Measurement of A_{LR} in the e⁺e⁻ -> $Z\gamma$ at the 250 GeV ILC

TOHOKU UNIVERSITY Experimental Particle Physics Labo.

M2 Takayuki Ueno Tim Barklow, Hitoshi Yamamoto, Ryo Yonamine, Jan Strube

Outline

Motivation

- Previous studies
- •SiD
- Higgs Effective Field Theory

Simulation

- •Set up
- Signal Process
- Method
- Event Selection

Results

Conclusion and Future Plan

Motivation - Previous studies -

Why Z boson?

Z boson can be produced 'on resonance' in very large numbers giving low statistical errors and with a sensitive energy dependence

-> That makes it much easier to fit its parameters with very high precision

-> It is possible to predict other physical parameters

Z boson parameters have served as good references

SLC

longitudinal polarization electron beam was established

•the first e+e- linear collider

•600 thousand Z decays collected by the SLD experiment

LEP

•an electron-positron circular collider with a circumference of approximately 27 km

•17 million Z decays accumulated by the ALEPH, DELPHI, L3 and OPAL experiments 3

Motivation - SiD overview-

<u>SiD</u>

provides excellent momentum and energy resolution over the broad range of particles energies expected at the ILC

due to

- 5T solenoidal magnetic field,
- a vertex detector with silicon pixels
- a main tracker with silicon strips et al.

The ILC baseline design includes 80% polarized electron and 30% polarized positron

Especially for quantities where beam polarization is needed, exactly A_{LR} , huge progress compared to the present precision can be expected

Motivation - Higgs Effective Field Theory -

General SU(2) × U(1) gauge invariant Lagrangian with dimension-6 operators in addition to the SM

$$\begin{split} \Delta L &= \frac{c_H}{2v^2} \partial^{\mu} (\Phi^{\dagger} \Phi) \partial_{\mu} (\Phi^{\dagger} \Phi) + \frac{c_T}{2v^2} (\Phi^{\dagger} \overleftrightarrow{D}^{\mu} \Phi) (\Phi^{\dagger} \overleftrightarrow{D}_{\mu} \Phi) - \frac{c_6 \lambda}{v^2} (\Phi^{\dagger} \Phi)^3 \\ &+ \frac{g^2 c_{WW}}{m_W^2} \Phi^{\dagger} \Phi W^a_{\mu\nu} W^a_{\mu\nu} + \frac{4gg' c_{WB}}{m_W^2} \Phi^{\dagger} t^a \Phi W^a_{\mu\nu} B^{\mu\nu} \\ &+ \frac{g'^2 c_{BB}}{m_W^2} \Phi^{\dagger} \Phi B_{\mu\nu} B^{\mu\nu} + \frac{g^3 c_{3W}}{m_W^2} \epsilon_{abc} W^a_{\mu\nu} W^{b\nu}_{\rho} W^{c\rho\mu} \\ &+ i \underbrace{c_{HD}}_{v^2} (\Phi^{\dagger} \overleftrightarrow{D}^{\mu} \Phi) (\bar{L} \gamma_{\mu} L) + 4i \underbrace{c'_{HD}}_{v^2} (\Phi^{\dagger} t^a \overleftrightarrow{D}^{\mu} \Phi) (\bar{L} \gamma_{\mu} t^a L) \\ &+ i \underbrace{c_{HE}}_{v^2} (\Phi^{\dagger} \overleftrightarrow{D}^{\mu} \Phi) (\bar{e} \gamma_{\mu} e) + c_{\tau \Phi} \frac{y_{\tau}}{v^2} (\Phi^{\dagger} \Phi) \bar{L}_3 \cdot \Phi_{\tau R} + h.c. \end{split}$$

$$s_*^2 = s_0^2 + rac{s_0^2}{c_0^2 - s_0^2} (c_{HL}' + 8c_{WB} - c_0^2 c_T) - rac{1}{2} c_{HE} - s_0^2 (c_{HL} - c_{HE})$$

If the incoming beams can be polarized, A_{LR} is the most sensitive variable to the effective weak mixing angle

Set up

• Simulation setup

Event Generation : WHIZARD 1.95

- Samples : Mixed DBD sample
 - Signal Process : $e^+e^- \Rightarrow \gamma^*/Z^* \Rightarrow$ a fermion-pair
 - Background Processes : e⁺e⁻ => W⁺W⁻, ZZ, single W, single Z, γγ, γe -> X
 - ISR & Beamstrahlung ON
 - $E_{CM} = 250 \text{ GeV}$
 - Integral luminosity
 250 fb⁻¹ for 80L30R / 80R30L
 25 fb⁻¹ for 80L30L / 80R30R

Detector Simulation : DSiD (a fast simulation Delphes detector)

