21 April 2010 Y. Horii

Evidence of the Purely Leptonic Decay $B^- \rightarrow \tau^- \bar{\nu}_{\tau}$

PRL 97, 251802 (2006)

Decay $B^- \rightarrow \tau^- \bar{\nu}_{\tau}$

Standard model

$$\mathcal{B}(B^- \to \tau^- \bar{\nu}_{\tau}) = \frac{G_F^2 m_B m_{\tau}^2}{8\pi} \left(1 - \frac{m_{\tau}^2}{m_B^2}\right)^2 f_B^2 |V_{ub}|^2 \tau_B$$

- Expected value = $(1.59 \pm 0.40) \times 10^{-4}$
- Supersymmetry or two-Higgs doublet models

 B(B⁻→τ⁻ν
 _τ) can be changed.

$$\mathcal{B}(B^- \to \tau^- \bar{\nu}_{\tau}) = \frac{G_F^2 m_B m_{\tau}^2}{8\pi} \left(1 - \frac{m_{\tau}^2}{m_B^2}\right)^2 f_B^2 |V_{ub}|^2 \tau_B$$

Two Higgs-doublets

- SUSY needs two Higgs-multiplets.
 - If there is one Higgs-multiplet, the electroweak gauge symmetry would suffer an anomalies (would be inconsistent as a quantum theory).
 - Another completely different reason is that a Y=1/2 (-1/2) Higgs-multiplet can give masses to charge +2/3 quarks (charge -1/3 quarks and charged leptons), because of the structure of SUSY theories.
- Two-Higgs-doublet SUSY models are minimal extensions of the standard model. $\tan \beta = rac{\mathrm{VEV}_1}{\mathrm{VEV}_2}$

Hep-ph/9709356 "A Supersymmetry Primer" Stephen P. Martin

Charged Higgs

- If there are two Higgs-doublets, five Higgs bosons appears.
 - One (complex) Higgs-doublet has 4 degrees of freedom (DOF). Subtracted 3 SU(2)-gauge DOF, 1 DOF (= 1 physical Higgs boson), remains.
 - Two (complex) Higgs-doublets have 8 DOF.
 Subtracted 3 SU(2)-gauge DOF, 5 Higgs appears.
- In the five Higgs bosons, one pair can have the same mass. Natural to define charged Higgs.

$$H^{\pm} \equiv \frac{1}{\sqrt{2}}(\varphi_1 + i\varphi_2)$$

(Text from Yamamotosensei, section 9.5)

H[±] contribution

$$\begin{split} \mathcal{B}(B \to \tau \nu) &= \mathcal{B}(B \to \tau \nu)_{\mathsf{SM}} \times r_H \\ r_H &= (1 - \frac{m_B^2}{m_H^2} \tan^2 \beta)^2 \\ & \text{[Wei-Shu Hou Phys. Rev. D48, 2342 (1993)]} \end{split}$$

$$\begin{split} (G_F/\sqrt{2})V_{ib}\{[\bar{u}_i\gamma_u(1-\gamma_5)b]][\bar{l}\gamma_u(1-\gamma_5)\nu] \\ -R_l[\bar{u}_i(1+\gamma_5)b][\bar{l}(1-\gamma_5)\nu]\} \ , \end{split}$$

where

$$R_l = \tan^2 \beta (m_b m_l / m_H^2)$$
. Here we consider $l = \tau$.

• From the measurement of $\mathcal{B}(B \rightarrow \tau v)$, we can constrain the region in $m_{H_{\pm}}$ -tan β plane.

Experimental apparatus

Use 414 fb⁻¹ (449 x 10⁶ BB).

Monte Carlo (MC) simulation

- GEANT-based simulation to estimate the detection efficiency and study the background. (Beam backgrounds are overlaid on events.)
 - Signal MC
 - BB and qq (q=u,d,s,c) MC
 - Twice the data sample.
 - Rare B decay MC
 - Charmless, radiative, electroweak decays and b→u semi-leptonic decays.

Basic strategy

- This method allows us to suppress strongly the combinatorial background from BB and qq.
- Blind-analysis for avoiding experimental bias.

