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Abstract

Determination of beam parameters is an essential part of

beam monitoring system. Forward Calorimeters in the ILC

play the major role for this purpose. In this research, first a

simulation of a forward detector namely, pair monitor has

been executed by utilizing the already implemented geometry

of another forward calorimeter, namely BeamCal. The later

part contains the evaluation of sensitivity of different

variables due to horizontal and vertical beam sizes.

Motivated by an approximate analytical formula of the beam

electric field and the evaluation of the sensitivity of the

variable to the beam sizes, machine learning has been used to

determined the horizontal beam size. Due to the small value

of the vertical beam sizes, it has high statistical fluctuations

across events and its prediction will require a statistics of at

least 10 bunches per one combination of horizontal and

vertical beam.
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Chapter 1

Introduction

20-th century high energy physics was revolutionised by means of the introduction
of clever detector technologies which helped made new discoveries. In the 21-st
century, the requirement of higher energy has made it challenging for experiments
to carry out new investigations. In this century, the world is also being changed in
a way that happened never before by the advent of artificial intelligence. As far as
its application is concerned, high energy physics has immense potential. Artificial
intelligence or machine learning has made it possible to predict certain quantities,
acts which were considered cumbersome in the past. Human beings rely on a model
to predict the patterns created by a certain variable. It is the other way around,
when it comes to machine learning; it predicts a model by learning from the patterns.
This behaviour can have high implication in the detector R&D and beam physics
research. This research is an attempt to show the effectiveness and limitations of
machine learning in the context of beam physics.

Linear colliders like International Linear Collider (ILC), require very dense beams
at the collision point in order to ensure maximum luminosity in a single pass. Beam
monitoring is required to make sure the adequate luminosity can be provided. Accu-
rate determination of beam parameters is essential for successful beam monitoring.
This research investigates into the behaviour different parameters with varying val-
ues of horizontal and vertical beam sizes. In an earlier research [1], the observables
from pair monitor that are sensitive to the values of beam sizes were determined.
An attempt to use image recognition technique to determine beam sizes from raw
incoherent pair backgrounds (without realisitic magnetic field/detector effect), was
employed in [2]. Utilizing the observables, this research shows the potential of ma-
chine learning to predict the beam sizes.

After a short introduction of the ILC and physics processes relevant to this study,
the initial part of this research discusses the simulation procedure under the current
scenario. Afterwards, the parameters sensitive to horizontal and vertical beam sizes
are discussed and their sensitivity to the beam sizes, are compared. It then suggests
what conditions must be satisfied by those parameters so that machine learning
techniques can be applied. Finally, a suggestion about what a future research on
this topic would look like is discussed.

9



Chapter 2

International Linear Collider

2.1 Overview of the accelerator

The International Linear Collider (ILC) is an electron-positron collider, proposed to
be built near Kitakami at Iwate Prefecture, located in the north east Japan. Having
a length of about 31 km, it will have a center-of-mass energy of 250 GeV at the
first run. ILC will play a major role in our current understanding of the universe.
Especially, it will help us investigate into the puzzling problems in the physics of
the 21st century, such as, matter-antimatter asymmetry, existence of dark matter
and the properties of the Higgs field. ILC will help achieve this goal by means of its
clean environment, high luminosity and beam polarization.

The following sections would describe the chief components of the accelerator
system.

2.2 Accelerator Components

The accelerator consists of superconducting RF main Linacs, electron source,
positron source, damping rings, ring to main Linac and a beam delivery system.

Figure 2.1: A schematic of the ILC [3]

10
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Figure 2.2: Cryomodules to be used at ILC [4]

Figure 2.3: Positron source at the ILC [5]

2.2.1 Superconducting RF Main Linacs

After an initial acceleration in upstream bunch compressors to 15 GeV, 7400 1-
m long nine-cell niobium cavities accelerate the particles tp 250 GeV.The cavities
are operated at about 2K, which is maintained constantly by immersing them into
saturated He-II bath. Liquid Helium is supplied from a total 10-12 cryogenic plants.
Each plant can cool a continuous length of 2.5 km of Linac. The main linac is made
with the curvature of the earth in mind to ensure smooth supply of Helium.

2.2.2 Electron Source

Electron beam with 90% polarisation is produced by applying LASER to GaAs
photocathode in a DC gun. After bunching and accelearating to 76 MeV by means
of normal conducting structures, superconducting solenoids rotate the spin vector
into vertical and finally the beam is injected into a damping ring.

2.2.3 Positron Source

When electron beam is passed the electron beam through a helical undulator, pho-
tons ar e generated because of synchotron radiation and these photons are directed
to a rotating Ti-alloy target with 0.4 radiation length. This results in the production
of electron-positron pairs. The electrons and photons generated from this process
are separated and dumped. This process will generate positrons with a polarisation
of 30%.

Chapter 2 Ahmed Mustahid 11
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Figure 2.4: Tradiational approach (left) vs Particle flow approach(right) [7]

2.2.4 Damping Rings

The purpose of the damping ring is to lower the emittance of the beams. Electrons
and positron damping rings operate at an energy of 5 GeV. In each of these rings,
damping is accomplished by means of 54 superferric wigglers, each 2.1 m long. The
wigglers operate at 4.5K, with a peak field requirement of 2.16T.

2.2.5 Ring to Main Linac

Ring to main Linac consists of a 5 GeV transport line which is about 15 km long,
betatron and energy collimation system, a 180o turn-around, spin rotators to polarise
beam in a specific direction and a two stage bunch compressor.

2.2.6 Beam Delivery System

Beam delivery system (BDS) transports the electron-positron beam to make them
collide at the IP with a crossing angle of 14 mrad, from the exit of the high energy
linacs. Besides, removing beam halo to reduce background, and measurement of
energy and polarisation before and after the collision are also carried out by the
BDS. BDS accommodates two detectors about IP in a push-pull configuration. This
system is designed for full upgrade of average beam power of 14MW so that they
do not have to be replaced during an upgrade to 1 TeV.

2.3 International Large Detector

With a view to gaining optimal particle-flow (PFA) performance, which facilitates
three-dimensional imaging capability of events, International Large Detector (ILD)
design consists of a hybrid tracking system, which includes a combination of silicon
tracking with a time projection chamber and a calorimeter system, all mounted in-
side a 3.5 T solenoid. A detailed description of ILD is available in the ILC Technical
Design Report volume 4 [6].

2.3.1 Particle Flow Concept

Particle flow approach exploits the high momentum resolution capability of trackers
for charged particles and high granularity of calorimeteres to explicitly reconstruct
neutral hadrons and thus distinguish between neutral particles. Such a scheme en-
sures less use of relatively imprecise calorimetric measurement and calls for highly

12 Chapter 2 Ahmed Mustahid
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Figure 2.5: Cross Section of the ILD detector system [9]

dense and segmented calorimeters, made of materials having small radiation length
and Moliere radius. Besides, the requirements of large distance between interaction
point and calorimeter under a large magnetic field, which allow patricles to drift
apart and sweep charged particles away from the neutrals, make particle recon-
struction by PFA superior to previously used energy flow scheme [8]. A schematic
diagram of the PFA is shown in figure 2.3.1.

2.3.2 Overview of detector components

Vertex System

With a view to achieving the ILC goal of precise measurement of signals from heavy
(charm and bottom) quarks and τ leptons, vertex system of ILD has been opti-
mised for spatial resolution better than 3 µm near the IP, a material budget below
0.15% X0/layer, first detector layer within a radius of about 1.6 cm and very low
pixel occupancy. Besides, saving of power consumption by means of power pulsing
mechanism and a high radiation tolerance are the features of this system.

Silicon Tracking System

The silicon tracking system helps improve the momentum resolution by means of
silicon inner and external tracker, which provide precise space points before and
after the TPC. Besides, a set of seven silicon disks provide precise traking at small
angles in the forward region where TPC does not have any coverage.

Chapter 2 Ahmed Mustahid 13
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Figure 2.6: Silicon tracking system of the ILC[10]

TPC System

Time Projection Chambers provide three dimensional information of particle with
precise resolution. Its low material budget substantially reduces the backgrounds
due to Beamstrahlung. By means of this design of TPC, a point resolution better
than 100µm and a double hit resolution of less than 2 mm becomes possible.

Electromagnetic Calorimeter System

ECal forms the first part of hadron showers and thus helps discriminate between
different hadrons. With pixel size less than the Mollier radius, ECal can distinguish
between overlapping showers, can do pattern recognition of the showers and can
reconstruct photons even in presence of particles nearby.

Hadronic Calorimeter System

HCal separates the charged hadrons from the neutral ones and thus contributes
highly to particle flow resolution for jet energies upto 100 GeV.

Forward Calorimetry

Lumical and BeamCal described below are the forward calorimeters in ILD.

LumiCal

Lumical carried out precision measurement of luminosity by means of Bhabha scat-
tering. Its small pad size is very suitable for accurate measurement of showers with
very small polar angles.

BeamCal

BeamCal are hit by massive amount of Beamstrahlung pairs and along with Pair
Monitor it makes bunch-by-bunch measurement of luminosity. It employs a shower
finding algorithm which can detect pair backgrounds even at low polar angles.

14 Chapter 2 Ahmed Mustahid
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Figure 2.7: Forward calorimeters of the ILC [11]

Figure 2.8: ILD coordinate system along with the beam axes [12]

2.3.3 Detector Coordinate System

With a Cartesian right handed coordinate system and the origin being at the nominal
IP, z-axis lies along the mean beam direction such that the p−z > 0 and the y-axis
lies along the vertical direction. The crossing angle being on the horizontal plane,
causes the incoming (outgoing) beam point to the negative (outgoing) x-axis. A
more detailed description of the coordinate system is available in [12].

