

Outline

Introduction Overview of ϕ_3/γ measurements New result on $B^- \rightarrow [K^+ \pi^-]_D K^-$

Introduction

CKM (Cabbibo-Kobayashi-Maskawa) matrix

- The quark mixing matrix, which is unitary.

 $V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{u} & V_{u} & V_{u} \end{pmatrix}$ Complex phase

• The Unitarity Triangle $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$

Methods of ϕ_3/γ measurements

 $\circ \mathbf{B}^{-} \to \mathbf{D}^{(*)} \mathbf{K}^{(*)-}$ (No penguin) *Color-favored* $\begin{matrix} W^{-} & \mathbf{v}^{s} & K^{-} \\ B^{-} & \mathbf{u}^{s} & \mathbf{v}^{s} \\ \overline{u}^{s} & \mathbf{v}^{-} \\ \overline{u}^{s} & -\mathbf{f} \\ \overline{u}^{s} & -$

 \circ Access ϕ_3 using the same final state f of D^0 and \overline{D}^0 decays. \circ Basically, we extract ϕ_3 with the ratio of the amplitudes

$$r_B \equiv \left| \frac{A(B^- \to \bar{D^0}K^-)}{A(B^- \to D^0K^-)} \right|$$

 $r_{_B}$ is a crucial parameter in $\phi_{_3}$ measurement. (Expected to be 0.1-0.2.)

 $\circ\,\mathrm{B}\,
ightarrow\,\mathrm{D}^{(st)\pm}\,\pi^{\mp}$, $\,\mathrm{D}^{\pm}\,
ho^{\mp}$

• Extract $\sin(2\phi_1 + \phi_3)$ by the studies of $B^0 - \overline{B}^0$ transitions.

Methods of ϕ_3/γ measurements

 $\circ B^- \!\rightarrow\! D^{(*)} \; K^{(*)-}$

Three types of final state f of D^0 and \overline{D}^0 decays GLW (Gronau-London-Wyler) : $f = K^+ K^-$, $\pi^+ \pi^-$, $K_S \pi^0$, ... ADS (Atwood-Dunietz-Soni) : $f = K^+ \pi^-$, $K^+ \pi^- \pi^0$, ... GGSZ (Giri-Grosman-Soffer-Zupan) : $f = K_S \pi^+ \pi^-$

• The Luminosity of KEKB/Belle with corresponding analyses

Can be used to improve the constraint by GGSZ at present.

 $f = \mathrm{K}_{\mathrm{S}} \pi^+ \pi^-$

PRD73, 112009 (2006) Belle: 386M BB

The most precise determination of ϕ_3 comes from this method.

$$\phi_3 = 53^{\circ} + 15^{\circ} - 18^{\circ} (stat) \pm 3^{\circ} (syst) \pm 9^{\circ} (model)$$

 $r_{\rm B}({\rm DK}) = 0.157^{+0.054}_{-0.050}$ $r_{\rm B}({\rm D}^{*}{\rm K}) = 0.175^{+0.108}_{-0.099}$ $r_{\rm B}({\rm DK}^{*}) = 0.564^{+0.216}_{-0.155}$

Analysis of $B^- \rightarrow [K^+ \pi^-]_D K^-$ ADS $f = K^+ \pi^-$

Main decays

$$\circ \mathbf{B}^{-} \to [\mathbf{K}^{+} \boldsymbol{\pi}^{-}]_{\mathbf{D}} \mathbf{K}^{-} \colon \mathbf{B}^{-} \to \mathbf{D}_{\mathrm{sup}} \mathbf{K}^{-}$$
$$\circ \mathbf{B}^{-} \to [\mathbf{K}^{-} \boldsymbol{\pi}^{+}]_{\mathbf{D}} \mathbf{K}^{-} \colon \mathbf{B}^{-} \to \mathbf{D}_{\mathrm{fav}} \mathbf{K}^{-}$$

$$R_{DK} \equiv \frac{\mathcal{B}(B^- \to D_{\sup}K^-) + \mathcal{B}(B^+ \to D_{\sup}K^+)}{\mathcal{B}(B^- \to D_{\text{fav}}K^-) + \mathcal{B}(B^+ \to D_{\text{fav}}K^+)}$$
$$= r_B^2 + r_D^2 + 2r_B r_D \cos\phi_3 \cos\delta$$

$$r_D \equiv \left| \frac{A(D^0 \to K^+ \pi^-)}{A(D^0 \to K^- \pi^+)} \right|$$

$$\delta = \delta_B + \delta_D$$

(Strong phase difference)

1 4/ 00

 $\begin{array}{ll} \circ \mbox{Reference decays: (parameterize PDF)} \\ \mbox{The charge asymmetry is expected to be very small.} \\ \circ \mbox{B}^- \rightarrow [\mbox{K}^+ \mbox{\pi}^-]_{\mbox{D}} \mbox{\pi}^-: \mbox{B}^- \rightarrow D_{sup} \mbox{\pi}^- \\ \circ \mbox{B}^- \rightarrow [\mbox{K}^- \mbox{\pi}^+]_{\mbox{D}} \mbox{\pi}^-: \mbox{B}^- \rightarrow D_{fav} \mbox{\pi}^- \end{array} \begin{array}{ll} \mbox{Large statistics} \\ \mbox{Large statistics} \end{array}$

We imply that the charge conjugate decay is included. We use the same selection criteria whenever possible.

