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- Measurement principle

- Calculating beam size

- Result is trial



Introduction
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1.1 Pair Monitor

• Beam size
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𝜎𝑥 = 729 𝑛𝑚 𝜎𝑦 = 7.7 𝑛𝑚

𝜎𝑧 = 0.3 𝑚𝑚

2 × 1010 particles

𝐿 =
𝑁2

4𝜋𝜎𝑥𝜎𝑦
𝑁 : number of particle 

per second
𝜎𝑥(𝜎𝑦) : horizontal(vertical) 

beam size

𝛿𝑦

z
x

y

➢Purpose : measurement of beam size

➢Good point : nondestructive measurement

• Pair monitor

2 × 1010 particlesbeam size(𝜎𝑥, 𝜎𝑦) : nominal

Beam gap(𝛿𝑦) : 0.0

High Luminosity!

• Importance variable to know 
luminosity

𝜎𝑥 , 𝜎𝑦, 𝛿𝑦

Between e- bunch and e+ bunch



1.2 Measurement method
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◼Measurement principle
1. Photons are generated at the IP

2. The photon reacts with the beam to generate a incoherent pair 

of ee-

3. Incoherent pair is scattered by the electric field by the beam

4. Incoherent pair collides with Pair Monitor while spiraling by the 

magnetic field inside the measuring instrument

IP

e-

e-

e+

e+

e-bunch e+bunch

e+ has 

information of 

e+ bunch

Generated

positron

The intensity of scattering 

depends on the shape of the 

bunch



Simulation
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2.1 Simulation setup
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• We calculated the hit distribution of pair monitor.

• parameter as TDR2013

• Center-of-mass energy : 250 GeV

Summary table of the 250 GeV baseline parameter



2.2 Forward Instrumentation
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Pair Monitor

ILD 1m

Pair Monitor Design

Z position with respect to the IP ~4m Pixel size 400μm ×400μm

sensitive area 10cm Thickness of sensor 200μm

• Generator : CAIN

• We assume that magnetic field is 3.5 T to z direction.

• We don’t consider other detectors
➢ for the principle condition.



2.3 Characteristic of incoherent Pair
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y

x𝜑

v

ZIP
e-

e-

e+

e+

e-bunch e+bunch

𝜑direction

Red:e+

Blue:e-

◼e+ is scatted by e+ bunch.
◼e+ bunch has a flat shape.
◼The force is strongly up and down
◼Vertical distribution
◼Spiral motion by magnetic field 

𝐵

x[μm]

y
[μ

m
]

x[μm]

e+

e-

Total

• Incoherent pair e+

Region that e+ bunch is coming.

◼e- is attracted by e+ bunch.
◼e- oscillates along the horizontal direction.
◼Horizontal distribution
◼e- travels near the beam pipe. 
◼Therefore, e- come into beam pipe at pair monitor.  

• Incoherent pair e-

y
[μ

m
]

Position of 

particle after 

bunch crossing



2.4 Calculation in magnetic field

IP
e-

e-

e+

e+

e-bunch e+bunch

We calculate incoherent pair that motion in uniform magnetic 
field until 4m. 

Pair monitor

4m

hit distribution

Beam pipe

𝐵
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2.5 Previous study

Pair monitor BeamCal
Pair Monitor + 

BeamCal

𝜎𝑥 3.1% 4.7% 2.8%

𝜎𝑦 9.9% 17.1% 8.6%

𝛿𝑦 9.0% 9.5% 7.4%
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Accuracy of beam parameter reconstruction

Regions d, D, U for defining the 

ratio of hit numbers

• define regions d, D, and U.

• calculate ratio of particles at these 

regions and all region.

• Beam parameters are reconstructed 

using the matrix method.

• The result is good value

• Ignore except for regions d, D, and U.

Reference

Y.Sato, Research and development of an 

interaction-region beam profile monitor 

for the international linear collider, 2009

although



Reconstruction

Using Deep Learning
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3.1 Machine learning

• We reconstruct beam parameter using all hit 
information.

• In order to be image recognition, we used 
machine learning(ML).
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3.2 Comparison of hit distribution
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3.2 Comparison of hit distribution
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In order to check whether machine learning is 
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3.3 Deep learning

Machine Learning

• Algorithm to find rules from a lot of input data.

