New Experimental Limit on the Electric Dipole Moment of the Neutron

Physical Review Letters, 82, 904(1999)

Tomoyuki SAITO

2009/12/15 論文講読

1

Symmetries

C and P symmetries are violated by weak interactions

normal matter (n, μ , π) readily breaks C and P symmetry.

- The combination CP are different normal matter respects CP symmetry to a very high degree.
- Time reversal T is equivalent to CP (CPT theorem) normal matter respects T symmetry to a very high degree.

Measurement of EDM

Direct observation of T (CP)-symmetry

★ EDM is effectively zero in SM CKM says neutron's EDM < 10⁻³⁰ (e cm)

★ EDM is big enough to measure in non-SM By assuming SUSY, neutron's EDM = 10⁻²⁶-10⁻²⁸ (e cm)

The measurement of EDM is the good probe to explore the Beyond SM

EDM in SUSY and SM

(a) SUSY: Generates edm in virtual cloud.

(b) Standard Model: Edm cancels.

5

History of EDM

6

60 MW reactor ILL, Grenoble

World's most intense source of neutrons for scientific research since 1973

France, UK, Germany founding members

Experiment

E = 4.5 kV/cm $B = 1 \mu T$ T = 130 s

Hg co-magnetometer (B is measured to 1pT)

Magnetometer

Systematic error on EDM experiment = Magnetic environment

The EDM of ¹⁹⁹Hg

< 8.7× 10⁻²⁸ecm

- 1, Spin-polarized ¹⁹⁹Hg are enter the cell after neutron
- 2, A magnetic field (8Hz) is applied for a short period.

(the magnetic resonance frequency of 199 Hg)

3, The beam polarized light from ²⁰⁴Hg transverse the cell and it's intensity is monitored.

The precession freq of ¹⁹⁹Hg is obtained \Rightarrow By $\omega = \gamma B_0$, B_0 is obtained

Neutron freq fitting

To get the freq of N, N count is fitted

 $\Delta f_0 = f_0 - f_1,$

Fit function

 $N = N_{\rm avg} \left[1 \mp \alpha \cos \left(\frac{\Delta f_0}{\Delta \nu} \pi - \phi_{\rm avg} \right) \right].$

Neutron resonant freq

Neutron freq is corrected using the performance of magnetometer

Magnetic field drift has eliminated using magnetometer

Results

Systematic error

Leakage currents and sparks result in small additional magnetic field. \rightarrow \sim 1nA OK **É** Electrical activity disturb the mercury to estimate a reliable freq. \rightarrow The cycle is rejected 🔹 v×E effect is below 1×10^{-26} ecm \rightarrow OK Other high-voltage induced effects High voltage stack effects the precession freq of Hg and n.

- \rightarrow Half of data were taken for each direction of B.
- \rightarrow The difference is (0.3±5.4)×10⁻²⁶ e cm

Conclusion

The systematic error is reduced to negligible by the cohabiting magnetometer

The upper limit of neutron EDM combined the previous data

$$|d_n| < 6.3 \times 10^{-26} e \text{ cm} (90\% \text{ C.L.})$$