Because of the inclusion of the crossing angle into the detector design, the forward
instruments, centered about the outgoing beams, are tilted by an angle of 7 mrad
with respect to the ILD coordinates. In fig 2.8, ILD coordinate system is illustrated
in the form of x,z and y axes, represented by the horizontal, vertical and the axis
pointing out of the paper respectively. The tilted axes are the beam axes tilted by a
crossing angle with respect to the z axis of the ILD coordinate system. The arrows
denote the directions of the incoming and outgoing beams.

For a visual depiction of the position of the detectors with respect to the ILD
coordinate system, refer to fig. 4.1 provided at section 4.1.

Chapter 2 Ahmed Mustahid 15
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2.3.4 Magnetic System

In order to align the magnetic field parallel to the beam axis with optimal precision,
the conventional solenoid field from the detector is superimposed with a dipole
field, produced by dedicated dipole windings installed in the detector solenoid. The
resulting configuration with the magnetic field aligned to the outgoing beam, is called
anti-DID (Detector Integrated Dipole). Presence of anti-DID ensures that majority
of the soft e+e− pairs, produced from the beam collision induced beamstrahlung,
are directed into the holes of the outgoing beams [13].

Anti-DID dipole windings have a reverse polarity compared to that of previously
adopted DID scheme. DID scheme was deprecated because of inferior background
deposition as compared to the anti-DID. A detailed simulation result of the com-
parison is available at [14].

16 Chapter 2 Ahmed Mustahid



Chapter 3

Pair Monitor

3.1 Introduction

Successful run of ILC demands unprecedentedly high luminosity. Because of this
goal, an accurate measurement of luminosity is required. While elastic scattering
(Bhabha scattering) was used in early lepton colliders such as LEP, presence of sev-
eral methods to determine luminosity will increase reliability in the obtained results.
Given the fact that the beam size of ILC will be of nano-meter order, application of
such methods are considered crucial. With this end in view, a method of measur-
ing nanometer beam size, using incoherent e+e− pair backgrounds, generated from
beam collision induced process namely, beamstrahlung, has been suggested in [15].

For transverse Gaussian beam distributions, luminosity can be defined as [16]:

L =
N1N2

4πσxσy
nbfHD (3.1)

where N1 and N2 are particle per bunch for incoming and outgoing beams respec-
tively and transverse collision area is described as 4πσxσy. nb, f,HD are number of
bunches in a train, collision frequency and enhancement factor due to the pinching
of particles when they cross the field of the opposite bunch.

Assuming N1 = N2 = N , equation 3.1 can also be expressed as:

L ∝ HD
N

σx
Nnbfr

1

σy
(3.2)

N/σx can be shown to be related to the beamstrahlung emitted, whereas 1/σy is
limited by the ability to achieve and preserve a small beam emittance and to squeeze
the beam to a very small size.

3.2 Beamstrahlung

When a force applied to a charged particle causes it to travel through a curved tra-
jectory, it emits energetic photons, known as Beamstrahlung. Beamstrahlung causes
the particle to collide at an energy less than its nominal energy. As such, physics
performance of the experiment becomes worse. Beamstrahlung can be described as
a critical energy ~ωc required to emit a photon [17],

17
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~ωc =
3

2

~γ3c

ρ
(3.3)

where, γ, c, ρ are the relativistic gamma parameter, speed of light and bending
radius of the particle trajectory respectively. Beamstrahlung parameter is defined
as,

Υ =
2

3

~ωc
E

(3.4)

The Beamstrahlung spectrum can be described by the Sokolov-Ternov spectrum,

dω̇

dω
=

α√
3πγ2

[∫ ∞
x

K5/3(x′)dx′ +
~ω
E

~ω
E − ~ω

K2/3(x)

]
(3.5)

Here, x = ω
ωc

E
E−~ω and K5/3, K2/3 are modified Bessel functions. If Υ� 1, the power

of the photon radiation is proportional to Υ2:

P =
e2

6πε0

c

ρ2
γ4 =

2

3

rec

λ2
c

mc2Υ2 (3.6)

where λc = ~/(mc). The average Beastrahlung parameter is,

〈Υ〉 =
5

6

Nre
ασz(σx + σy)

(3.7)

The maximum value of Υ parameter is,

Υmax ≈
12

5
〈Υ〉 (3.8)

In classical regime, Υ � 1 and denotes synchotron radiation. For Υ � 1 the
radiation is partially suppressed because the critical energy exceeds the beam energy.

3.3 Choice of Beam shape

nγ, the average number of photon emitted per beam particle can be expressed as
[17]:

nγ ∝ Υ
σz
γ
∝ N

σx + σy
(3.9)

Similarly, the average energy of each photon,

Eγ ∝ Υ
1

γ
∝ N

σz(σx + σy)
(3.10)

Number of photons is the more important parameter because it is dependent on
only σx and σy. In order to reduce Beamstrahlung, the denominator (σx + σy) of
equation 3.9, has to be large, whereas, for high luminosity the product σxσy need
to be small. Flat beam with σx � σy is the right choice for this purpose because
damping ring naturally delivers beams with larger horizontal emittance and small
vertical emittance. In case of flat beam i.e. for σx � σy, N/σx from equation 3.2
refers to the number of Beamstrahlung photons. Incoherent processes are the major
source of background and pair monitor is designed for detection of these particles.
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Figure 3.1: Exact and approximate Ey vs y/σy [18]

3.4 Pair Background

The photons produced as a result of Beamstrahlung can either directly interact
with oncoming electron or positron, or they might pair create to produce e+e−

pairs. The energy in the former case is low and might case additional interactions
leading to various physical processes such as Breit-Wheeler (γγ → e+e−), Landau-
Lifschitz (eeγγ → e+e−e+e−), Bethe-Heitler (eγγ → e±e+e−) [15]. This case of
Beamstrahlung real photons interacting with themselves or oncoming e+e− is called
incoherent process.

3.5 Electric field due to a relativistic flat beam [18]

Electric field E due to a beam can be computed by applying Gauss’s law:∫
S

E.n da =
Q

ε0
(3.11)

For a beam round Gaussian beam, the charge density is expressed as ,

ρ(r) =
Ne

2πσ2
exp(− r2

2σ2
) (3.12)

The electric charge inside the bunch at aradial distance r can be computed by

Q =

∫
ρ(r′)r′dr′dφ =

Ne

2πσ2

∫ 2π

0

dφ

∫ r

0

r′exp(− r′2

2σ2
)dr′ (3.13)

Equation 3.13 can be equated with the left hand side of the equation 3.11, that
equals E2πrL, for cylinder of finite length L, to get the electric field:
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E =
Ne

2πε0rL

(
1− exp

(
− r2

2σ2

))
r̂ (3.14)

Similar calculation can be done for a relativistic flat beam where σx � σy. An
exact calculation with Gauss’s law in a closed form results in Basetti-Erskine formula
with σx > σy:

Ex =
Ne

2ε0ζ
Im

(
W ((x+ iy)/ζ)− exp(−(

x2

2σ2
x

+
y2

2σ2
y

))W ((x
σy
σx

) + iy
σx
σy

)/ζ)

)
(3.15)

× exp(−(
(z − ct)2

2σ2
y

)/(
√

(2π)σz)) (3.16)

Ey =
Ne

2ε0ζ
Re

(
W ((x+ iy)/ζ)− exp(−(

x2

2σ2
x

+
y2

2σ2
y

))W ((x
σy
σx

) + iy
σx
σy

)/ζ)

)
(3.17)

× exp(−(
(z − ct)2

2σ2
y

)/(
√

(2π)σz)) (3.18)

(3.19)

where ζ =
√

(2(σ2
x − σ2

y)) and W is the complex error function.

W (t) = exp(−t2)(1 + iErfi(t)) (3.20)

where Erfi(t) = Erf(it)/i and Erf(t) = 2√
(π)

∫ t
0
exp(−p2)dp

But the approximate calculation is very straightforward and it helps us to vi-
sualize the electric field better. For a flat beam σx � σy, an assumption that the
beam is infinitely wide with a cosntant density per unit length can be made:

ρ(x) ≈ 1√
2πσx

(3.21)

and the charge density in the y is taken to be a Gaussian with finite shape,

ρ(y) ≈ 1√
2πσy

exp

[
−1

2

(
y

σy

)2
]

(3.22)

Now using equation 3.11 for finite box of length ∆z and height δx,

Ey(y, z)∆x∆z ≈ QNρ(x)ρ(z)∆x∆z

ε0

∫ y

0

ρ(y′)dy′ (3.23)

Ey(y, z) =
QN

2
√

(2π)ε0σx
Erf(

y√
2σy

)ρ(z) (3.24)

Assuming a Gaussian distribution for z, the peak value of the electric field is,

Ey =
QN

4πε0σxσz
(3.25)

Therefore it is seen that the electric field in the y direction that causes maximum
angular kick to the produced pair particles, is mostly dependent on σx in case of flat
beams.
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Figure 3.2: Principle of deflection of incoherent pair background

Figure 3.3: Detector geometry and location of the proposed pair monitor [19]

3.6 Pair Monitor

Figure 3.2 visualizes the production of incoherent pair background and their deflec-
tion by the vertical electric field. The beam shape and sizes are not scaled to the
actual ones. The nominal values of horizontal (σx) and vertical (σy) beam sizes are
729 nm and 7.7 nm respectively for 250 GeV. Pair monitor is a silicon pixel detector
that detects these incoherent pair background particles.

