ϕ_{3} / γ measurement at Belle

Outline
Introduction
Overview of ϕ_{3} / γ measurements
New result on $\mathrm{B}^{-} \rightarrow\left[\mathrm{K}^{+} \pi^{-}\right]_{\mathrm{D}} \mathrm{K}^{-}$

Introduction

- CKM (Cabbibo-Kobayashi-Maskawa) matrix
- The quark mixing matrix, which is unitary.

$$
\boldsymbol{V}=\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & \frac{V_{t s}}{} & V_{t b}
\end{array}\right) \text { Complex phase }
$$

- The Unitarity Triangle $V_{u d} V_{u b}^{*}+V_{c d} V_{c b}^{*}+V_{t d} V_{t b}^{*}=0$

Methods of ϕ_{3} / γ measurements

${ }^{\circ} \mathrm{B}^{-} \rightarrow \mathrm{D}^{(*)} \mathrm{K}^{(*)-}$
(No penguin)

Color-suppressed

- Access ϕ_{3} using the same final state f of D^{0} and $\overline{\mathrm{D}}^{0}$ decays.
- Basically, we extract ϕ_{3} with the ratio of the amplitudes

$$
r_{B} \equiv\left|\frac{A\left(B^{-} \rightarrow \bar{D}^{0} K^{-}\right)}{A\left(B^{-} \rightarrow D^{0} K^{-}\right)}\right| \quad \begin{aligned}
& r_{B} \text { is a crucial parameter in } \phi_{3} \\
& \text { measurement. }
\end{aligned}
$$

(Expected to be 0.1-0.2.)
$\circ \mathrm{B} \rightarrow \mathrm{D}^{(*) \pm} \pi^{\mp}, \mathrm{D}^{ \pm} \rho^{\mp}$

- Extract $\sin \left(2 \phi_{1}+\phi_{3}\right)$ by the studies of $\mathrm{B}^{0}-\overline{\mathrm{B}}^{0}$ transitions.

Methods of ϕ_{3} / γ measurements

$\circ \mathrm{B}^{-} \rightarrow \mathrm{D}^{(*)} \mathrm{K}^{(*)-}$
Three types of final state f of D^{0} and $\overline{\mathrm{D}}^{0}$ decays
GLW (Gronau-London-Wyler) : $f=\mathrm{K}^{+} \mathrm{K}^{-}, \pi^{+} \pi^{-}, \mathrm{K}_{\mathrm{s}} \pi^{0}, \ldots$ ADS (Atwood-Dunietz-Soni) : $f=\mathrm{K}^{+} \pi^{-}, \mathrm{K}^{+} \pi^{-} \pi^{0}, \ldots$ GGSZ (Giri-Grosman-Soffer-Zupan) : $f=\mathrm{K}_{\mathrm{s}} \pi^{+} \pi^{-}$

- The Luminosity of KEKB/Belle with corresponding analyses

$$
\begin{gathered}
\underline{\mathrm{GLW}} \\
f=\mathrm{CP} \text { eigenstates } \\
\left(\mathrm{K}^{+} \mathrm{K}^{-}, \pi^{+} \pi^{-}, \mathrm{K}_{\mathrm{S}} \pi^{0}, \ldots\right)
\end{gathered}
$$

PRD(RC)73, 051106 (2006)

Signals are observed.

$\mathrm{D}_{\mathrm{CP}(+)}=\mathrm{K}^{+} \mathrm{K}^{-}$ and $\pi^{+} \pi^{-}$
$R_{C P}$: Ratio to $B^{-} \rightarrow D^{0} K^{-}$

$$
R_{C P(\pm)}=1+r_{B}^{2} \pm 2 r_{B} \cos \delta_{C P} \cos \phi_{3}
$$

$\mathcal{A}_{C P}$: Charge asymmetry
$\mathcal{A}_{C P \pm}=\frac{ \pm 2 r_{B} \sin \delta \sin \phi_{3}}{1+r_{B}^{2} \pm 2 r_{B} \cos \delta \cos \phi_{3}}$

Can be used to improve the constraint by GGSZ at present.

GGSZ

$$
f=\mathrm{K}_{\mathrm{S}} \pi^{+} \pi^{-}
$$

The most precise determination of ϕ_{3} comes from this method.
$\circ \mathrm{B}^{-} \rightarrow \mathrm{DK}^{-}$

$$
\phi_{3}=66_{-20^{\circ}}^{\circ+19^{\circ}}(\text { stat })
$$

\circ Combining $\mathrm{B}^{-} \rightarrow \mathrm{DK}^{-}, \mathrm{B}^{-} \rightarrow \mathrm{D}^{*} \mathrm{~K}^{-}$, and $\mathrm{B}^{-} \rightarrow \mathrm{DK}^{*}$,

$$
\phi_{3}=53_{-18^{\circ}}^{\circ}(\text { stat }) \pm 3^{\circ}(\text { syst }) \pm 9^{\circ}(\text { model })
$$

$$
\begin{gathered}
\mathrm{r}_{\mathrm{B}}(\mathrm{DK})=0.157_{-0.050}^{+0.054} \\
\mathrm{r}_{\mathrm{B}}\left(\mathrm{D}^{*} \mathrm{~K}\right)=0.175_{-0.009}^{+0.009} \\
\mathrm{r}_{\mathrm{B}}\left(\mathrm{DK}^{*}\right)=0.564_{-0.155}^{+0.216}
\end{gathered}
$$