B_{tag} reconstruction

- $B^+ \rightarrow \overline{D}^{(*)o} \pi^+$, $\overline{D}^{(*)o} \rho^+$, $\overline{D}^{(*)o} a_1^+$, $D^{(*)o} \overline{D}_s^{(*)+}$
 - □ $\overline{D}^{\circ} \rightarrow K^{+}\pi^{-}, K^{+}\pi^{-}\pi^{\circ}, K^{+}\pi^{-}\pi^{+}\pi^{-}, K_{S}^{\circ}\sigma^{-}\sigma^{-}, K_{S}^{\circ}\sigma^{-}\sigma^{-}\pi^{+}\pi^{\circ}, K^{+}K^{-}$ $K_{S}^{\circ}\sigma^{\circ}, K_{S}^{\circ}\sigma^{+}\pi^{-}, K_{S}^{\circ}\sigma^{-}\pi^{+}\pi^{\circ}, K^{+}K^{-}$
 - □ $D_s^+ \rightarrow K_s^\circ K^+, K^+ K^- \pi^+$
 - □ D¯*°→D°π°, D°γ
 - $\Box D_{s}^{*+} \rightarrow D_{s}^{+} \gamma$
- M_{bc} > 5.27 GeV, -80 MeV < ΔE < 60 MeV
- Best candidate selection: χ^2 (ΔE , M_D , M_{D*} - M_D)
- Number of B_{tag} = 6.80 x 10⁵, purity = 0.55

$B_{sig} (B^- \rightarrow \tau^- \bar{v}_{\tau})$ reconstruction

- $\tau \rightarrow \mu \overline{\nu}_{\mu} \nu_{\tau}$, $e \overline{\nu}_{e} \nu_{\tau}$, $\pi \overline{\nu}_{\tau}$, $\pi \pi^{\circ} \nu_{\tau}$, $\pi^{-} \pi^{+} \pi^{-} \nu_{\tau}$ (*B*=81%) • μ^{-} , e^{-} , π^{\pm} : PID, K-rejection
 - $\pi^{o}: |M_{\gamma\gamma} m_{\pi o}| < 20 \text{ MeV}$
 - π° veto for the modes other than $\tau^{-} \rightarrow \pi^{-} \pi^{\circ} \nu_{\tau}$
 - Lower limits for mode-by-mode momenta
 - Lower limits for missing momentum of the event p_{miss}
 - -o.86 < cosθ^{*}_{miss} < o.95 (reject escaped particles)
 - $|M_{\pi\pi} m_{\rho}| < 0.15 \text{ GeV}, |M_{\pi\pi\pi} m_{a1}| < 0.3 \text{ GeV} ???$

E_{ECL}

- E_{ECL}: remaining energy in the ECL.
 - Minimum energy threshold of 50 MeV (barrel), 100 MeV (forward), and 150 MeV (backward).
 (Beam background is more severe for endcaps.)
- Signal events peak at low E_{ECL}.
- Background events are distributed toward higher E_{ECL} due to additional neutral clusters.

Amount of background events

- Define the signal and sideband regions for E_{FCL} .
- Obtain N of events for sideband region of data.
- Obtain N of BG events for sideband region of MC, and check the consistency to data.
- Extrapolate N of BG events in signal region for data.

	$N_{ m side}^{ m obs}$	$N_{ m side}^{ m MC}$	$N_{ m sig}^{ m MC}$	
$\mu^- ar{ u}_\mu u_ au$	96	94.2 ± 8.0	9.4 ± 2.6	
$e^- \bar{\nu}_e \nu_{\tau}$	93	89.6 ± 8.0	8.6 ± 2.3	
$\pi^- u_ au$	43	41.3 ± 6.2	4.7 ± 1.7	
$\pi^-\pi^0 u_ au$	21	23.3 ± 4.7	5.9 ± 1.9	
$\pi^-\pi^+\pi^- u_ au$	21	18.5 ± 4.1	4.2 ± 1.6	
	95	;% = BB, 5% =	qq	

Validation of E_{ECL} simulation

- $B^{-} \rightarrow D^{*\circ} l^{-} \bar{v}$ ($l = \mu$, e) control sample.
 - $D^{*o} \rightarrow D^{o} \pi^{o}$
 - □ D°→K⁻π⁺, K⁻π⁻π⁺π⁺
 - The sources affecting E_{ECL} are similar to those for signal, while the number of events is larger compared to signal.
- Figure shows the distributions for data and MC.
 - The good agreement is seen.

Examination of signal region

Sum of the number of observed events in signal region = N_{obs}

	Nobs
$\mu^- \bar{ u}_\mu u_ au$	13
$e^- \bar{\nu}_e \nu_{\tau}$	12
$\pi^- u_{ au}$	9
$\pi^-\pi^0 u_ au$	11
$\pi^-\pi^+\pi^- u_ au$	9

- The significant excess is seen.
- Checks are performed using M_{bc} and p_{miss} distributions and K_L^o veto.

Curves: result of the fit

- Number of signal events is estimated by fitting E_{ECL} distribution.
 - PDFs are constructed from MC.
 - f_s: sum of a Gaussian and an exponential.
 - f_b: sum of a Gaussian (for peaking BG) and a second-order polynomial.
 - Extended likelihood method is used.

$$\mathcal{L} = \frac{e^{-(n_s + n_b)}}{N!} \prod_{i=1}^{N} (n_s f_s(E_i) + n_b f_b(E_i)).$$

Obtained Numbers are listed below.

