

Measurement of the Cosmic Ray e⁺ + e⁻ Spectrum from 20 GeV to 1 TeV with the Fermi Large Area Telescope

論文講読 24th Nov. 2009 Kohei Yoshida

Introduction

The GLAST Mission(\rightarrow Fermi)

- Part of NASA's Office of Space and Science Strategic Plan
- Two instruments •
 - <u>The Large Area Telescope(LAT)</u>: primary
 - High energy(20MeV~300GeV)
 - follows in the footsteps of the CGRO-EGRET experiment
 - <u>The GLAST Burst Monitor(GBM)</u>: complementary
 - Low energy(8keV~30MeV)

Theory

- e⁻(e⁺): ∝E^{-3.0}
 proton: ∝E^{-2.7}

Motivation

Motivation

- Pamela, ATIC, H.E.S.S. and PPB-BETS report deviations from model.
 - <u>Pamela</u>: an increase e^+ with respect to $e^- + e^+$ at energy above a few GeV
 - <u>ATIC,PPB-BETS</u>: prominent spectral feature at around 500 GeV in the total e⁻ plus e⁺ spectrum
 - <u>**H.E.S.S**</u>: significant steeping of the spectrum above 600 GeV
- \rightarrow These indicate the presence of a nearby primary source of e⁻ and e⁺.
- The source is nearby pulsar? or dark matter annihilation in the Galactic halo?
- \rightarrow Accurate measurements of high-energy cosmic ray $e^- + e^+$ is necessary.

Launch!

Launch

- 11th June 2008 at 12:05PM EDT
- From the Kennedy Space Center • (Cape Canaveral)
- circular orbits
 - : 565km

Л

The Large Area Telescope(LAT)

Overview

- 4×4 array of towers(a tracker and a calorimeter in each)
- Tracker surrounded by Anticoincidence detector

Precision converter-tracker

Tracker

- 4×4 array of tower modules
- <u>Detector</u>: single-sided silicon-strip detector
 - 18 plane include 2 layer in a module
 - direction: x,y-axis
- <u>Converter</u>: thin tungsten foil
 - interleaved at the top of first 16 planes
 - thickness: $12 \times 0.03X_0(0.01 \text{ cm/foil})$
 - : 4 × 0.18X₀(0.072cm/foil)
- Total radiation length: 1.5X₀

Calorimeter

Calorimeter

- <u>purpose</u>: measurement of energy of particle
 - : shower profile
- 4×4 modules
- 96 CsI(TI) crystals in each module(8 layer of 12 crystals each)
- crystal size: 2.7cm × 2.0cm × 32.6cm
- Total radiation length: 8.6X0

Anticoincidence detector

Anticoincidence detector

- <u>purpose</u>: rejection of charged-particle background
- efficiency: at least 0.9997 for singly charged particles
- a total of 89 plastic scintillator tiles
 - -5×5 array on the top
 - 16 tiles on each of the 4 sides

8

Event selection

Event selection

- <u>target</u>: high-energy e⁻(e⁺)
- dedicated event selection
 - large geometry factor
 - residual contamination
 - hadron: <20%, gamma: <2%

Contents of dedicated event selection

- ACD vetoes failure
- difference between EM and hadronic showers
 - EM: more compact, hadronic: wider
- different distributions of energy and hits in the ACD
- two training classification trees(CT)
 - one: based on TKR variables, other: based on CAL variables

Rejection power

Energy	~200GeV	1TeV
Rejection power	1:10 ³	~1:10 ⁴
Selection efficiency		
Delectio		l C y
Energy	20GeV	1TeV

Energy reconstruction & validation

Energy reconstruction is critical.

• a large fraction of E falls outside of CAL for high-E EM cascades.

 \rightarrow correct for E leakage by shower profile

 \rightarrow incoming energy is able to estimated with good accuracy.

- algorithm was extensively verified and fine-tuned using beam test data.
- To avoid bias, flight data and MC are compared. -

Error

Systematic uncertainty of event selection

- determined for all energy bins and each step in the event selection
- Maximum sys. error: <20% (final tuned event selection)
- <u>Procedure</u>
 - scan a range of thresholds around the reference value used by cut
 - derive the flux vs GF curve
 - extrapolate the curve to a GF consistent with a null cut

 \rightarrow relative difference of the corresponding flux and the reference

Result & discussion

<u>Data</u>

- more than 4M electron events
- 4 August 2008 ~ 31 January 2009

<u>Result</u>

- $\infty E^{-3.04}$ (χ^2 : 9.7, d.o.f: 24)
- suggest the presence of one or more local sources of high-E CR e[±]
- LAT spectrum can be nicely fit by adding $J_{extra}(E) \propto E^{-\gamma_e} \exp\{-E/E_{cut}\}$ \rightarrow reconcile theoretical predictions with both Fermi and Pamela data \rightarrow explain steepening of spectrum above 1 TeV(H.E.S.S.)
- the most natural candidate: pulsars
- other astrophysical interpretations, DM scenarios can not be excluded.

おまけ

13

Definition

Field of View (sr) Ω : Solid angle that detector can see at once

Effective area (cm²) A_{eff} : efficiency × active area of detector \rightarrow depends on particle angle and energy

Geometry Factor (cm² sr) GF : $\Omega \times A_{eff}$ \rightarrow depends on energy

Event rate at given energy : Flux ($cm^{-2}s^{-1}sr^{-1}$) × GF