Reconstruction and $q\bar{q}$ suppression

- K/ π identifications (Efficiency~90%, Fake rate~10%)
- D mass requirement: |M(K⁺π⁻)-1.865|<0.015 GeV/c² (3σ)
- For B reconstruction, we use

 $M_{\rm bc} \equiv \sqrt{E_{\rm beam}^2 - |\vec{p}_{K^+} + \vec{p}_{\pi^-} + \vec{p}_{K^-}|^2} : |M_{\rm bc} - 5.279| < 0.007 \text{ GeV}/c^2 (3\sigma)$ $\Delta E \equiv E_{K^+} + E_{\pi^-} + E_{K^-} - E_{\rm beam} \quad --> Fit.$

- Continuum background ($e^+e^- \rightarrow q\bar{q}$) suppression

Background peaking in ΔE

- $\mathbf{B}^- \rightarrow [\mathbf{K}^+ \mathbf{K}^-]_{\mathbf{D}} \pi^-$ background

- Caused by the unfortunate condition: $M(K^+\pi^-) \sim M_p$
- We veto events with $M(K^+K^-) \sim M_{D}$
- After the veto, (0.22 \pm 0.19) events will contribute

- $\mathbf{B}^- \rightarrow [\mathbf{K}^- \pi^+]_{\mathbf{D}} \mathbf{K}^-$ (favored) background

- Caused by double misidentifications for candidates from D
- We veto events with $M(K^+\pi^-) \sim M_{D}$ when IDs are swapped
- After the veto, (0.17 \pm 0.13) events will contribute $\frac{Subtract.}{Subtract.}$

- $\mathbf{B}^- \rightarrow \mathbf{K}^+ \mathbf{K}^- \pi^-$ background

• We fit the data sample of M(K⁺ π^{-}) sideband, and estimate the yield contribute to the signal as (-2.3 \pm 2.4) events

ΔE fit for Favored modes

(657M BB)

- Signal: Sum of two Gaussians
- $\circ B^- \rightarrow X \pi^- BG (as B^- \rightarrow D^* \pi^-)$: Smoothed function
- \circ $B^-\!\rightarrow$ $X\,K^-$ BG (as $B^-\!\rightarrow\!D^*\,K^-)$: Smoothed function
- $\circ q \overline{q} BG$: Linear function
- \circ $B^- \rightarrow D \pi^-$ BG: A sum of asymmetric Gaussians

ΔE fit for Suppressed modes

(657M BB)

- Signal: Sum of two Gaussians
- $\circ \ B^- \to X \pi^- \ BG \ (as \ B^- \to D^* \ \pi^-): Smoothed \ function$
- \circ $B^- \rightarrow$ $X \, K^-$ BG (as $B^- \rightarrow D^* \, K^-)$: Smoothed function
- $\circ q \, \overline{q} \, BG$: Linear function
- \circ $B^- \to D \pi^-$ BG: A sum of asymmetric Gaussians

(657M *BB*)

• We obtain the ratio of the branching fractions.

$$R_{Dh} \equiv \frac{\mathcal{B}(B^- \to D_{\sup}h^-)}{\mathcal{B}(B^- \to D_{fav}h^-)} = \frac{N_{D_{\sup}h^-}/\epsilon_{D_{\sup}h^-}}{N_{D_{fav}h^-}/\epsilon_{D_{fav}h^-}} \qquad (h = \pi, K)$$

$$R_{D\pi} = [3.40^{+0.56}_{-0.54}(stat)^{+0.13}_{-0.21}(sys)] \times 10^{-3}$$

$$R_{DK} = [8.0^{+6.3}_{-5.7}(stat)^{+2.0}_{-2.8}(sys)] \times 10^{-3}$$

Signal is not significant for DK--> $R_{DK} < 1.8 \times 10^{-2}$ (90% C.L.)

• We can then derive a limit on $r_{_{R}}$.

 $R_{DK} = r_B^2 + r_D^2 + 2r_B r_D \cos \phi_3 \cos \delta$ $r_D = 0.0574^{+0.0012}_{-0.0010} \text{ [HFAG'07]}$

r_B < 0.19 (90% C.L.)

(657M *BB*)

• We obtain the charge asymmetry.

$$\mathcal{A}_{Dh} \equiv \frac{\mathcal{B}(B^- \to Dh^-) - \mathcal{B}(B^+ \to Dh^+)}{\mathcal{B}(B^- \to Dh^-) + \mathcal{B}(B^+ \to Dh^+)} \qquad (h = \pi, K)$$

- $A_{D\pi}$ is consistent with the expectation.

- Will need much more statistics to measure ϕ_3 with ADS method.

Summary

- The methods for extracting ϕ_3 are overviewed.
- New result on $B^- \rightarrow [K^+ \pi^-]_D h^-$ is reported.
 - For $D_{sup}\pi^{-}$, the asymmetry is measured to be consistent with zero as expected.
 - No significant signal is observed for $D_{sup}K^{-}$, and we set an upper limit of $r_{B} < 0.19$ at 90% C.L.