The pixel size of pair monitor (400× 400 µm2 [19]) is fine enough to detect the
position of the particles passing through it. Its thickness is proposed to be about
300 µm and the distance from the interaction point is about 350 cm. Because of
this small value of its thickness it cannot determine the energy of particles.
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Chapter 4

Simulation Procedure

4.1 Simulation Tools and Method

In this study full detector simulation of pair monitor has been undertaken, with
the realization that the first layer of the BeamCal mimics pair monitor readout
signal. Simulation of 25 sets of beam sizes, with 5 sets for each of the horizontal
(σx) and vertical (σy) beam sizes, were simulated. The current simulation assumes
the vertical displacement (δy) between two beams to be zero.

While the first work on full simulation was carried out by [1], the current work is
reflective of the latest ILD configuration and software packages for PFA (see 2.3.1)
based event reconstruction.

The simulation consists of three steps:

• Simulation of Beam-Beam Interaction by CAIN [20]

• Flying the incoherent pair particles to the detectors and carrying out of the
detector reactions by DD4hepSimulation package [21]

• Extracting the particle hit information using MARLIN [22] and LCIO [23]
packages

4.2 Simulation of Beam-Beam Interaction

CAIN by means of which, beam-beam interaction has been carried out, is a
FORTRAN based Monte-Carlo code for the interaction involving high energy elec-
tron, positron, and photons. Each of the σx and σy parameters, with values of 0.8,
1.0, 1.2, 1.4 and 1.6 times the nominal RMS values of the beam sizes (σ∗x = 729.0 nm,
σ∗y = 7.7 nm) [24] have been simulated. As such, each dataset of σx corresponds
to 5 different datasets of σy and vice versa. According to the convention of CAIN
user’s manual, the electron and positron beams have been simulated as right and
left going beams respectively.

Table 4.1 describes the different parameter values used in the CAIN simulation.
A detailed explanation of CAIN simulation method related to this study has been
described in [2].
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Energy (one beam) 125 GeV
Number of bunches 1312
Bunch Population 2 ×1010

Number of macro-particles 100000
Collision Rate Number of bunches × 5 Hz

Horizontal emittance 10
Vertical emittance 35

IP Horizontal β function 13.0 mm
IP Vertical β function 0.41 mm

Slope (=φcross/2) 7 mrad
External Field (Bx, By, Bz) (0,0,3.5T)

Constant Field QED BeamStrahlung
Polarization

Maximum event probability
per time step= 0.5

Gaussian Tail cutoff 4.5
nx, ny, nz, nε (units of respective σ)

Polarization vector (ζx, ζy, ζz)
Electron Beam = (0,0,-1)
Positron Beam = (0,0,1)

Beam-Beam Field
Horizontal bins = 32
Vertical bins = 128

Horizontal mesh width
(Left and Right beams)= 12×σx

Table 4.1: CAIN Simulation Parameters
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Parameter Name Value
Crossing Angle Boost 7× 10−3 rad

Field equation Mag UsualEqRhs
Filed Stepper HelixSimpleRunge
Filter Tracker edep1kev
Physics List QGSP BERT

Physics Range cut 0.1 mm

Table 4.2: Paramaters used in DD4HEP toolkit

4.3 Simulation by DD4hepSimulation Package

DD4hep toolkit brings together the ROOT Geometry package for detector construc-
tion, visualization etc. and Geant4 [25] simulation toolkit for simulation of detector
response. Its purpose is accurate interpretation of event throughout the full experi-
ment life cycle and carrying out all data processing applications such as simulation,
reconstruction, online trigger and data analysis, under a simple API (application
programming interface).

DD4hep toolkit allows compact detector description, written in XML [26] lan-
guage, to define an ideal detector used during the conceptual design phase of an
experiment. In the current study, the ideal detector description namely, ILD-l5-
v05 [27], incorporates realistic detector geometry, solenoid field map, anti-DID field
map and magnetic fields in the forward focusing magnets, into the DD4hep toolkit
by means of an aforementioned XML file of the same name. This study has been
performed using the DD4hep API implemented in Python programming language
[28].

The values of the parameters used in this simulation are shown in table 4.2.

4.3.1 Visualization of the detector geometry

Fig 4.1 depicts the detector construction implemented by ILD-l5-v05, as a loga-
rithmic color-map plot of number of radiation lengths in a bin with respect to the
ILD detector coordinate system (see 2.3.3), where y-axis points out of the page.

The tilted forward calorimetry is clearly visible here. Besides, the detector of
interest i.e. BeamCal, which is about 300 cm away from the IP, is seen to have a
very high radiation length.

4.3.2 Visualization of the magnetic field

The effect of anti-DID field as introduced in sec. 2.3.4, can be seen in the figure
4.2. Figure 4.2a shows that the polarities of the Bx field, about the z-axis, are
opposite to each other. The resultant magnetic fields exert force along the outgoing
beams so that most of the beam backgrounds can escape through the beam pipes.
Additionally, the extra winding responsible for the ant-DID effect, is seen to have
very dark color, meaning magnetic field is highly concentrated in that region.
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Figure 4.1: Cross Section of the ILD detector system [29]

(a) Bx(T ) (b) By(T ) (c) Bz(T )

Figure 4.2: Magnetic Field Visualization [29]
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Figure 4.3: BeamCal layers

4.3.3 Extraction of particle hit information using Marlin
and LCIO packages

Marlin (Modular Analysis and Reconstruction for the LINear collider) is a soft-
ware framework based on ILCSOFT [30]. It implements a Processor to digitise hit
collections which then extracts the digitised collections through LCIO data model.
LCIO is a persistency framework developed solely for linear colliders. The purpose
of LCIO is unification of software used in the ILC [23].

Marlin along with LCIO helps analysis progress by just defining a processor
inside a steering file. In the current study, ILCSoft version 02-00-02, MARLIN
version 01-16 and LCIO version 02-12-01, have been used.

Digitised information of an event are accessed inside a processor through the
LCEvent class. Event information inside the BeamCal are accessed as LCCollection
type object by means of SimCalorimeterHit class inside the processor. Each element
of this collection corresponds to hits at the BeamCal cells. Each of this hit denote
only the position of the cell hit by the particle and not the exact position i.e.
coordinate values or layer number of the hit. Therefore, these collections are decoded
by means of CellIDDecoder and layer number corresponding to every element of
the BeamCal collection is obtained by passing the address of the element into the
decoder. The layer values after decoding is shown in figure 4.3

For the first layer, number of contributions by all MCParticles, inside each afore-
mentioned element, is obtained using getNMCContributions(), which is a member
function of SimCalorimeterHit class.

Such contributions contain the energy, position, pdg etc. information calculated
by Geant4 at the midpoint between every two Geant4 steps inside a single cell of
the first layer of detector as shown in fig. 4.4. The thickness of the first layer is
about 300µm nad has been exaggerated in fig. 4.4 for convenience of explanation.
Following three cases can be used to describe the process.

• Figure 4.4a: An MCParticle passes through the detector without any leaving
any intermediate step. Geant4, by default stores information (creates steps) at
the entrance and exit of a detector volume. Therefore, getNMCContributions()
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(a) One MCParticle, one
step

(b) One MCParticle,
multiple steps

(c) Multiple
MCParticlesmultiple step

Figure 4.4: Three cases of steps inside one cell of the first layer of BeamCal (layer
thickness exaggerated)

Figure 4.5: Position distribution of the BeamCal readout signal before rotation.

will return a value of 1 corresponding to the midpoint of the points at the
entrance and exit.

• Figure 4.4b: An MCParticle while passing through the layer undergoes scat-
tering. There are 5 midpoints between the steps combined. Therefore, getN-
MCContributions() will return a value of 5.

• Figure 4.4c: Two MCParticles while passing through the layer undergoes scat-
tering. One leaves 5 midpoints, while the other (shown in segmented line)
leaves 3 midpoints. Therefore, getNMCContributions() will return a value of
8.

Such complication arises because the SimCalorimeterHit class gives access only
to cell IDs of the BeamCal. In each of the above cases, only the first midpoint
between the steps corresponding to a single type of MCParticle is collected.
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Figure 4.6: Position distribution of the BeamCal readout signal after rotation.

As seen in figure 4.6, after the above scheme to keep only the midpoint between
the first two steps of a single type of MCParticle is applied, the first layer readout
produces 5300 signals (4.6) instead of much higher entries in figure 4.5.

4.3.4 Plots of different variables

A plot of the position (x-coordinate vs y-coordinate) distribution corresponding to
50 bunches at the positive z-axis for beam sizes 0.8 times the nominal value for both
σx and σy, is shown in figure 4.8. The origin of the figure 4.7 has a shift because
of the tilt of the forward detectors as mentioned before. The circular region of the
keyhole shape is the hole due to the outgoing beampipe. After rotation by an angle
equal to the crossing angle (7 mrad) about the y-axis, the outgoing beampipe is
centered at the origin of the axes.

As mentioned in section 4.1, simulation of 25 sets of parameters with each value
of σx corresponding to 5 values of σy and vice versa, have been carried out.

The plots 4.9 and 4.10 shows the azimuthal angle, φ = tan−1(y/x) distributions
for different values of σx and σy respectively. They have been plotted without
rotation. That is, they correspond to the x vs y plot 4.7. Beam size pair means one
of the 25 combinations of the horizontal and vertical beam sizes.

The φ plots of different σx (figure 4.9), vary across the whole region [−3, 3] with
small statistical fluctuations. But, the fluctuations in the φ plot (figure 4.10), that
corresponds to different values of σy, are very high and clear correlation of the plots
with the values of σy becomes visible after 50 bunches (figure 4.15) within the φ
range of [0, 1].

Finally, the φ plots for different values of σx and σy for 15000 bunches are plotted
in figure 4.17 and 4.16 respectively. Even after this statistic, no drastic change of φ
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Figure 4.7: Position(mm) distribution of the BeamCal readout signal before rota-
tion.