• An algorithm based on the cellular tissue of an 
organism is called Neural Network(NN), which consists 
of input, hidden, and output layer.

Deep learning

• A model with multiple hidden layers is called Deep 
Neural Network (DNN).
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input hidden output

Concept of NN

node
example

𝑥1

𝑥2

𝑦1

𝑦2



3.4 Software

Tensorflow

• TensorFlow is an open source software library for high 
performance numerical computation at Machine 
learning.

• This library was developed by Google.

Keras

• Keras is a high-level neural network API, written in 
Python and is wrapper of Tensorflow.
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3.5 Training data

• We prepare 500 images for each 𝜎𝑦 .
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500

5000 4500 training data

500 validation data

split into

𝜎𝑦/𝜎𝑦
𝑇𝐷𝑅

- A hit distribution

- Black-and-white 256 gradations



3.6 Loss function

Estimate how far the current function deviates 
from the target.

𝐿 = −
1

𝑁
෍

𝑛

෍

𝑘

𝑡𝑛𝑘 log 𝑦𝑛𝑘
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cross entropy function

0.9 0.05 … 0

0 0.8 … 0

0 0 … 0.99

𝑦 =

1 0 … 0

0 1 … 0

0 0 … 1

𝑡 =𝑁

𝑘

Example(𝑁 = 3, 𝑘 = 10)

𝐿 = 0.11

“1𝜎𝑦” “2𝜎𝑦” … “10𝜎𝑦” “1𝜎𝑦” “2𝜎𝑦” … “10𝜎𝑦”

Prediction Truth value

probability of correct answer

The row 

data

- Probability value 

approximates 1.0.

- L goes down

- It is good learning

that L is low.



3.7 Result

Result of machine learning (neural network)
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Neural network learned optimum only training data.

This condition is called Over-fitting



3.8 Result
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Result when model is changed to Convolutional Neural Network(CNN). 

CNN is kind of DNN. This learning is better than NN.

Accuracy rate is 60% ~ 70%.



4.1 Summary

Consideration

• Deep learning will be probably apply to beam size 
measurement.

• Adjustment of this learning model is required.

• We need to study machine learning in detail.

Summary

• We reconstruct beam parameter using all hit 
information.

• we used machine learning.

• Machine learning : NN ← Over-fitting

• Deep learning : CNN ← Accuracy rate is 60% ~ 70%

• Adjustment of these learning model is required.
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Backups
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Introduction

Important thing

• Increase the number of reactions per unit time
𝑁[𝑠−1] = 𝐿[𝑐𝑚−2𝑠−1] × 𝜎[𝑐𝑚2]

Increase the number of reactions by high luminosity
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𝐿 : Luminosity

𝜎 : Cross section

Purpose of ILC

• measurement of higgs boson and other new 

particle 



beamstrahlung
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hit distribution of pair background(e-)

• Since the PT of the electron is 
oriented in 0 or π direction, 
draw circles up and down by 
the magnetic field.

• Since the particle's turning 
radius depends on PT, the 
distribution widens as PT

increases.

• When the PT becomes even 
larger, it collides with the pair 
monitor before the particle 
goes round.
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0.0< PT<2.0 MeV 2.0< PT<4.0 MeV 

PT>8.0 MeV Hit distribution

x

y

e+ bunch

hit

𝐵

𝑣

𝐹



hit distribution of pair background(e+)

• Positron's PT is oriented 
in π/2 or -π/2 direction, 
that draw a circle on the 
left or right.

• However, because of the 
spread of angles, the 
distribution becomes 
more uniform as 
compared with electron’s 
hit distribution.

0.0< PT<2.0 MeV 2.0< PT<4.0 MeV
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8.0< PT<10.0 MeV Hit distribution

x

y

hit

𝐵

𝑣
𝐹

e+ bunch



CNN

Convolutional Neural Network

Convolutional and Pooling layer are added to hidden 
layer of NN.

・・・ output

convolution
Pooling

Convolution

&

Pooling

convolution

Pixel 

map

output

64

64

32

32

Pooling 28