Analysis of $\mathrm{B}^{-} \rightarrow\left[\mathrm{K}^{+} \pi^{-}\right]_{\mathrm{D}} \mathrm{K}^{-}$

- Main decays

ADS $f=\mathrm{K}^{+} \pi^{-}$
$\circ \mathrm{B}^{-} \rightarrow\left[\mathrm{K}^{+} \pi^{-}\right]_{\mathrm{D}} \mathrm{K}^{-}: \mathrm{B}^{-} \rightarrow \mathrm{D}_{\text {sup }} \mathrm{K}^{-}$
$\circ \mathrm{B}^{-} \rightarrow\left[\mathrm{K}^{-} \pi^{+}\right]_{\mathrm{D}} \mathrm{K}^{-}: \mathrm{B}^{-} \rightarrow \mathrm{D}_{\mathrm{fav}} \mathrm{K}^{-}$

$$
\begin{array}{rlr}
R_{D K} & \equiv \frac{\mathcal{B}\left(B^{-} \rightarrow D_{\text {sup }} K^{-}\right)+\mathcal{B}\left(B^{+} \rightarrow D_{\sup } K^{+}\right)}{\mathcal{B}\left(B^{-} \rightarrow D_{\text {fav }} K^{-}\right)+\mathcal{B}\left(B^{+} \rightarrow D_{\text {fav }} K^{+}\right)} \quad \begin{aligned}
& r_{D} \equiv\left|\frac{A\left(D^{0} \rightarrow K^{+} \pi^{-}\right)}{A\left(D^{0} \rightarrow K^{-} \pi^{+}\right)}\right| \\
&\left.=r_{B}^{2}+r_{D}^{2}+2 r_{B} r_{D} \cos \phi_{D}\right) \cos \delta
\end{aligned} \quad \text { (Strong phase difference) }
\end{array}
$$

- Reference decays: (parameterize PDF)

The charge asymmetry is expected to be very small.
$\circ \mathrm{B}^{-} \rightarrow\left[\mathrm{K}^{+} \pi^{-}\right]_{\mathrm{D}} \pi^{-}: \mathrm{B}^{-} \rightarrow \mathrm{D}_{\text {sup }} \pi^{-}$
$\circ \mathrm{B}^{-} \rightarrow\left[\mathrm{K}^{-} \pi^{+}\right]_{\mathrm{D}} \pi^{-}: \mathrm{B}^{-} \rightarrow \mathrm{D}_{\text {fav }} \pi^{-}$
Large statistics

We imply that the charge conjugate decay is included. We use the same selection criteria whenever possible.

Reconstruction and $q \bar{q}$ suppression

- K/ π identifications (Efficiency~90\%, Fake rate $\sim 10 \%$)
- D mass requirement: $\left|M\left(K^{+} \pi^{-}\right)-1.865\right|<0.015 \mathrm{GeV} / \mathrm{C}^{2}$ (3б)
- For B reconstruction, we use

$$
\begin{aligned}
& M_{\mathrm{bc}} \equiv \sqrt{E_{\text {beam }}^{2}-\left|\vec{p}_{K^{+}}+\vec{p}_{\pi^{-}}+\vec{p}_{K^{-}}\right|^{2}}:\left|M_{\mathrm{b}-}-5.279\right|<0.007 \mathrm{GeV} / \mathrm{c}^{2}(3 \sigma) \\
& \Delta E \equiv E_{K^{+}}+E_{\pi^{-}}+E_{K^{-}}-E_{\text {beam }} \quad-->\text { Fit. }
\end{aligned}
$$

- Continuum background ($e^{+} e^{-} \rightarrow q \bar{q}$) suppression

Background peaking in $\Delta \mathrm{E}$

- $\mathbf{B}^{-} \rightarrow\left[\mathbf{K}^{+} \mathbf{K}^{-}\right]_{\boldsymbol{D}} \boldsymbol{\pi}^{-}$background
- Caused by the unfortunate condition: $M\left(K^{+} \pi\right) \sim M_{D}$
- We veto events with $M\left(K^{+} K\right) \sim M_{D}$
- After the veto, (0.22 ± 0.19) events will contribute
- $\mathbf{B}^{-} \rightarrow\left[\mathbf{K}^{-} \boldsymbol{\pi}^{+}\right]_{\mathbf{D}} \mathbf{K}^{-}$(favored) background
- Caused by double misidentifications for candidates from D
- We veto events with $M\left(K^{+} \pi^{-}\right) \sim M_{D}$ when IDs are swapped
- After the veto, (0.17 ± 0.13) events will contribute Subtract.
- $\mathbf{B}^{-} \rightarrow \mathbf{K}^{+} \mathbf{K}^{-} \boldsymbol{\pi}^{-}$background
- We fit the data sample of $\mathrm{M}\left(\mathrm{K}^{+} \pi^{-}\right)$sideband, and estimate the yield contribute to the signal as (-2.3 ± 2.4) events -->Syst. Err.