Figure 4.8: Position(mm) distribution of the BeamCal readout signal after rotation.
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Figure 4.9: φ (radian) plots for different values of σx (1 bunch/beam size pair)

Figure 4.10: φ (radian) plots for different values of σy (1 bunch/beam size pair)
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Figure 4.11: φ (radian) plots for different values of σy (10 bunch/beam size pair)

Figure 4.12: φ (radian) plots for different values of σy (10 bunch/beam size pair)
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Figure 4.13: φ (radian) plots for different values of σy (30 bunch/beam size pair)

Figure 4.14: φ (radian) plots for different values of σy (40 bunch/beam size pair)
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Figure 4.15: φ (radian) plots for different values of σy (50 bunch/beam size pair)

Figure 4.16: φ (radian) plots for different values of σy (15000 bunch/beam size pair)
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Figure 4.17: φ (radian) plots for different values of σx (15000 bunch/beam size pair)

plots is visible outside the φ range of [0, 1].
The plots of ρ, the distance of the particles from the center are plotted corre-

sponding to 50 bunches for different values of σx. The plots corresponding to each
σx value differ across the range [20, 80].

On the other hand, even though the same plots for different values of σy show
some difference in that range, it is not as drastic as the case of changing σx.

4.4 Conclusion

From the distributions as seen in figures 4.17, 4.16, 4.20 and 4.21, it can be seen
that the number of particles is a major discriminant between different values of both
horizontal and vertical beam sizes. Especially, the number of particle hit increases
drastically when the values of σx is decreased even for one bunch crossing. In case
of decreasing values of σy, the number of hits increase slightly in most of the range
in both ρ and φ distributions. The influence of the keyhole shape (as seen in fig.
4.7) is responsible for the asymmetry of the φ distribution (fig. 4.17, 4.16) about the
origin. The keyhole shape is also responsible for the entries of ρ plots (figure 4.20)
to peak, after the ρ value exceeds about 40 mm. The energy distribution peaks at
about 0.1 MeV, and the number sharply falls onward. This is because of the very
low energy of the incoherent backgrounds hitting the pair monitor.
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Figure 4.18: ρ =
√
x2 + y2 (mm) plots for different values of σx (1 bunch/beam size

pair)

Figure 4.19: ρ =
√
x2 + y2 (mm) plots for different values of σy (1 bunch/beam size

pair)
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Figure 4.20: ρ =
√
x2 + y2 (mm) plots for different values of σx (50 bunches/beam

size pair)

Figure 4.21: ρ =
√
x2 + y2 (mm) plots for different values of σy (50 bunches/beam

size pair)
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Figure 4.22: Energy(GeV) plots for different values of σx (50 bunhes/beam size)

Figure 4.23: Energy(GeV) plots for different values of σy (50 bunches/beam size
pair)
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Chapter 5

Machine Learning and Its
Application

5.1 Introduction

Machine learning is an intersection of computer science and statistics and its study
involves the design of algorithms in order to draw statistical inferences from obser-
vation. Machine learning can be categorized into supervised learning, unsupervised
learning, reinforcement learning etc. The current study deals with an application of
supervised learning.

In the language of machine learning, any observation can be considered to be
an unknown function y = g(x) where x denotes the independent variable. The
purpose of machine learning is to define a hypothesis H which contains a set of
many functions, and to choose a certain function h from H, so that h ≈ g in a
strictly mathematical sense.

An important aspect of prediction by means of machine learning is an assump-
tion about the dataset. Different algorithms make different assumptions about the
dataset. That is why, for a successful prediction, it is necessary to check if these
assumptions about the properties of the dataset correspond to the dataset that is
being dealt with.

5.2 Current Dataset

The parameters that were used to distinguish the patterns of σx and σy were mainly

some functions of distance of particle hit from origin (in this case ρ =
√
x2 + y2)

or number of entries N corresponding to an event. For example, in [1], maximum
value of ρ (ρmax) and total number of hits were used to show a general pattern of
decrease in the values of ρmax and N with increasing values of σx and σy.

In order to investigate into the effects of changing σx and σy on these parameters
violin plots have been used. Violin plot is a combination of box plot and Kernel
Density Estimation (KDE) plot of the respective histogram. For example, in the
figure 5.7a, the box plot is shown at the middle of identical KDE plots of the
histogram of ρ on both of its sides. The first point from the bottom of the box
plot at the straight line denotes the minimum value, whereas the last point at the
top of the straight line is the maximum value. The first edge of the box plot from
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the bottom denotes the first quartile (25%), the white point at the middle denotes
the median (the second quartile) and the the last edge of the box denotes the third
quartile (75%).

In the figure 5.4, the violin plots denote the change of number of entries with the
change of σx and σy for 214036 events(or bunches;1 event=1 bunch). In the figure
5.3, the KDE plots for number of entries corresponding to each value of σx resemble
Gaussian distribution. Additionally, the distance between every consecutive mean
is more than 2 standard deviations.

In the figure 5.4, the violin plots denote the change of number of entries with
the change of σy. Evidently, the influence of σx on number of entries is much higher
than that of σy. This is a direct consequence of the equation 3.23, which denotes
the electric field due to a flat beam.

In both of these plots, the means seem to be falling linearly with the values of
σx and σy. But while the mean of distributions due to varying σx show consistent
linear decrease with σx values, that in case of changing σy do not show this behaviour
across different samples of the dataset. In other words, the variance of the estimator
mean is high across different samples of the dataset of varying σy. But when the
value of σx is fixed to 1.0, the means of distribution of both number of entries and
ρmean decreases with the values of σy, as shown in figure 5.6.

That is the relationship of number of entries N and ρmean with σx and σy is very
similar.

Besides, the plots of 5.8 and 5.9 do not show any correlation with ρMax that was
used in the earlier study. The plots 4.17 and 4.17, show clear change of number of
entries with the change of beam size parameters. A similar analysis with that of the
peaks of these plots (i.e. ρMode) show similar pattern as that of ρMean. Because all
these parameters show similar behaviour with the change of horizontal and vertical
beam sizes, only the number of entries have been taken as the parameter that can
distinguish values of σx. But since this value is a consequence of electric field shown
in equation 3.23, only the value of σx can be determined from this parameter.

5.3 Principle

The chief idea of machine learning is to predict a vector of outcomes of a number of
input variables, given a certain dataset D(X,y), where X is the matrix corresponding
to an input vector x and y is the vector of all the outcomes. The prediction can
be denoted to be a parametrized function f(X;θ): x → y, where θ minimizes a well
defined cost function C(y, f(X;θ)).

The dataset D(X,y) is divided into mutually exclusive D(Xtrain,ytrain) and
D(Xtest,ytest). The first is used for obtaining θ̂=argminθ C(y, f(X;θ) and this θ̂ is
used on the training set cost function to obtain output error Eout = C(ytrain,f(Xtrain; θ̂)).
The output (validation) error thus expressed by the cost function will most of the
time be equal or greater than the input (training) error.

Based on the type of outputs, machine learning algorithms can be divided mainly
into two types:

• Regression: Produces continuous output variables. It can also be divided
into parametric methods and non-parametric methods. The first one includes
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Figure 5.1: Violin plots of number entries per bunch vs σx

Figure 5.2: Violin plots of number entries per bunch vs σx
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Figure 5.3: Violin plots of mean value of ρ distribution ρMean per bunch vs σx

Figure 5.4: Violin plots of mean value of ρ distribution ρMean per bunch vs σy
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Figure 5.5: Violin plots of number of entries per bunch vs σy for σx : 1.0

Figure 5.6: Violin plots of number of entries per bunch and ρMean for σx : 1.0
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(a) Violin plots of ρ for σx (b) Violin plots of ρ for σy

Figure 5.7: Violin plots of ρ

Figure 5.8: plot of ρ =
√
x2 + y2 for changing values of σx (without any cut)
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Figure 5.9: Log plot of ρ =
√
x2 + y2 for changing values of σx (without any cut)

generalized linear model, neural networks etc. and the latter includes decision
trees, k-nearest neighbours etc.

• Classification: Produces discreet output variables. It can also be divided into
generative and discriminative methods. The first includes kernel density es-
timation, Gaussian mixture models etc. whereas the latter includes artificial
neural network, boosted decision tree, support vector machine etc.

The relevant concepts [31],[32],[33],[34] are summarised in the remainder of this
section.

5.4 Bias-Variance Tradeoff

It is not enough to have low error from training datasets only. Performance of a
machine learning algorithm is judged, based on its performance over data that are
independent from the training datasets. The field of statistical learning suggests
an educated way to judge and improve the algorithm performance by means of
qualitative assessment of quantities namely, bias and variance.

Bias is said to be the performance of the algorithm in presence of an infinite
training data. Variance means how the performance of an algorithm varies over
different training datasets. Bias-variance analysis is discussed here based on a re-
gression setting.

In the training dataset D = {(x1, y1), . . . , (xn, yn)} each point is (xi, yi) drawn
from a probability distribution P(X,Y ) and the input vector xi corresponds label
yi ∈ R.
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Now we consider test points (x, y) and formulate quantities relevant to evaluation
of the machine learning algorithm. Because same test label y can be produced by
multiple test input vectors, expected test label ȳ is calculated for a given test input
vector x.

ȳ = Ey|x(Y ) =

∫
y

yP (y|x)dy (5.1)

A machine learning algorithm of our choice A can be applied on the training
dataset D so that it learns a hypothesis function hD i.e. hD = A(D). This output
hypothesis function hD is fixed over the dataset D and as such expected test squared
error for a fixed hD over the dataset can be obtained as:

E(x,y)∼P[(hD(x)− y)2] =

∫
x

∫
y

(hD(x)− y)2P (x, y)dydx (5.2)

Different hypothesis functions hD will be produced for different training datasets.
Every dataset is formed by drawing n points from a distribution Pn(X,Y ). Thus,
the expected output function for a fixed algorithm A can be defined as:

h̄ = ED∼Pn [hD] =

∫
D
hDP (D)dD (5.3)

Finally, for a given algorithm A, the expected test error for all hypothesis func-
tions will be:

E(x,y)∼P
D∼Pn

[(hD(x)− y)2] =

∫
D

∫
x

∫
y

(hD(x)− y)2P (x, y)P (D)dydxdD (5.4)

Equation 5.4 gives us an analyticsl expression for quantifying the expected test
error for an algorithm A. This equation can now be decomposed into a bias term,
a variance term and a noise term.