Signal Process Definition

$Signal: e^+e^- \to f\bar{f} + 86GeV < M_{f\bar{f}}(truth) < 96GeV$

Method

Precise measurement of the beam energy at LEP

Motivation

The direct measurement of the W mass with an accuracy of 30-50 MeV at LEP2

-> It requires a precise determination of the E_{COM} (below 30 MeV)

<u>Signal</u>

 $e^+e^- \Longrightarrow Z\gamma \Longrightarrow$ hadrons events (2jets)

 $\begin{aligned} \theta_1, \theta_2: \text{ the angles of the 2 jets with respect to the direction of Z boson's velocity} \\ |\beta| &= \frac{|sin(\theta_1 + \theta_2)|}{sin\theta_1 + sin\theta_2} \cdots (1) \qquad x = \frac{2|\beta|}{1 + |\beta|} \cdots (2) \\ \theta_1, \theta_2 \Leftrightarrow \text{ Effective Center-of-Mass Energy} \\ & \text{arxiv.org/abs/hep-ex/9810047} \end{aligned}$

This method was actually applied for the data collected with the ALEPH detector⁸

Method

Method

No ISR case $\sqrt{s} = \sqrt{4E_1E_2} = \sqrt{4E^2}$ ISR case $\sqrt{s'} = \sqrt{4E_1E_2} = \sqrt{4E(E - xE)} = \sqrt{4E^2(1 - x)} = \sqrt{s(1 - x)}$

Event Selection

Efficiency and Significance -for 250fb⁻¹ 80L30R -

GenJet		Before Event Selection	After Event Selection	
Signal	Z -> charged leptons	1435325.0 (100%)	491475.0 (34.2%)	
	Z -> hadrons	11231604.0 (100%)	4476526.2 (39.9%)	
Background		710042679.9 (100%)	1252105.9 (0.176%)	
Significance		471.2	1992.0	

FastJet		Before Event Selection	After Event Selection	
Signal	Z -> charged leptons	1435325.0 (100%)	511737.5 (35.7%)	
	Z -> hadrons	11231604.0 (100%)	4313152.1 (38.4%)	
Background		710042679.9 (100%)	1258844.1 (0.177%)	
Significance		471.2	1956.2	

VLCJet		Before Event Selection	After Event Selection	
Signal	Z -> charged leptons	1435325.0 (100%)	433637.5 (30.2%)	
	Z -> hadrons	11231604.0 (100%)	3916783.4 (34.9%)	
Background		710042679.9 (100%)	1466618.1 (0.207%)	
Significance		471.2	1803.8	

A_{LR} Table

FastJet	N _{LR} (250fb ⁻¹)	N _{RL} (250fb ⁻¹)	N _{LR} -N _{RL} /N _{LR} +N _{RL}	A _{LR}
All Events	6083733.7	3813950.0	0.2293	0.2585
All Signal	4824889.6	3270475.0	0.1920	0.2165
Z -> charged leptons (Signal)	511737.5	360337.5	0.1736	0.1957
Z -> hadrons (Signal)	4313152.1	2910137.5	0.1942	0.2189
All Background	1258844.1	543475.0	0.3969	0.4474
Background (ZZ, WW, single Z, single W)	518950.0	71262.5	0.7585	0.8551
γγ, γe -> X	159375.0	109125.0	0.1872	0.2109
Background (ee -> ff outside 86 < M _{ff} < 96)	580519.1	363087.5	0.2304	0.2598

 $DBD \ sample : sin^2 \theta_{eff} = 0.22225 \ -> A_{LR}(DBD) = 0.2193$

For equal luminosity,
$$A_{LR} = \frac{N_{LR} - N_{RL}}{N_{LR} + N_{RL}} \frac{1 + P^+P^-}{P^+ + P^-}$$

13

The Statistical Error of A_{LR}

$$A_{LR} = \frac{\sigma_{LR} - \sigma_{RL}}{\sigma_{LR} + \sigma_{RL}} \frac{1 + P^+ P^-}{P^+ + P^-} = \frac{N_{LR} - N_{RL} \cdot r_L}{N_{LR} + N_{RL} \cdot r_L} \frac{1 + P^+ P^-}{P^+ + P^-}$$
$$r_L = \frac{luminosity \ for \ 80R \ 30L}{luminosity \ for \ 80L \ 30R}$$

The propagation of the errors

$$\Delta A_{LR} \approx \sqrt{\left(\frac{\partial A_{LR}}{\partial N_{LR}}\right)^2 (\Delta N_{LR})^2 + \left(\frac{\partial A_{LR}}{\partial N_{RL}}\right)^2 (\Delta N_{RL})^2} = \frac{2N_{LR}N_{RL} \cdot r_L}{(N_{LR} + N_{RL})^2} \left(\frac{1}{\sqrt{N_{LR}}} + \frac{1}{\sqrt{N_{RL}}}\right) \frac{1 + P^+ P^-}{P^+ + P^-}$$

