Evidence of Electron Neutrino Appearance in a Muon Neutrino Beam

arXiv:1304.0841

Phys. Rev. D 88 (2013) 032002

Tomohiro Horiguchi

Neutrino physics for its oscillation

2

The behave of their <u>mixing</u> is explained by PMNS matrix (Pontecorvo-Maki-Nakagawa-Sakata).

$$\begin{aligned} |\nu_{\alpha}(t)\rangle &= \sum_{i} U_{\alpha i} |\nu_{i}(t)\rangle \\ \downarrow \\ \nu_{\mu} \\ \nu_{\tau} \\ \nu_{\tau} \\ \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{23} & \sin \theta_{23} \\ 0 & -\sin \theta_{23} & \cos \theta_{23} \\ \end{pmatrix} \begin{pmatrix} \cos \theta_{13} & 0 & \sin \theta_{13} e^{i\delta} \\ 0 & 1 & 0 \\ -\sin \theta_{13} e^{-i\delta} & 0 & \cos \theta_{13} \\ \end{pmatrix} \begin{pmatrix} \cos \theta_{12} & \sin \theta_{12} & 0 \\ -\sin \theta_{12} & \cos \theta_{12} & 0 \\ 0 & 0 & 1 \\ \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \\ \end{pmatrix} \\ The oscillation of 2-flavor case: \\ & \Delta m^{2} = |m_{e}^{2} - m_{\mu}^{2}| \end{aligned}$$

f the neutrino mixing exits (
$$\theta \neq 0$$
) and neutrinos have masses ($\Delta m \neq 0$), he neutrino oscillation occurs.

 $P(\nu_e \rightarrow \nu_\mu) = \frac{\sin^2 2\theta}{\sin^2 (\frac{\Delta m}{4E}L)} + CP \text{ phase}$

Neutrino oscillation

3

The oscillation of neutrinos occur by the mixing of massive neutrinos.

•
$$\Theta_{12}$$
: Solar $\approx 34^{\circ}$
 $4P \rightarrow 4$ He $+ 2e^{-} + 2\bar{\nu_{e}}$
• Θ_{23} : Atmospheric $\approx 45^{\circ}$
 $\pi^{-} \rightarrow \mu^{-} + \bar{\nu_{\mu}}$
 $\Rightarrow e^{-} + \bar{\nu_{e}} + \nu_{\mu}$
• Θ_{13} : Reactor and Accelerator
 $\Rightarrow \text{ today's topic}$
 $P_{\nu_{\mu} \rightarrow \nu_{e}} \approx \sin^{2} \theta_{23} \sin^{2} \theta_{13} \sin^{2} \frac{\Delta m_{32}^{2}L}{4E_{\nu}} + CP \text{ phase}$

θ_{13}

reactor

$$P(\bar{\nu}_{e} \not\rightarrow \bar{\nu}_{e}) = \underline{P(\bar{\nu}_{e} \rightarrow \bar{\nu}_{\mu}) + P(\bar{\nu}_{e} \rightarrow \bar{\nu}_{\tau})}$$

 Θ_{13} can be measured directly since Θ_{23} and CP phase are canceled.
 Event control is difficult.

For the short distance, the there is no sensitivity for appearance.

accelerator

$$P_{\nu_{\mu} \to \nu_{e}} \approx \sin^{2} \theta_{23} \, \sin^{2} \theta_{13} \, \sin^{2} \frac{\Delta m_{32}^{2} L}{4E_{\nu}}$$

- Since the oscillation depends many parameter, the measurement of Θ₁₃ is indirect.
 Event control is not difficult.
- ${\ensuremath{\overline{\otimes}}}$ Canceling the CP phase in the same way as upper blue line, $heta_{23}$ is measurable.

At the accelerator, the direct measurement of $\Theta 13$ is hopeless, but the measurement of CP has sensitivity.

\Rightarrow The complementarity of reactor and accelerator is very important !!