Ex,y,D[(hD(x)− y)2] = Ex,y,D[(hD((x)− h̄) + (h̄− y))2]

= Ex,D[(hD(x)− h̄(x))2] + 2 Ex,y,D[((hD(x)− h̄(x))(h̄(x)− y))]

+Ex,y[(h̄(x)− y)2]

(5.5)

The 2nd term of equation 5.5 can be evaluated to be 0.

Ex,y,D[((hD(x)− h̄(x))(h̄(x)− y))] = Ex,y[ED[((hD(x)− h̄(x))]](h̄(x)− y) (5.6)

= Ex,y[ED[((hD(x)]− h̄(x))](h̄(x)− y) (5.7)

= Ex,y[h̄(x)− h̄(x))](h̄(x)− y) = 0 (5.8)

Therefore equation 5.5 gets reduced to

Ex,y,D[(hD(x)− y)2] = Ex,D[(hD(x)− h̄(x))2] + Ex,y[(h̄(x)− y)2]

The second term of the above equation can be broken down into,

Chapter 5 Ahmed Mustahid 45



Full Detector Simulation of Pair Monitor and Machine Learning

Ex,y[(h̄(x)− y)2] = Ex,y[(h̄(x)− ȳ(x) + (ȳ(x)− y))2 (5.9)

= Ex,y[((ȳ(x)− y(x))2] + Ex[((h̄(x)− ȳ(x))2]

+2 Ex,y[((ȳ(x)− y(x))((h̄(x)− ȳ(x))]
(5.10)

The third term of 5.9 can be

Ex,y[(ȳ(x)− y(x))(h̄(x)− ȳ(x))] = Ex[Ey|x[(ȳ(x)− y(x))](h̄(x)− ȳ(x))] (5.11)

= Ex[(ȳ(x)− Ey|x[y(x)])(h̄(x)− ȳ(x))] (5.12)

= 0 (5.13)

since Ey|x[y(x)] = ȳ(x).
Finally, we obtain,

Ex,y,D[(hD(x)−y)2] = Ex,D[(hD(x)− h̄(x))2]+Ex,y[(y− ȳ(x))2]+Ex[(h̄(x)− ȳ(x))2]
(5.14)

The first three terms of equation 5.14 correspond to variance, noise and squared
bias respectively. When evaluated on test data, the first term shows, how much the
function that learned from training data, varies between different training datasets.
If the training datasets are too distinct from one another, the flactuation between
datasets is high and so variance will also be high.

The second term denotes noise. The expected label is much different from the
chosen label means the data does not have the label it is expected to have. There
is no way to compensate for this because this is the characteristic of the data.

The third term denotes the squared bias. This denotes how the learned function
differs from the actual labels in an infinite data limit. It arises because the learned
function is biased towards a particular solution, which is different from the solution
inherent to the data.

5.5 Gradient Descent and Newton’s Method

Most machine learning methods come with the same ingredients the inputX, model
g(θ) and the cost function C(X; g(θ)). The prediction is made by minimizing
C(X; g(θ) for learned parameters θ.

The minimization is made by updating θ as long as the the gradient of the cost
function is large and negative.

In this context, minimizing the cost function is fundamentally minimization of
error. Therefore, error E(θ) is equal to the cost function C(X; g(θ)). For example,
in case of linear regression this is the mean square error. Error E(θ) is the sum of
errors corresponding to all of the n data points.

E(θ) =
n∑
i=1

ei(xi,θ) (5.15)

The main idea of gradient descent is to update the parameters and then evaluate
the cost function iteratively.
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Figure 5.10: Bias is error in presence of infinite data points [31]

Figure 5.11: Recognizing the causes of error [32]

Figure 5.12: Error vs Model Complexity: An optimum balance of bias and variance
leads to low generalization error [31]
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vt = ηt∇θE(θt) (5.16)

θt+1 = θt − vt (5.17)

where ∇θE(θt) is the gradient of E(θ) with respect to θ, ηt is the learning rate
which controls the step to be taken in the direction of gradient at a step t.

According to Newton’s method, step v is chosen so that the second order Taylor
expansion of E(θ) evaluated about v is minimized,

E(θ + v) ≈ E(θ) +∇θE(θ)v +
1

2
vTH(θ)v (5.18)

where H(θ) is the Hessian matrix of second derivatives. The above equation
equation is minimized for an optimal value v = vopt. i.e. ∇θE(θ + vopt) = 0. So we
get,

0 = ∇θE(θ) +H(θ)vopt (5.19)

Rearranging 5.19, we get the following,

vt = H−1(θt)∇θE(θt) (5.20)

θt+1 = θt − vt (5.21)

For one dimension equation 5.18 is,

E(θ + v) ≈ E(θc) + δθE(θ)v +
1

2
δ2
θE(θ)v2 (5.22)

Differentiating with respect to v and evaluating for θmin = θ − v,

θmin = θ − [δ2
θE(θ)]−1δθE(θ) (5.23)

Comparing with equation 5.16,

ηopt = [δ2
θE(θ)]−1 (5.24)

From the above calculations, it can be seen that Newton’s method updates the
learning parameter at every step by calculating the Hessian matrix. In other words,
if the curvature is very steep the learning parameter is adapted to take a small value
and if the curvature is small the learning parameter takes a large value. Gradient
descent (GD) is inspired by Newton’s method, but instead of computing the Hessian
matrix and updating the learning parameter at every step, GD keeps the value of
learning rate constant. Given the extremely high number of parameters in machine
learning models, this is done in order to reduce the computational expenses required
to calculate the Hessian matrix of n2 elements for n parameters.

5.6 Linear Regression

Linear regression is based on the following three assumptions:

• The output labels are continuous real numbers i.e. yi ∈ R.
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• The input vector x has a linear relationship with the output y.

• The noise of the output is a zero mean Gaussian. It can be viewed as a direct
consequence of the central limit theorem.

The last two assumptions can be expressed as:

yi = wTxi + εi (5.25)

where, εi denotes Gaussian noise or, εi ∼ N(0, σ2). In other words, yi is a
Gaussian with a mean of wTxi and a variance of σ2 i.e. yi|xi ∼ N(wTx, σ2) and
w, the parameter of the model, is the slope. Input vector and parameter vector
corresponding to one observation and p features are xi and w respectively.

Baased on the idea of how much probable it is for an input vector xi to produce
an output yi given a weight vector w, the probability distribution function of the
model can be expressed as:

P (yi|xi) =
1

2πσ2
exp

(
−w

Txi − yi
2σ2

)
(5.26)

The model parameter w is estimated by creating a log-profile likelihood function
and minimizing it. It is commonly known as maximum likelihood estimation (MLE).

w = argmax
w∈Rp

P (y1,x1, . . . , yn,xn|w) (5.27)

= argmax
w∈Rp

n∏
i=1

P (yi,xi|w) (5.28)

= argmax
w∈Rp

n∏
i=1

P (yi|xi,w)P (xi|w) (5.29)

= argmax
w∈Rp

n∏
i=1

P (yi|xi,w)P (xi) (5.30)

= argmax
w∈Rp

n∏
i=1

P (yi|xi,w) (5.31)

= argmax
w∈Rp

n∑
i=1

logP (yi|xi,w) (5.32)

= argmax
w∈Rp

n∑
i=1

log

(
exp

(
−w

Txi − yi
2σ2

))
(5.33)

= argmax
w∈Rp

−1

2σ2

n∑
i=1

(wTxi − yi)2 (5.34)

= argmin
w∈Rp

1

n

n∑
i=1

(wTxi − yi)2 (5.35)

Equation 5.25 shows the cost function C in this case is mean square error.

C(w) =
1

n

n∑
i=1

(wTxi − yi)2 (5.36)
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When the input vectors xi having n observations for each of the p features, are
stacked into a matrix X of dimension n× p, equation 5.25 can be written as,

w = argmin
w∈Rp

||wTX − yi||22 (5.37)

w can be estimated by means of optimization algorithm such as gradient descent
or by straightforward differentiation. The latter gives:

w = (XTX)−1XTy (5.38)

given (XTX) is invertible, which is the case when rank(X) = p and n >> p.

Taking the noise term in equation 5.14 to be σ2, the expectation values of in-
sample (training) Ēin and out of sample (validation) Ēout errors can be derived from
5.14 to get the following equations:

Ēin = σ2
(

1− p

n

)
Ēout = σ2

(
1 +

p

n

)
(5.39)

Therefore, the generalization error:

|Ēin − Ēout| = 2σ2 p

n
(5.40)

Therefore, if p >> n or in the case of high noise, the generalization error would be
high.

MLE maximizes the probability for a given parameter w to have to a dataset
{(xi, yi)}ni=1. The opposite scenario, where the probability for a given dataset to have
parameter w is maximised, is called maximum a posteriori estimation (MAP). MAP
is the basis of regularized linear regression namely, Ridge regression. Regularized
linear regression enables us to ameliorate the generalization error 5.40, in case of
p ≈ n.