The statistical error of
$$A_{LR}$$
 for all signal
 $N_{LR}(250fb^{-1}) = 4824889.6$
 $N_{RL}(250fb^{-1}) = 3270475.0$
 $r_L = 1$
 $\Delta A_{LR}(500fb^{-1}) = 0.00055$

For the full-running at 250GeV,

$$\Delta A_{LR}(2ab^{-1}) = \frac{1}{2} \Delta A_{LR}(500fb^{-1}) = 0.00028$$

14

A_{LR} correction

$$\begin{aligned} A_{LR} &= \frac{1 + P^+ P^-}{P^+ + P^-} \cdot A_m + \frac{1 + P^+ P^-}{P^+ + P^-} \bigg[f_{bkg} (A_m - A_{bkg}) - A_L + A_m^2 A_P - E_{cm} \frac{\sigma'(E_{cm})}{\sigma(E_{cm})} A_E - A_{eff} \bigg] \\ &= \frac{1 + P^+ P^-}{P^+ + P^-} [A_m (1 + f_{bkg}) - f_{bkg} A_{bkg} + \ldots] \approx \frac{1 + P^+ P^-}{P^+ + P^-} [A_m (1 + f_{bkg}) - f_{bkg} A_{bkg}] \end{aligned}$$

A _m	Measured left-right asymmetry
f _{bkg}	Fraction of background
A_{bkg}	Background asymmetry
AL	Luminosity asymmetry
A _P	Polarization asymmetry
A _E	Center-of –mass energy asymmetry
A_{eff}	Efficiency asymmetry

FastJet	A _m	A _{bkg}	f _{bkg}	A _{LR}	
All Events	0.2293	0.3969	0.2226	0.2164	
All Z -> leptons	0.1646	0.1161	0.1776	0.1953	
All Z -> hadrons 0.2367		0.4230	0.2285	0.2188	
$A_m = \frac{N_L(total) - N_R(tot}{N_L(total) + N_R(tot)}$	$rac{al)}{al)} \qquad A_{bkg} = rac{N_I}{N_I}$	$A_{bkg} = rac{N_L(bkg) - N_R(bkg)}{N_L(bkg) + N_R(bkg)}$		$f_{bkg} = rac{N_L(bkg) + N_R(bkg)}{N_L(signal) + N_R(signal)}$	

Introduction - The Blondel Scheme -

The cross-section e+e- > Z > a fermion-pair for polarized beams can be written as

$$\sigma = \sigma_u \left[1 - P^+ P^- + A_{LR} (P^+ - P^-) \right]$$

 σ_{u} : the unpolarized cross section

P⁺ : the longitudinal polarizations of the positrons measured in the direction of the particle's velocity

P⁻: the longitudinal polarizations of the electrons measured in the direction of the particle's velocity

$$\sigma_{++} = \sigma_u \left[1 - P^+ P^- + A_{LR} (P^+ - P^-) \right]$$

$$\sigma_{-+} = \sigma_u \left[1 + P^+ P^- + A_{LR} (-P^+ - P^-) \right]$$

$$\sigma_{+-} = \sigma_u \left[1 + P^+ P^- + A_{LR} (P^+ + P^-) \right]$$

$$\sigma_{--} = \sigma_u \left[1 - P^+ P^- + A_{LR} (-P^+ + P^-) \right]$$

 $\sigma_{\pm\pm}$ the first sign denotes the positron- and the second one the electron polarization

$$A_{LR} = \sqrt{\frac{(\sigma_{++} + \sigma_{-+} - \sigma_{+-} - \sigma_{--})(-\sigma_{++} + \sigma_{-+} - \sigma_{+-} + \sigma_{--})}{(\sigma_{++} + \sigma_{-+} + \sigma_{+-} + \sigma_{--})(-\sigma_{++} + \sigma_{-+} + \sigma_{+-} - \sigma_{--})}}$$

A_{LR} Table - The Blondel Scheme -

FastJet	N _{LR} (250fb⁻ ¹)	N _{RL} (250fb⁻ ¹)	N _{LL} (25fb⁻ ¹)	N _{RR} (25fb ⁻ ¹)	A _{LR}
All Events	6083733.7	3813950.0	361667.6	258947.6	0.2625
All Signal	4824889.6	3270475.0	284825.1	214270.1	0.2173
Z -> leptons (Signal)	511737.5	360337.5	31511.3	24648.8	0.2023
Z -> hadrons (Signal)	4313152.1	2910137.5	253313.8	189621.3	0.2193
All Background	1258844.1	543475.0	76842.5	44677.5	0.4801
Background (ZZ, WW, single Z, single W)	518950.0	71262.5	28595.0	8165.0	0.8627
үү,үе -> Х	159375.0	109125.0	13950.0	12087.5	0.7120
Background (ee -> ff, outside 86 < M _{ff} < 96)	580519.1	363087.5	34297.5	24425.0	0.2623

$$A_{LR} = \sqrt{\frac{(\sigma_{++} + \sigma_{-+} - \sigma_{+-} - \sigma_{--})(-\sigma_{++} + \sigma_{-+} - \sigma_{+-} + \sigma_{--})}{(\sigma_{++} + \sigma_{-+} + \sigma_{+-} + \sigma_{--})(-\sigma_{++} + \sigma_{-+} + \sigma_{+-} - \sigma_{--})}}}_{17}$$