The formula of the neutrino oscillation of $V_{\mu} \rightarrow V_{e}$

$$P_{\nu_{\mu} \to \nu_{e}} = \frac{1}{(A-1)^{2}} \sin^{2}2\theta_{13} \sin^{2}\theta_{23} \sin^{2}[(A-1)\Delta]$$
$$-(+)\frac{\alpha}{A(1-A)} \cos\theta_{13} \sin2\theta_{12} \sin2\theta_{23} \sin2\theta_{13} \times$$
$$\sin\delta_{CP} \sin\Delta \sinA\Delta \sin[(1-A)\Delta]$$
$$+\frac{\alpha}{A(1-A)} \cos\theta_{13} \sin2\theta_{12} \sin2\theta_{23} \sin2\theta_{13} \times$$
$$\cos\delta_{CP} \cos\Delta \sinA\Delta \sin[(1-A)\Delta]$$
$$+\frac{\alpha^{2}}{A^{2}} \cos^{2}\theta_{23} \sin^{2}2\theta_{12} \sin^{2}A\Delta$$

Here $\alpha = \frac{\Delta m_{21}^2}{\Delta m_{32}^2} \ll 1$, $\Delta = \frac{\Delta m_{32}^2 L}{4E_{\nu}}$ and $A = 2\sqrt{2}G_F N_e \frac{E_{\nu}}{\Delta m_{32}^2}$, where N_e is the electron density of the Earth's crust.

T2K	Run Period Run 1 Run 2 Run 3	Dates Jan. 2010-Jun. 2010 Nov. 2010-Mar. 2011 Mar. 2012-Jun. 2012	Integrated POT by SK 0.32×10^{20} 1.11×10^{20} 1.58×10^{20}
	Tun 5		
Kamioka	295	km	J-PARC

295km is the oscillation maximum point. For obtaining the maximum of neutrino mixing (n=1), the length and the neutrino energy were set.

$$\Delta m_{23}^2 \sim 2.4 \times 10^{-3} eV^2$$
: L = 295km

$$1.27 \times \frac{\Delta m_{23}^2 L}{E_{\nu}} = \frac{(2n-1)\pi}{2} \quad (1)$$

Accelerator

Experimental equip – Accelerator -

8

By striking the protons to the targets (Carbon), K and π mesons are generated. At this time, positive charged ones are selected and they decay into μ^+ and V_{μ} .

The muon neutrino beam generated in J-PARC (Tokai-Mura) penetrate to the near detector which is placed in 280 m from the target and the far detector, Super Kamiokande (SK) which is placed in 295 km from that.

In particular, narrow band beam is obtain using off-axis configuration (OA) for optimizing the neutrino energy spectrum at the T2K.

Experimental equip – Near Detector-

INGRID — on-axis

- 280 m downstream of the proton target.
- Measuring the neutrino beam direction within
 1 mrad uncertainty for suppressing the systematic error by2%.
- A module is a sandwich of 9 iron target plates and 11 scintillator tracking planes

ND280

INGRIG

Beam Axis

- The charged particle from neutrino interaction at iron is detected.
- ND280 off axis = same direction as SK
 - measuring the V energy spectrum, kind of V, V cross section before oscillation
 - 0.2 T magnetic field, ECAL, π^0 detector, fine-grained scintillator ...

Neutrino model

> Charged Current Quasi-Elastic (CCQE) $v_l + N \rightarrow l + N'$

- > Charged Current interaction (CC1 π) $\nu_l + N \rightarrow l + N' + \pi$
- > Neutral Current interaction (NC1 π) $\nu_l + N \rightarrow \nu + N' + \pi$

Muon finding at ND280

- 11
- Geant4-based MC simulation using neutrino flux describe.
- 2.66 × 10²⁰ POT (proton on target)
- > Muons were selected for creating CC V_{μ} .
 - The highest momentum negatively lepton was found for each event.
 - Muon which was detected at both TPC1 and FGD1 was rejected.
 - Only one muon-like track in the final state.
 - No additional tracks which pass through both FGD1 and TPC2.
 - No Michel electrons. (low energy or stopped, PID by time-delay)
 - Other condition such as momentum and $\cos\theta_{\mu}$ (the angle between z-axis and muon direction)
- For measuring v_e appearance, they had to know how many v_e they had in beam.
 - The cut condition is almost all same to muon

TABLE VII: Number of data and predicted events for the ND280 CC-inclusive selection criteria.