Application

The intercept and slope values obtained from training are 2.45045216 and -0.0002714
respectively. In figure 5.13, the output of linear regression on validation set has been
shown. The plots show a Gaussian distribution with peak about the actual value,
which are visualized by different colors. Any overlap between these colors show
mismatch of prediction with the actual value. It can be seen that out of about 600
labels a maximum overlap of about 10 entries have occurred. Because in the current
case the number of inputs n is much higher than the number of regression classes
p = 5, which correspond to the values of σx used for training, according to equation
5.40, the generalization error is very low.

The distributions of the errors of the prediction of the factors from linear re-
gression are shown in figures 5.14 and 5.15. Assuming the acceptable tolerance of
error of each of the factors to be 0.05, the probability that the error e lies within
the range [−0.05, 0.05] is denoted by P (−0.05 ≤ e ≤ 0.05). These values for all the
factors are listed in the table 5.3.
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Figure 5.13: Prediction of Linear regression on validation set

5.7 Ridge Regression

Estimation by MAP requires an assumption about the probability distribution of
the prior w. A very natural assumption is a Gaussian with zero mean:

P (w) =
1

2πσ2
exp

(
−w

Tw

2τ 2

)
(5.41)

Now the maximisation of the probability distribution P (w|x1, y1, . . . ,xi, yi) can
be calculated in the following method:
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(a) Errors for σx factor 0.8 (b) Errors for σx factor 1.0

(c) Errors for σx factor 1.2 (d) Errors for σx factor 1.4

Figure 5.14: Errors for predictions for the factors of σx (Linear regression)

Figure 5.15: Errors for predictions for σx factor 1.6 (Linear regression)
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w = argmax
w∈Rp

P (w|x1, y1, . . . ,xi, yi) (5.42)

= argmax
w∈Rp

P (x1, y1, . . . ,xi, yi|w)P (w)

P (x1, y1, . . . ,xi, yi)
(5.43)

= argmax
w∈Rp

P (x1, y1, . . . ,xi, yi|w)P (w) (5.44)

= argmax
w∈Rp

P (x1, y1, . . . ,xi, yi|w)P (w) (5.45)

= argmax
w∈Rp

(
n∏
i=1

P (yi,xi|w)

)
P (w) (5.46)

= argmax
w∈Rp

(
n∏
i=1

P (yi|xi,w)

)
P (w) (5.47)

= argmax
w∈Rp

n∑
i=1

logP (yi|xi,w) + logP (w) (5.48)

= argmax
w∈Rp

1

2σ2

n∑
i=1

(xTi w − yi)2 +
1

2τ 2
wTw (5.49)

= argmin
w∈Rp

1

n

n∑
i=1

(xTi w − yi)2 + λ||w||22 (5.50)

where λ = σ2

nr2
.

The eauation 5.50 is said to have a regularizer defined as the L2 norm of the pa-
rameter vector that is optimized. While the optimization can be carried by gradient
descent algorithm, a straightforward differentiation gives the following:

w(λ) = (XTX + λIp×p)
−1XTy (5.51)

If X is orthogonal,

wRidge(λ) =
wLR

1 + λ
(5.52)

where wLR is the parameter vector obtained by linear regression (sec. 5.6 ).

5.7.1 Application

Ridge regression does not show much different behaviour as compared to linear
regression even with varying values of λ regularizer. The function of this regularizer
is to penalize the predictor with less effect on the output values. In other words, in
case of multiple inputs into the model, the input with low influence on the output
(beam size factor in this case) will be ignored by means of the regularizer.

Because of only the presence of one input parameter, ridge regression in the
current setting is not any different from the linear regression. But in presence of
multiple input parameters in future studies, the first choice of start can be ridge
regression instead of linear regression.
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5.8 K-nearest neighbors

K-nearest neighbours carry out prediction based on the assumption that similar
input vectors will produce similar labels. A group Sx ⊆ D of k input vectors have
the same label, if the distance between the test input vector x and any input vector
x′ in the dataset D, excluding Sx, i.e. D \ Sx, is at least equal to the maximum
distance between x and input vectors x′′ ∈ Sx.

Mathematically speaking, for Sx ⊆ D where |Sx| = k and (x′, y′) ∈ D \ Sx and
the following condition must be satisfied for a group of same label.

dist(x,x′) ≥ max
(x′′,y′′)∈Sx

dist(x,x′′) (5.53)

After such region is determined, the output of this group highest occurrence of
a label within that region.

h(x) = mean({y′′ : (x′′, y′′) ∈ Sx}) (5.54)

The distance as shown in equation 5.53 is most commonly chosen to be the
Minnkowski distance. The distance between two vectors x and z of dimenstion p,
is defined as:

dist(x, z) =

(
p∑
i=1

|xi − zi|r
) 1

r

(5.55)

During training the distance has to be calculated between every test data point
and all points in the dataset. This process is computationally expensive. Higher
accuracy is possible when number of training datapoints n is large. In order to
improve the speed of calculation, the idea of k-Dimensional tree is introduced into
the concept of k-nearesr neighbours.

5.9 k-Dimensional Trees

A better approach to proceed with the knn algorithm is to first divide the dataset
into two partitions and look for k-nearest neighbours only at the partition where
the test data is located, because any other point inside other partitions are farther
than the any point within the partition the test point is in.

Let us assume when the dataset is divided into two partitions, the distance
between the test point xt and another point x at the other partition is d = d1 + d2,
where d1 is the part of the distance inside the partition with test point, xt and d2

is the distance within the other. If dw is the distance between xt and the partition
wall, d1 ≥ dw

d(xt,x) = d1 + d2 (5.56)

≥ dw + d2 (5.57)

≥ dw (5.58)

showing that any point beyond the partition with the test point is farther than
the k-nearest neighbours. It essentially excludes the need to compute distance for
points beyond the partition, thereby reducing the amount of computation.
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Figure 5.16: Method of cross-validation [35]

At the beginning, the data points are divided into half about their median. The
data points larger than the median are sent to one node and the ones smaller than the
median are sent to the other.The process is repeated until the last node is reached.

There might be case when the test point is very close to a partition. Therefore,
it is required to search if any other node at the leaves can have nearest neighbour.
Tree pruning will help us assign the particle to the best possible node. This is done
by comparing the aforementioned dw with the maximum distance of the nearest
neighbour inside the partition of the test point, dmaxnn . If dw ≥ dmaxnn , the test point
stays at the same node. In other words, it draws a circle of radius dmaxnn and if
the circle intersects a partition, the point gets one level up and performs the same
task and prunes parts of the trees, the partition of which is not intersected by the
respective radius.

In the current study, the optimum value of k or the number of neighbours, has
been chosen by means of a technique known as cross validation (figure 5.16). In
this process, the training data is split into multiple folds. In the first iteration (or
split), one of the say 5 folds, is used as validation and the rest are used for training.
The value of error is computed from the validation fold. The process is repeated
by changing the validation/training sets repeatedly until all folds have been used
as vaidation/training sets. The value of errors are noted for all these cases and the
average of all these gives the Cross-validated (CV) errors .

The CV errors are computed for different values of k and the k value which
produced the lowest CV error, was chosen. In figure 5.17, the lowest error was
produced for k=10. Even though the error keeps falling beyond this value, the
change is not significant and k=10 has been chosen for the best computational
performance.
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Figure 5.17: Determining k value using cross validation
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Figure 5.18: Prediction of k-nn with kD trees

5.9.1 Application

With very sharp peaks, K-D trees in figure 5.18 show a superior performance com-
pared to the linear regression. The plots of the errors of the beam size factors, have
very sharp peaks close to 0. The probability P (−0.05 ≤ e ≤ 0.05) for k-D trees are
shown in table 5.3.

5.10 Decision Trees

The goal of decision tree is to recursively divide the region of training data into
multiple regions of pure labels. Every step of this recursion consists of separating
the data based on a simple threshold ≥ t. This threshold is determined chosen at
every step of recursion so that the resulting node is purer than the former. Finally,
the split is carried out so that the final leaves contain only elements of a single label.

Advantage of decision tree over k-nn is that it does not require to store the
training dataset but only the tree structure. Besides they are faster because the
inputs just need to descend down the tree without caring about the neighbours.

The purity mentioned above is determined by Gini impurity or entropy for clas-
sification trees or mean square errors in case of regression trees.

For a dataset S = {(x1, y1), . . . , (xn, yn)}, and yi ∈ {1, . . . , c} where c is the
number of classes, the probability of picking up a certain label k can be denoted as
pk = |Sk|

S
, where Sk ⊆ S, Sk = {(x, y) : y = k} and S = S1 ∪ · · · ∪ Sc

Gini impurity of a leaf, G(S) is defined as:
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(a) Errors for σx factor 0.8 (b) Errors for σx factor 1.0

(c) Errors for σx factor 1.2 (d) Errors for σx factor 1.4

Figure 5.19: Errors for predictions for the factors of σx (k-Dimensional trees)

Figure 5.20: Errors for predictions for σx factor 1.6 (k-Dimensional trees)
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G(S) =
c∑

k=1

pk(1− pk) (5.59)

From equation 5.59, it can be seen that, when one leave is pure i.e. pk = 1, the
corresponding Gini impurity is 0. If a tree has two leaves, the maximum impurity
corresponding to one leaf can therefore be 0.5.

In a tree, if the dataset that goes to the left leaves is denoted by SL and that to
the right by SR, where S = SL ∪ SR, S being the input dataset and SL ∩ SR = φ,
the Gini impurity of that tree GT (S) can be expressed as:

GT (S) =
|SL|
|S|

GT (SL) +
|SR|
|S|

GT (SR) (5.60)

An alternative to Gini impurity is cross-entropy, which for a leaf, can be defined
as:

D = −
c∑

k=1

pklogpk (5.61)

It can be shown that, D from equation 5.61, will be 0, if pk is either 0 or 1. That
is, entropy will be minimum if the leaf includes only one class.