The Statistical Error of A_{LR} - The Blondel Scheme -

$$A_{LR} = \sqrt{\frac{(\sigma_{++} + \sigma_{-+} - \sigma_{+-} - \sigma_{--})(-\sigma_{++} + \sigma_{-+} - \sigma_{+-} + \sigma_{--})}{(\sigma_{++} + \sigma_{-+} + \sigma_{+-} + \sigma_{--})(-\sigma_{++} + \sigma_{-+} + \sigma_{+-} - \sigma_{--})}}$$

The propagation of the errors

$$\Delta A_{LR} = \sqrt{\left(\frac{\partial A_{LR}}{\partial \sigma_{++}}\right)^2 (\Delta \sigma_{++})^2 + \left(\frac{\partial A_{LR}}{\partial \sigma_{+-}}\right)^2 (\Delta \sigma_{+-})^2 + \left(\frac{\partial A_{LR}}{\partial \sigma_{-+}}\right)^2 (\Delta \sigma_{-+})^2 + \left(\frac{\partial A_{LR}}{\partial \sigma_{--}}\right)^2 (\Delta \sigma_{--})^2}$$
$$\Delta \sigma = \Delta \frac{N}{L} \approx \sqrt{\left(\frac{\partial \frac{N}{L}}{\partial N}\right)^2 (\Delta N)^2} = \frac{\sqrt{N}}{L}$$

The statistical error of A_{LR} for all signal $N_{RR}(25fb^{-1}) = 214270.1$ $N_{LR}(250fb^{-1}) = 4824889.6$ $N_{RL}(250fb^{-1}) = 3270475.0$ $N_{LL}(25fb^{-1}) = 284825.1$ $\Delta A_{LR} = 0.00074$

For the full-running at 250GeV,

$$\Delta A_{LR}(2ab^{-1}) = 0.00039$$

Future Plan

- Do full detector simulation
- Add the photon to the subprocess final state in Whizard in order to obtain the correct photon angular distribution
- Estimate the systematic error requirement on

$$r_L, P^+, P^-$$

 $A_{bkg}, f_{bkg}, A_L, A_{eff}, A_p, A_E$

Conclusion

• With the SiD at ILC, the relative statistical error of A_{LR} can be reduced to about 0.1% with the full-running at 250 GeV

Assuming the systematic error can be controlled, this should help improve the Higgs coupling errors in the EFT framework

Number of Jets

Z -> leptons (Signal) Z -> hadrons (Signal) Background

Number of Jets

Before After

Jet : FastJet

If a jet pass all the following restrictions it is not counted. (Hard photon candidate)

- Jet mass = 0
- Jet charge = 0
- Jet Energy > 70GeV

Number of Charged Tracks

Number of Charged Tracks - Significance -

 $5 \leq$ Number of Charged Tracks

Total Visible Invariant Mass - Event Selection For Z -> hadrons -

Red : Z -> hadrons (Signal) Blue : Background Restriction

- 2 Jets
- 0.8 < x' < 0.917
- $5 \leq$ Number of Charged Tracks

Total Visible Invariant Mass - Event Selection For Z -> leptons -

Background Study

$$\rho = \sqrt{2E_l(1 - \cos\theta)}$$

Z -> hadrons (Signal) W+W-=> semi-leptonic decay Restriction

- 2 jets (GenJet)
- 0.8 < x' < 0.917
- $5 \leq$ Number of Charged Tracks
- 70 < Total Visible Invariant Mass <

94

Background Study For Z -> hadrons

Background For Z -> hadrons (GenJet)

Background Study for Z -> hadrons (Beam Background)

Background Processes For Z -> hadrons (GenJet) Entries $\gamma e \rightarrow e +$, 2 down-type quarks GenJet **Background Processes** $\gamma e^+ => e^+, 2$ up-type quarks => e-, 2 up-type quarks - Restriction -2 Jets $\gamma e + => e +$, 2 down-type quarks 0.8 < x' < 0.917 $5 \leq$ Number of Charged Tracks 70GeV < Total Visible Invariant Mass < 94GeV ProcessID Background Processes For Z -> hadrons (FastJet) Background Processes For Z -> hadrons (VLCJet) Entries Entries **VLCJet** FastJet

ProcessID

ProcessID