	N _s	N_b
$\mu^- \bar{ u}_\mu u_ au$	$5.6^{+3.1}_{-2.8}$	$8.8^{+1.1}_{-1.1}$
$e^- \bar{\nu}_e \nu_\tau$	$4.1^{+3.3}_{-2.6}$	$9.0^{+1.1}_{-1.1}$
$\pi^- u_{ au}$	$3.8^{+2.7}_{-2.1}$	$3.9^{+0.8}_{-0.8}$
$\pi^-\pi^0 u_ au$	$5.4^{+3.9}_{-3.3}$	$5.4^{+1.6}_{-1.6}$
$\pi^-\pi^+\pi^- u_ au$	$3.0^{+3.5}_{-2.5}$	$4.8^{+1.4}_{-1.4}$

Branching fractions

- Branching fraction $\mathcal{B} = N_s / (2 \epsilon N_{B+B})$
 - N_s = number of signal events
 - ε = detection efficiency = $\varepsilon_{tag} \times \varepsilon_{sel}$
 - N_{B+B-} = number of B meson pairs

	$\mathbf{\epsilon}^{ m sel}(\%)$	$\mathcal{B}(10^{-4})$
$\mu^- \bar{ u}_\mu u_ au$	3.64 ± 0.02	$2.57^{+1.38}_{-1.27}$
$e^- \bar{\nu}_e \nu_\tau$	4.57 ± 0.03	$1.50^{+1.20}_{-0.95}$
$\pi^- u_{ au}$	4.87 ± 0.03	$1.30\substack{+0.89 \\ -0.70}$
$\pi^-\pi^0 u_ au$	1.97 ± 0.02	$4.54\substack{+3.26 \\ -2.74}$
$\pi^-\pi^+\pi^- u_ au$	0.77 ± 0.02	$6.42^{+7.58}_{-5.42}$

- $\mathcal{B}(B^- \rightarrow \tau^- \bar{\nu}_{\tau}) = (1.79^{+0.56}) \times 10^{-4}$
 - Obtained by a simultaneous fit to the five modes constraining the five signal components by *B*.

Systematic errors

- N_{B+B}: ±1%
- Signal yields: +23% -26%
 - Signal shape: data/MC difference on control sample.
 - Background shape: BR uncertainty of peaking BG.
- Efficiencies
 - E_{tag}: ±10.5% (obtained from control sample)
 - E_{sel}: ±5.6% (tracking, π^o reconstruction, PID, BR of τ decays, MC statistics)

BR and the significance

 $\mathcal{B}(B^- \to \tau^- \bar{\nu}_{\tau}) = (1.79^{+0.56}_{-0.49}(\text{stat})^{+0.46}_{-0.51}(\text{syst})) \times 10^{-4}$

- The significance is defined as the following. $\Sigma = \sqrt{-2\ln(\mathcal{L}_0/\mathcal{L}_{max})}$
 - L_o = likelihood value obtained assuming zero signal events.
 - L_{max} = maximum likelihood value.
 - The systematic error is included as a Gaussian function, which is convoluted to the likelihood function.
- The obtained significance is 3.5σ.

Conclusion

• The first evidence of the decay $B^- \rightarrow t^- v_{\tau}$ is found.

 $\mathcal{B}(B^- \to \tau^- \bar{\nu}_{\tau}) = (1.79^{+0.56}_{-0.49}(\text{stat})^{+0.46}_{-0.51}(\text{syst})) \times 10^{-4}$

The significance is 3.5σ.

- The result is consistent with the SM prediction.
- Using the known values of G_F , m_B , m_τ , and τ_B , $f_B |V_{ub}| = (10.1^{+1.6}_{-1.4} (\text{stat})^{+1.3}_{-1.4} (\text{syst})) \times 10^{-4} \text{ GeV}$ $f_B = 0.229^{+0.036}_{-0.031} (\text{stat})^{+0.034}_{-0.037} (\text{syst}) \text{ GeV}$

(First direct determination of the B meson decay constant f_B)

Constraint on $M_{H\pm}$ -tan β plane

Memo (status at Belle)

B→τν with Hadronic (Fullrecon) tag
 Previous analysis:

3.5 sigma evidence (447M BB) [PRL 97, 251802 (2006)]

No significant signal observed in 657M $B\bar{B}$ sample after fixing bug in fullrecon module..

analysis using full data (772M BB) with improvements added toward this summer.

- E_{ECL}- MM² 2 dimensional fit
- Tagging efficiency improvement
 - By new tracking (caseB data)
 - New fullrecon module if it is effective.
- Background suppression by K_L veto
- 3.6σ significance from semileptonic tagging.
 - Will be published soon.