	Data	MC
Good negative track in FV	21503	21939
Upstream TPC veto	21479	21906
μ PID	11055	11498

Experimental equip

- SK(Super Kamiokande) - far Detector-

- 50 kt water world largest Cherenkov detector
- ID(inner detector)
 - 11129 PMT (20 inch)
 - for obtaining the signals
- OD(outer detector)
 - 1885 PMT (8 inch)
 - for bkg.(cosmic ray and rocks)
- > PID using the ring image

SK detector simulation

- 13
- Detector simulation
 - Using SKDETSIM which is based on GEANT3 far detector simulation was applied.
- > Neutrino event selection for detector bkg.
 - Obviously hit on OD (more than 15 hits)
 - For suppressing the low energy background, at 300ns time window measurement, they required 200 photonelectrons and Evis > 20MeV.
 - If half of total charge are detected on 1 PMT, that event was rejected.
 - Rejection for "Flasher events", charge deposit near dynode
 - Although the ring of Neutrino event is larger than that of Flasher event, since signals are sometimes generated near ID, they are easy to misidentify.

Cut table at $\theta_{13} = 0$ (top table) and $\theta_{13} \neq 0$ (bottom one)

	Data	MC total	$\mathrm{CC} \ \nu_{\mu}$	CC ν_e	NC	$\mathrm{CC} \ \nu_{\mu} \rightarrow \nu_{e}$
(0) interaction in FV	n/a	299.0	158.5	8.6	131.6	0.3
(1) fully contained in FV	174	168.5	119.8	8.2	40.2	0.3
(2) single ring	88	85.4	68.5	5.3	11.4	0.2
(3) <i>e</i> -like	22	16.1	2.7	5.2	8.0	0.2
(4) $E_{\rm vis} > 100 {\rm MeV}$	21	14.1	1.8	5.2	6.9	0.2
(5) no delayed electron	16	10.6	0.3	4.2	5.9	0.2
(6) not π^0 -like	11	4.8	0.09	2.9	1.6	0.2
(7) $E_{\nu}^{\rm rec} < 1250 {\rm MeV}$	11	3.3	0.06	1.8	1.2	0.2

	Data	MC total	$\rm CC \ \nu_{\mu}$	CC ν_e	NC	$\mathrm{CC} \ \nu_{\mu} \rightarrow \nu_{e}$
(0) interaction in FV	n/a	311.4	158.3	8.3	131.6	13.2
(1) fully contained in FV	174	180.5	119.6	8.0	40.2	12.7
(2) single ring	88	95.7	68.4	5.1	11.4	10.8
(3) e -like	22	26.4	2.7	5.0	8.0	10.7
(4) $E_{\rm vis} > 100 {\rm MeV}$	21	24.1	1.8	5.0	6.9	10.4
(5) no delayed electron	16	19.3	0.3	4.0	5.9	9.1
(6) not π^0 -like	11	13.0	0.09	2.8	1.6	8.5
(7) $E_{\nu}^{\rm rec} < 1250 {\rm MeV}$	11	11.2	0.06	1.7	1.2	8.2

 \geq

 \succ

(0) interaction in FV

(1) fully contained in FV

(2) single ring

- (3) *e*-like
- (4) $E_{\rm vis} > 100 \,\,{\rm MeV}$

(5) no delayed electron

(6) not π^0 -like

```
(7) E_{\nu}^{\rm rec} < 1250 \,\,{\rm MeV}
```


- (0) means all events which were interaction to ID.
- (1) is the selection to reject the detector bkg. such as flasher.
- (2) is suppress the beam background such as neutral hadrons like π^0 and K⁰. the cut criteria is decided by MC study.

