Study of Pair-Monitor for ILC using Deep Learning

Yosuke Kobayashi

Hitoshi Yamamoto, Tomoyuki Sanuki, Ryo Yonamine Tohoku University

Contents

- 1. Introduction
 - Measurement principle
- 2. Simulation

- 3. Trial Reconstruction using Deep Learning Calculating beam size

 - Result is trial
- 4. Summary and Plan

Introduction

1.1 Pair Monitor

Beam size

Beam gap(δ_{ν}): 0.0

Between e- bunch and e+ bunch

High Luminosity!

Importance variable to know luminosity

$$\sigma_x$$
, σ_y , δ_y

$$L = \frac{N^2}{4\pi\sigma_x\sigma_y}$$

N: number of particle per second

 $\sigma_{\chi}(\sigma_{y})$: horizontal(vertical)

beam size

Pair monitor

- ➤ Purpose : **measurement of beam size**
- ➤ Good point : nondestructive measurement

1.2 Measurement method

■Measurement principle

- 1. Photons are generated at the IP
- 2. The photon reacts with the beam to generate a incoherent pair of ee-
- 3. Incoherent pair is scattered by the electric field by the beam
- Incoherent pair collides with Pair Monitor while spiraling by the magnetic field inside the measuring instrument

Simulation

2.1 Simulation setup

- We calculated the hit distribution of pair monitor.
- parameter as TDR2013
- Center-of-mass energy: 250 GeV

Summary table of the 250 GeV baseline parameter

,			
RMS bunch length	$\sigma_{ m z}$	mm	0.3
Electron RMS energy spread	$\Delta p/p$	%	0.190
Positron RMS energy spread	$\Delta p/p$	%	0.152
Electron polarisation	P_{-}	%	80
Positron polarisation	P_{+}	%	30
Horizontal emittance	$\gamma\epsilon_{ extbf{x}}$	μm	10
Vertical emittance	$\gamma\epsilon_{ m y}$	nm	35
IP horizontal beta function	$eta_{ m x}^*$	mm	13.0
IP vertical beta function	$eta_{\mathbf{y}}^{*}$	mm	0.41
IP RMS horizontal beam size	$\sigma_{ m x}^*$	nm	729.0
IP RMS veritcal beam size	$\sigma_{ m y}^{\hat{*}}$	nm	7.7

2.2 Forward Instrumentation

- Generator : CAIN
- We assume that magnetic field is 3.5 T to z direction.
- We don't consider other detectors
 - > for the principle condition.

Pair Monitor Design					
Z position with respect to the IP	~4m	Pixel size	400μm ×400μm		
sensitive area	10cm	Thickness of sensor	200μm		

2.3 Characteristic of incoherent Pair

Position of

Region that e+ bunch is coming.

- Incoherent pair e⁺
 e⁺ is scatted by e⁺ bunch.
 - e⁺ bunch has a flat shape.
 - The force is strongly up and down
 - Vertical distribution
 - Spiral motion by magnetic field

- Incoherent pair e⁻
 e⁻ is attracted by e⁺ bunch.
 - e⁻ oscillates along the horizontal direction.
 - Horizontal distribution
 - e⁻ travels near the beam pipe.
 - Therefore, e⁻ come into beam pipe at pair monitor.

 φ direction

2.4 Calculation in magnetic field

We calculate incoherent pair that motion in uniform magnetic field until 4m.

Reference Y.Sato, Research and development of an interaction-region beam profile monitor for the international linear collider, 2009

- define regions d, D, and U.
- calculate ratio of particles at these regions and all region.
- Beam parameters are reconstructed using the matrix method.
- The result is good value

although

Ignore except for regions d, D, and U.

Regions d, D, U for defining the ratio of hit numbers

Accuracy of beam parameter reconstruction

	Pair monitor	BeamCal	Pair Monitor + BeamCal
σ_{χ}	3.1%	4.7%	2.8%
σ_{y}	9.9%	17.1%	8.6%
δ_y	9.0%	9.5%	7.4%

Reconstruction Using Deep Learning

3.1 Machine learning

- We reconstruct beam parameter using all hit information.
- In order to be image recognition, we used machine learning(ML).

3.2 Comparison of hit distribution

 σ_{v}^{TDR} :nominal (729 nm)

These variables are changed significantly to conform whether available at ML

3.2 Comparison of hit distribution

In order to check whether machine learning is effective, 1 parameter was reproduced first.

3.3 Deep learning

Machine Learning

- Algorithm to find rules from a lot of input data.
- An algorithm based on the cellular tissue of an organism is called Neural Network(NN), which consists of input, hidden, and output layer.

Deep learning

 A model with multiple hidden layers is called Deep Neural Network (DNN).

3.4 Software

Tensorflow

- TensorFlow is an open source software library for high performance numerical computation at Machine learning.
- This library was developed by Google.

Keras

 Keras is a high-level neural network API, written in Python and is wrapper of Tensorflow.

Keras

TensorFlow

3.5 Training data

• We prepare 500 images for each σ_{ν} .

Black-and-white 256 gradations

500 validation data

3.6 Loss function

Estimate how far the current function deviates from the target.

$$L = -\frac{1}{N} \sum_{n} \sum_{k} t_{nk} \log y_{nk} - \text{Probability value approximates 1.0.} \\ - \text{L goes down}$$

cross entropy function

- It is good learning that L is low.

Example(N = 3, k = 10)

3.7 Result

Result of machine learning (neural network)

Neural network learned optimum only training data.

3.8 Result

Result when model is changed to Convolutional Neural Network(CNN). CNN is kind of DNN. This learning is better than NN. Accuracy rate is $60\% \sim 70\%$.

4.1 Summary

Consideration

- Deep learning will be probably apply to beam size measurement.
- Adjustment of this learning model is required.
- We need to study machine learning in detail.

Summary

- We reconstruct beam parameter using all hit information.
- we used machine learning.
- Machine learning : NN ← Over-fitting
- Deep learning : CNN ← Accuracy rate is 60% ~ 70%
- Adjustment of these learning model is required.

Backups

Introduction

Purpose of ILC

measurement of higgs boson and other new particle

Important thing

• Increase the number of reactions per unit time $N[s^{-1}] = L[cm^{-2}s^{-1}] \times \sigma[cm^2]$

L : Luminosity

 σ : Cross section

Increase the number of reactions by high luminosity

beamstrahlung

(a) Breit-Wheeler $(\gamma \gamma \to e^+e^-)$

(b) Bethe-Heitler $(e\gamma\gamma \to e^{\pm}e^{+}e^{-})$

(c) Landau-Lifshitz $(ee\gamma\gamma \rightarrow e^+e^-e^+e^-)$

hit distribution of pair background(e⁻)

- Since the P_T of the electron is oriented in 0 or π direction, draw circles up and down by the magnetic field.
- Since the particle's turning radius depends on P_T, the distribution widens as P_T increases.
- When the P_T becomes even larger, it collides with the pair monitor before the particle goes round.

hit distribution of pair background(e+)

- Positron's P_T is oriented in $\pi/2$ or $-\pi/2$ direction, that draw a circle on the left or right.
- However, because of the spread of angles, the distribution becomes more uniform as compared with electron's hit distribution.

CNN

Convolutional Neural Network

Convolutional and Pooling layer are added to hidden layer of NN.