Decision trees can also be used for regression. The splits correspond to the
creation of non overlapping regions R1, . . . , Rj. Each of these regions will produce
the mean of all training data inside that region as the output when any test point
falls into that region.

The regions are specified by partitioned regions inside boxes and they are created
by minimizing the following:

J∑
j=1

∑
i∈Rj

(yi − ȳRj
)2 (5.62)

where, ȳRj
is the label averaged from the training labels in Rj. Because looking

for the all the square errors for all possible combinations of regions and trying to
minimize the error is very computationally expensive. That is. the best split is made
at each particular step. In this, threshold value s and input value corresponding to
the a node Xj, are selected so the the square error is minimized. One leaf can be
denoted by a regionR1(j, s) = {X|Xj < s}, and the other byR2(j, s) = {X|Xj ≥ s},
for input value X. In regression setting, the values of (j, s) are fixed so that the
following value is the least.∑

i:xi∈R1(j,s)

(yi − ȳR1)
2 +

∑
i:xi∈R2(j,s)

(yi − ȳR2)
2 (5.63)

where ȳR1 and ȳR2 are the mean predictions of all the training input in these two
regions.

5.11 Random Forest

The purpose of decision tree is to create pure leaves at the last node. This behaviour
makes decision tree predictions data specific. In other words, if a dataset is split

Chapter 5 Ahmed Mustahid 59



Full Detector Simulation of Pair Monitor and Machine Learning

into half and fed into decision tree, it will predict differently for both the halves.
This is called high variance and one way random forest eradicates this weakness of
decision tree, is called bagging.

Bagging is the abbreviation of two: Bootstrapping and Aggregating. The first
step of bootstrapping is to create multiple datasets D∗( 1 ), . . . ,D∗(B ) by sampling
n points with replacement from dataset D. The idea is that, instead of obtaining
multiple new datasets, distinct datasets are obtained by repeatedly sampling from
the original dataset. Bickel and Friedman and Singh have shown that he bootstrap
estimator is always close to the estimator obtained from the population. The estima-
tors obtained from these bootstrapped samples are averaged to obtain an aggregate
of the predictions.

For n independent observations, Z1, . . . , Zn, with a variance σ2, the variance of
the mean Z̄ of the observations is σ2/n. That is, averaging a set of observations
reduces variance. This is why, a bagged decision tree has a lower variance compared
to the decision tree without bagging.

If the predictions fromB different training datasets are denoted by f̂ 1(x), . . . , f̂B(x),
the average of them will have a low variance.

f̂avg(x) =
1

B

B∑
b=1

f̂ b(x) (5.64)

On the other hand, B different datasets can be produced by sampling repeatedly
from a single dataset D. Training done on the b-th bootstrapped dataset gives an
output of f̂ ∗b and the average of them produces an output of low variance.

f̂bag =
1

B

B∑
b=1

f̂ ∗b(x) (5.65)

In case of regression trees, B regression trees are trained with B bootstrapped
dataset and their average result is the prediction.

Random Forest employs a special trick to decorrelate the B regression trees. At
each split, m out of p inputs are allowed to be passed where roughly m ≈ √p.
When the dataset has a strong predictor along with some other modereate ones, the
first split will always be done based on the strong predictor. This will cause the
trees corresponding to the bootstrapped datasets to be more or less similar. Whe m
inputs are randomly chosen and passed to to the split, p−m

p
parts of the of input at

a split will not consider the strong predictor. This will prevent correlation between
the trees for bootstrapped data. Finally, the outputs obtained from the trees are
averaged. This case is bagging if p = m.

5.11.1 Application

In the current case, because of the presence of only one predictor, the random forest
used is just a bagged decision tree. According to table 5.3, its performance is similar
to the k-D trees.
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Figure 5.21: Determining number of trees for random forest using cross validation

Model Mean Square Error Mean Average Error R2

K-nn with K-D Tress 0.000520 0.002600 0.993471
Random Forest 0.000372 0.002677 0.995325

Linear Regression 0.002559 0.041080 0.967874
Ridge Regression 0.002559 0.041080 0.967874

Table 5.1: Metrics on validation set for different models
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Figure 5.22: Prediction of random forest on validation set

5.12 Neural Network

In case of linear regression (equation 5.25), the learning is done only on parameter
w. But instead of using the input x directly, a learnable version of the function of x
can be used as learning parameters as well as w. In a general case of linear models
like that of linear regression, the output can be defined as the following:

y(x,w) = f

(
M∑
j=1

wjφj(x)

)
(5.66)

where f is a non-linear activation function in case of classification or an identity
function in case of regression. Neural networks exploit the ability of the function φj
to learn along with the coefficients {wj}. In other words, neural networks is a series
of functional transformations.

Neural network contains one or multiple layers, with each layer containing one
or multiple nodes. Each node corresponds to a certain φj, that is input into the
next layer. The first layer having M nodes, is M linear combinations of the input
variables x1, . . . , xD

aj =
D∑
i=1

w
(1)
ji xi + w

(1)
j0 (5.67)

where j = 1, . . . ,m The superscript (1) denotes the first layer, w
(1)
ji the denotes
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(a) Errors for σx factor 0.8 (b) Errors for σx factor 1.0

(c) Errors for σx factor 1.2 (d) Errors for σx factor 1.4

Figure 5.23: Errors for predictions for the factors of σx (Random Forest)

Figure 5.24: Errors for predictions for σx factor 1.6 (Random Forest)
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Layer Number of nodes

Input Layer 1
Hidden Layer 1 1024
Hidden Layer 2 512
Hidden Layer 3 256
Hidden Layer 4 128
Hidden Layer 5 18
Output Layer 1

Table 5.2: Neural Network Architecture used for the current study

weights and w
(1)
j0 denotes the bias. A non-linearity known as activation function is

applied to this output,

zj = h(aj) (5.68)

The quantities with activation function applied, are inside the hidden layers.
These are the layers between the inputs and outputs. In the current study, the
function h has been chosen to be Rectified Linear Unit (RELU). RELU is defined
as,

σ(z) = max(0, z) (5.69)

The outputs from the first layer (equation 5.68) are then linearly combined to
give the output activations.

ak =
M∑
j=1

w
(1)
ji zi + w

(1)
j0 (5.70)

where k = 1, . . . , K is the total number of outputs.
Input layer output (from equation 5.67) and hidden layer output (from equation

5.70) can be combined to give the result at the output layer. For regression, which
has been used in the current study, the function σ(z) corresponding to the output
layer is identity function.

yk(x,w) = σ

(
M∑
j=1

w
(2)
kj h

(
D∑
i=1

w
(1)
ji xi + w

(1)
j0

)
+ w

(2)
k0

)
(5.71)

The biases in the equation 5.67, can be absorbed into the weights by taking an
input x0 = 1 so that,

aj =
D∑
i=0

w
(1)
ji xi (5.72)

Similarly, from equation 5.71, we get,

yk(x,w) = σ

(
M∑
j=0

w
(2)
kj h

(
D∑
i=0

w
(1)
ji xi

))
(5.73)

The above method of calculating the output is called forward propagation. Fig-
ure 5.25, shows the network corresponding to the equation 5.73.
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Figure 5.25: Neural Network [33]

Figure 5.26: Training and validation loss
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Figure 5.27: Neural Network output on validation data

The output obtained in this way is evaluated by means of a cost function, E(w)
which in the current study is the mean square error, which is defined as the following:

E(w) =
1

n

n∑
i=1

(yi − ŷi(w))2 (5.74)

for an input (xi, yi), where xi ∈ Rd+1 and prediction ŷi(w)
Like the other machine learning algorithms mentioned in the earlier sections, the

error function (equation 5.74) can also be minimized by means of gradient descent
(GD) described in section 5.5. But the presence of multiple layers causes the error
function to be a composite function of all the weight parameters used in the earlier
layers. Because of this brute force calculation of GD is not feasible in this case.
Instead a special algorithm known as backpropagation is used.

Change of the cost function with respect to the weighted input in a layer, i.e.
the error ∆

(l)
j corresponding to the j-th neuron in the l-th layer can be defined as,

∆
(l)
j =

∂E

∂z
(l)
j

=
∂E

∂a
(l)
j

∂σ(z
(l)
j )

∂z
(l)
j

(5.75)

where a
(l)
j = σ(z

(l)
j ) i.e a non-linearity (in this case RELU), applied to the output

z
(l)
j .

Since error in layer l is propagated from the subsequent layer l+ 1, chain rule of
differentiation can be used to write,
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∆
(l)
j =

∂E

∂z
(l)
j

=
∑
k

∂E

∂z
(l+1)
k

∂z
(l+1)
k

∂z
(l)
j

(5.76)

=
∑
k

∆
(l+1)
k

∂z
(l+1)
k

∂z
(l)
j

(5.77)

=

(∑
k

∆
(l+1)
k w

(l+1)
kj

)
∂σ(z

(l)
j )

∂z
(l)
j

(5.78)

When final error is differentiated by the weight of the k-th neuron of a specific
layer l, the result can be expressed by means of the product of ∆

(l)
j from above and

the output of the k-th from the previous layer, l − 1. In such way the derivative of
E for weights at all layers and neurons can be computed.

∂E

∂w
(l)
jk

=
∂E

∂z
(l)
j

∂z
(l)
j

∂w
(l)
jk

= ∆
(l)
j a

(l−1)
k (5.79)

This approach makes it possible to update the weights:

w(l+1) := w(l) − η ∂E

∂w(l)
(5.80)

where the elements of the vector w(l) correspond to all the weights in the neurons
of a particular layer l and η denotes the learning parameter.

Implementing the above calculation from scratch is a lot of work. In the current
study, the advantage of Autograd, which automatically computes the backpropaga-
tion steps shown above, of PyTorch has been taken.