- (5) no delayed electron
- (6) not π^0 -like
- 7) $E_{\nu}^{\rm rec} < 1250 \,\,{\rm MeV}$

- (3) is the selection for e or μ neutrino.The cut criteria is also determined by MC study.
- (4) Visible energy
 - the energy of an electromagnetic shower that produces the observed amount of Cherenkov light
 - Cosmic ray muon, pion
 - (5) The electron decayed from μ

17

- (0) interaction in FV
- (1) fully contained in FV
- (2) single ring
- (3) *e*-like
- (4) $E_{\rm vis} > 100 \,\,{\rm MeV}$
- (5) no delayed electron
- (6) not π^0 -like
- (7) $E_{\nu}^{\rm rec} < 1250 \,\,{\rm MeV}$

- (6) Likelihood which is based on light pattern and ring image. And using invariant mass M_{inv} > 105 MeV
- (7) they can separate atmospheric mass splitting and signal. And in high energy region, background are dominant.

Conclusion

- 18
- The evidence of electron neutrino appearance in a muon neutrino beam with a baseline.
 - 11 candidate V_e events were observed (bkg. 3.3±0.4 syst.).
- > Future measurements od appearance probability for antineutrinos will provide a future constraint on $\delta_{\rm CP}$ and the mass hierarchy.

$$\sin^2 \theta_{13} = 0.088^{+0.049}_{-0.039}$$
$$\sin^2 \theta_{13} = 0.108^{+0.059}_{-0.046}$$

(normal hierarchy) (inverted hierarchy)

New result

19

Candidate	event	summary
-----------	-------	---------

			Paramet
Data		Δm^2_{21} Δm^2_{32}	
MC	$\sin^2 2 \theta_{13} = 0$	$\sin^2 2 \theta_{13} = 0.1$	$\frac{\sin^2 2\theta_{12}}{\sin^2 2\theta_{23}}$ $\frac{\sin^2 2\theta_{13}}{\sin^2 2\theta_{13}}$
Osci. $\nu_{\mu} \rightarrow \nu_{e}$	0.38	16.42	δ_{CP} Mass hie
ν_{e} BG (Beam)	3.17	2.93	$\frac{\nu \text{ travel}}{\text{Earth de}}$
$\nu_{\mu} BG_{(NC \pi 0 etc)}$	0.89	0.89	
$\overline{\nu}_{e} + \overline{\nu}_{\mu} BG$	0.20	0.19	
MC Total	4.64	20.44	
Sys.Err(%)	(11.1%)	(8.8%)	
Sys.Err(#)	±0.52	±1.80	
Sys.Err(%)-2012	(13.0%)	(9.9%)	

Value $7.6 \times 10^{-5} eV^2$

- N_{exp} =20.4 at sin²2 θ_{13} =0.1, while we observe 28 events
- N_{exp}=20.4 at sin²2 θ_{13} =0.1, while we observe 28 events ν_{μ} background significantly reduced by new NC π^{0} fitter
- Systematic uncertainties are reduced from 2012 release. mainly thanks to the near detector analysis

New result

inverted hierarchy: $\sin^2 2\theta_{13} = 0.182^{+0.046}_{-0.040}$

 28個観測されているのにニュートリノ振動がない sin²2θ₁₃=0.0であるのは、Δχ²=56.3となり、7.5 σで棄却。

⇒我々T2Kは、7.5σの有意性で、v_eアピアランス事象を 発見した。

Backup

- These are written in Japanese for my scamped work
 - チェレンコフ光の検出
 - こころのさけび

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

1.6 チェレンコフ光 (粒子と物質の相互1作用) 23/47

荷電子が物質中を"その物質の 光速を超える速度"で通過するとき 放出する微弱な光

放出速度の 閾値

放出角度 (チェレンコフ角)

β>-		
'n		
cos A	_	1
$\cos \theta_c$	-	nβ

□屈折率によって閾値が変化する □放出角は粒子の速度βに依存する

例)石英の場合n=1.47 で閾値はβ>0.68 水の場合n=1.33で閾値はβ>0.75

こころのさけび

(T_T)

論文講読の素材は あまり長いものを選 ぶべきではない。