$\Delta \mathrm{E}$ fit for Favored modes

- Signal: Sum of two Gaussians
$\circ \mathrm{B}^{-} \rightarrow \mathrm{X} \pi^{-} \mathrm{BG}\left(\right.$ as $\left.\mathrm{B}^{-} \rightarrow \mathrm{D}^{*} \pi^{-}\right)$: Smoothed function
$\circ \mathrm{B}^{-} \rightarrow \mathrm{XK}^{-} \mathrm{BG}\left(\right.$ as $\left.\mathrm{B}^{-} \rightarrow \mathrm{D}^{*} \mathrm{~K}^{-}\right)$: Smoothed function
$\circ \mathrm{q} \bar{q} \mathrm{BG}$: Linear function
$\circ \mathrm{B}^{-} \rightarrow \mathrm{D} \pi^{-} \mathrm{BG}$: A sum of asymmetric Gaussians

$\Delta \mathrm{E}$ fit for Suppressed modes

- Signal: Sum of two Gaussians
$\circ \mathrm{B}^{-} \rightarrow \mathrm{X} \pi^{-} \mathrm{BG}\left(\right.$ as $\left.\mathrm{B}^{-} \rightarrow \mathrm{D}^{*} \pi^{-}\right)$: Smoothed function
$\circ \mathrm{B}^{-} \rightarrow \mathrm{XK}^{-} \mathrm{BG}\left(\right.$ as $\left.\mathrm{B}^{-} \rightarrow \mathrm{D}^{*} \mathrm{~K}^{-}\right)$: Smoothed function
$\circ \mathrm{q} \bar{q} \mathrm{BG}$: Linear function
$\circ \mathrm{B}^{-} \rightarrow \mathrm{D} \pi^{-} \mathrm{BG}:$ A sum of asymmetric Gaussians

$(657 M B \bar{B})$

- We obtain the ratio of the branching fractions.

Signal is not significant for DK--> $R_{D K}<1.8 \times 10^{-2}$ (90% C.L.)

- We can then derive a limit on r_{B}.

$$
\begin{gathered}
R_{D K}=r_{B}^{2}+r_{D}^{2}+2 r_{B} r_{D} \cos \phi_{3} \cos \delta \\
r_{D}=0.0574_{-0.0010}^{+0.0010}\left[\mathrm{HFAG}^{\prime} 07\right]
\end{gathered}
$$

$$
r_{B}<0.19 \text { (90\% C.L.) }
$$

$$
\begin{aligned}
& R_{D h} \equiv \frac{\mathcal{B}\left(B^{-} \rightarrow D_{\text {sum }} h^{-}\right)}{\mathcal{B}\left(B^{-} \rightarrow D_{\text {fav }} h^{-}\right)}=\frac{N_{D_{\text {sup }} h^{-}} / \epsilon_{D_{\text {sup }} h^{-}}}{N_{D_{\text {fav }} h^{-}} / \epsilon_{\text {Dfav }_{\text {fa }} h^{-}}} \\
& \text {(} h=\pi, K \text {) } \\
& \varepsilon \text { : Detection efficiency }
\end{aligned}
$$

$(657 \mathrm{M} B \bar{B})$

- We obtain the charge asymmetry.

$$
\mathcal{A}_{D h} \equiv \frac{\mathcal{B}\left(B^{-} \rightarrow D h^{-}\right)-\mathcal{B}\left(B^{+} \rightarrow D h^{+}\right)}{\mathcal{B}\left(B^{-} \rightarrow D h^{-}\right)+\mathcal{B}\left(B^{+} \rightarrow D h^{+}\right)} \quad(h=\pi, K)
$$

- $A_{D \pi}$ is consistent with the expectation.

$$
\mathcal{A}_{D \pi}=-0.023 \pm 0.218(\text { stat }) \pm 0.071(\text { sys })
$$

- Will need much more statistics to measure ϕ_{3} with ADS method.

Summary

- The methods for extracting ϕ_{3} are overviewed.
- New result on $\mathrm{B}^{-} \rightarrow\left[\mathrm{K}^{+} \pi^{-}\right]_{\mathrm{D}} \mathrm{h}^{-}$is reported.
- For $\mathrm{D}_{\text {sup }} \pi^{-}$, the asymmetry is measured to be consistent with zero as expected.
- No significant signal is observed for $\mathrm{D}_{\text {sup }} \mathrm{K}$, and we set an upper limit of $\boldsymbol{r}_{\boldsymbol{B}}<\mathbf{0 . 1 9}$ at 90% C.L.