To sum up, a neural network consists of the following steps:

• Activation at the input layer: Calculate a
(l)
j for all the neurons at a layer.

• Feedforward: Calculate the final output like that of equation 5.71.

• Calculate error using the error function (mean square error for regression or
categorical cross entropy function for classification)

• Backpropagate the error using equation 5.78

• Update the parameters using equation 5.80

5.12.1 Application

In the current dataset, in order to make the neural network work effectively, Min-
MaxScaler [36] has been used. From the figure 5.26, it can be seen that both the
training and validation error are almost equal for most of the epochs. The trained
model corresponding to the epoch that gives the lowest validation error, has been
used. From table 5.3, neural network has performance similar to both k-D trees and
random forest except for the beam size factor 1.6.
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(a) Errors for σx factor 0.8 (b) Errors for σx factor 1.0

(c) Errors for σx factor 1.2 (d) Errors for σx factor 1.4

Figure 5.28: Errors for predictions for the factors of σx (neural network)

Figure 5.29: Errors for predictions for σx factor 1.6 (neural network)
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Figure 5.30: Probability of the factor errors to be within -0.05 to 0.05

Beam Size Factor Neural Net(%) Random Forest(%) k-D Tree(%) Linear Reg.(%)

0.8 99 98 99 60
1.0 94 93 94 57
1.2 84 84 85 56
1.4 71 70 69 66
1.6 74 78 78 43

Table 5.3: Table of P (−0.05 ≤ e ≤ 0.05) for different algorithms

5.13 Convolutional Neural Network

Convolutional Neural network, or ConvNet architectures assumes that the inputs are
images, and exploits the locality and translational invariance of an image. ConvNets
have been historically developed based on the principle of edge detection. A very
fundamental edge detection method is to detect vertical or horizontal edges in an
image. ConvNets in their initial layers learn vertical or horizontal edges and learns
more complicated features such as round shape etc. in the later layers.

Instead of using the one dimensional layered structures of neural nets, ConvNets
use volumes of neurons having length, height and width. In case of an RGB image,
the length and heights represent the image dimension and the width represents the
dimension corresponding to the color channels (red, green and blue). In other words,
an RGB image is represented as a three dimensional matrix. The matrix is then
convolved with a filter of a specific shape. Filter is also a volume where the width of
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Figure 5.31: Probability of the factor errors to be within -0.05 to 0.05 (leaving linear
regression)
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a filter corresponds to its channel numbers. The channel number of the filter must
equal the channel number of the input (in this case, the RGB image). The elements
of the filter matrix are learnable parameters or the weights. In other words, each
horizontal slice of a filter volume, can be considered as a neural network consisting
of multiple layers.

Filters can be more than one in number, in which case the output volume after
convolving with filters, contains a channel number equal to the number of filters con-
volved. Convolution is carried out by element-wise multiplication of filter elements
with the image elements. This element-wise multiplication is done independently for
each channel. The output corresponding to this operation is the sum of all values,
obtained after element-wise multiplication, across the channel.

When convolutional layer of the form, g = CΓ(f), is applied on a p-dimensional
input, f = (f1(x), . . . , fp(x)) by means of multiple filters Γ = (γl,l′) for l = 1, . . . , q,
l′ = 1, . . . , p and an activation function ξ, the output can be represented as follows:

gl(x) = ξ

(
p∑

l′=1

(fl′ ∗ γl,l′)(x)

)
(5.81)

and the convlution operation is defined as follows:

(fl′ ∗ γl,l′)(x) =

∫
Ω

f(x− x′)γ(x′)dx′ (5.82)

where Ω = [0, 1]d; d stands for dimension of the space where the operation is being
carried out. In case of image d = 2. When applied to an image the f corresponds
to an RGB image having 3 channels i.e f = (f1(x), f2(x), f3(x)). Equation 5.81
describes the aforementioned element wise multiplication of image having p channels,
with q filters and a subsequent addition over the p input channels.

Equation 5.82, describes the element wise multiplication along with a translation.
This translation is called stride. Convolution along with each stride of the filter over
the image produces one element of the output volume. Dimension of one plane of
the resulting volume is therefore [W−F

S
+ 1, W−F

S
+ 1], where W,F, S are one side of

the square image, one side of the filter plane and stride value respectively. In order
to avoid the shrinking of image dimension over this operation, the image matrix can
be padded with 0 values along its two dimensions. The resulting dimension after P
zero-paddings is [W−F+2P

S
+ 1, W−F+2P

S
+ 1]. Therefore in order to keep the image

shape unchanged over this operation, the padding should be chosen such that the
output size remains as W .

The next step of ConvNet is called pooling, which downsizes the image by ex-
tracting information from certain part of the image. In the currrent study, MaxPool
layer has been applied at the end of convolution layers. This method replaces a
small region (in the current study, 2× 2 neurons) from a plane of the volume, by a
single neuron, which produces the maximum output. For l = 1, . . . , q it is defined
as,

gl(x) = P ({fl(x′) : x′ ∈ N(x)}) (5.83)

where N ⊂ Ω is the neighbouring region about x and P is a permutation invariant
function such as max.

Combining all of the above, a ConvNet can be described as the following,
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Layer In Channel Out Channel Kernel Size Stride Padding

1 1 64 (3,3) (1,1) 1
RELU

2 64 64 (3,3) (1,1) 1
RELU

MaxPool2D (2,2) (2,2)

Table 5.4: ConvNet Layers

Layer Number of nodes

Hidden Layer 1 1024
Hidden Layer 2 512
Output Layer 25

Table 5.5: Hidden layer of neural networks after convolution layers

UΘ(f) = (CΓ(K) · · ·P · · ·CΓ(2) · · ·CΓ(1))(f) (5.84)

where Θ = {Γ(1), . . . ,Γ(K)}, which are the vectors containing the parameters of
the filters.

Finally, the neurons of the last conv-layer are flattened and connected to mul-
tiple layers of neural networks, known as Fully-Connected Layers (FC layers). The
number of neurons at the last layer of this network equal the number of classes that
have to be predicted.

Because it is a classification task the cost function used is categorical cross en-
tropy described below:

E(w) = −
n∑
i=1

M−1∑
m=0

(yim log[ŷim](w) + (1− yim) log[1− ŷim(w)]) (5.85)

where y is the number corresponding to the M classes i.e. y ∈ {0, 1, . . . ,M − 1}
and the probability of predicting a class, given input, or p(yi = m|x;w) is denoted
by ŷim(w) . In the case of more than one classes, one vs. all approach is adopted
where the m-th class of i-th sample under consideration is assigned yim = 1 and all
others are assigned 0. Frameworks like PyTorch includes this feature as a default
and it does not need one-hot encoding.

5.13.1 Application

Matrix corresponding to the histograms of horizontal and vertical positions of the
particle hits were created and then trained by ConvNet layers described in table
5.4. Generally speaking, these matrix contain more information about particle hits
than just number of entries or ρmean or ρmode. That is why, this method can be the
natural way to determine both horizontal and vertical beam sizes simultaneously.

In this study, 25 different classes corresponding to 5 σx values and 5 σx values
for each σx, were created and their matrix were obtained for about 14000 events.
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Figure 5.32: Images of all 25 classes (after removing one entry bins)

Figure 5.33: Accuracy: Train vs. Test

Chapter 5 Ahmed Mustahid 73



Full Detector Simulation of Pair Monitor and Machine Learning

Figure 5.34: Losses: Train vs. Test

Figure 5.35: Confusion matrix: Train
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Figure 5.36: Confusion matrix: Test

In order to reduce noise corresponding to the events, the histogram bins with
one entry were removed. In absence of this preprocessing step, the training accuracy
was very low.

From figure 5.33, it can be seen that over 30 epochs even though the training
accuracy was very high, the validation accuracy was low. This means the model is
over training. This can be reduced by an increase of model complexity or in this
context, an increase of ConvNet layers.

A drawback of this method is that, the amount of dataset required increase by
n2 for each of the n values of σx or σy. Simulation of very high number of events also
require a lot of time. Additionally, the matrix generated is a noisy dataset, because
of statistical fluctuations of the ρ or φ distributions due to the change of σy across
each bunch (event). The fluctuation can be reduced by creating each beam image
from at least 50 bunches. Besides, clever usage of image preprocessing can reduce
these noises and thereby increase the training accuracy.
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Chapter 6

Conclusion

The parameters used to predict the values of σx in this research are based on the
approximate equation shown at equation 3.23. In other words, if any of these pa-
rameters are taken as a function f(x, y), where x and y correspond to horizontal
and vertical beam sizes in this context,

f(x, y) ≈ f(a, b) +
∂f

∂x
(a, b)(x− a) +

∂f

∂y
(a, b)(y − b) (6.1)

where f(x, y) is evaluated about a certain point (a, b), which in this context is
(σx, σy). The violin plots convinces us that the slope due a change of σy is much
lower than that for the case of σx when f(x, y) (Number of entries, ρMean etc.), when
evaluated at a point with coordinate values equal to the current values if σx and σy
i.e. 729 nm and 7.7 nm respectively. Therefore, the approach of predicting σx from
number of entries only, is justifiable.

Because of this low dependency of φ, ρ, number of entries etc. on σy values,
the statistical fluctuation of these observables when σy is changed, is very high for
1 bunch (e.g. figure 4.10). That is why, future analysis to determine σy, must be
carried out with multiple bunches (at least above 10 bunches per one combination
of horizontal and vertical beam).

Besides, it is also seen that regression is a more feasible approach as compared
to ConvNets which was used in [2], when it comes to predicting the beam sizes. The
fact that, accurate prediction of σx has been possible using the observable, number
of entries, it can be said that future beam parameters such as transverse beam offset
can also be determined accurately using this machine learning approach.
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