$ $\mathcal{R}e \ \delta \tilde{F}_{2V}^Z + 0.0564 \pm 0.0601$ $\mathcal{R}e \ \delta \tilde{F}_{2A}^{\gamma} - 0.0059 \pm 0.0226$ $\mathcal{R}e \ \delta \tilde{F}_{2A}^{Z} - 0.0377 \pm 0.0389$ $\mathcal{I}m \ \delta \tilde{F}_{2A}^{\gamma} + 0.0403 \pm 0.0238$ $\mathcal{I}m \ \delta \tilde{F}^{Z}_{2A} + 0.0007 \pm 0.0343$

The results of fit becomes also better.

Preliminary Results without Outliers & ISR

From the MC information, one can reject events having hard ISR.

Results of 10 parameters multi-fit ($\sqrt{s} > 495$ GeV)

Goodness of Fit

Table of $\chi^2_{GoF,i}$, $\tilde{\chi}^2_{GoF,ij}$ of Right polarization events (left : with outliers, center : without outliers, right : without outliers & ISR)

Improved method : Binned likelihood analysis

 $\chi^2(\delta F)$ is defined as following;

$$\chi^{2}(\delta F) = \sum_{b=1}^{N_{\text{bin}}} \frac{\left(n_{b}^{\text{Data}} - N_{b}(\delta F)\right)^{2}}{n_{b}^{\text{Data}}}$$

 $N_b(\delta F)$ is obtained from the very large full MC simulation changing δF , which is called **the template method**. However, it can be also obtained by **the re-weighting method**

$$N_b(\delta F) = \frac{n^{\text{Data}}}{N^{\text{MC Simulation}}} \sum_{e \in b} 1 * \frac{|M|^2(\delta F)}{|M|_{\text{SM}}^2}$$

$$= \frac{n^{\text{Data}}}{N^{\text{MC Simulation}}} \sum_{e \in b} \left(1 + \sum \omega_i^{\text{Truth}} \delta F_i + \sum \widetilde{\omega}_{ij}^{\text{Truth}} \delta F_i \delta F_j\right)$$

where ω_i^{Truth} and $\widetilde{\omega}_{ij}^{\text{Truth}}$ are the optimal variables at MC truth level. Only one simulation is needed if one uses this method.

Since $\tilde{\omega}^{\text{Truth}}$ is a coefficient of $O(\delta F^2)$ and δF is so small, we use only ω_i^{Truth} for now.

Improved method : Binned likelihood analysis

In the definition of $\chi^2(\delta F)$, we assume the deviation is $\sqrt{n_b}$. So the n_b must be large (>10). The following likelihood function can be used even if n_b is small.

$$-2\log L(\delta F) = -2\sum_{b=1}^{N_{bin}} \left(n_b^{\text{Data}} \ln \left(1 + \sum_i o_{b,i} \delta F_i + \sum_{ij} \tilde{o}_{b,ij} \delta F_i \delta F_j \right) \right) \\ -N_b^{\text{SM}} \left(\sum_i o_{b,i} \delta F_i + \sum_{ij} \tilde{o}_{b,ij} \delta F_i \delta F_j \right) \right)$$

where
$$o_{b,i} = \frac{1}{N_b^{SM}} \sum_{e \in b} \omega_i^{\text{Truth}}$$
, $\tilde{o}_{b,ij} = \frac{1}{N_b^{SM}} \sum_{e \in b} \widetilde{\omega}_{ij}^{\text{Truth}}$.

This definition is more precise because we don't use any assumptions and it is also by construction unbiased. However we cannot assess the goodness of fit from the likelihood function.