B中間子のDK崩壊を用いた CP非保存角phi3の研究

1

- CP非保存角φ₃
- Belle実験
- B→D₁Kの解析

• 結果

CP非保存角φ₃

CP非保存

- CP (C:Charge, P:Parity)非保存の精密測定
 1. 消えた反物質の手がかり
 - 2. CP非保存はフレーバー混合に起源を持つ →フレーバーに関するパラメータの精密測定
- →CP非保存の精密測定はフレーバー物理の観点から、 標準理論(特にCKM理論)の検証や新しい物理を発見する手 がかりとなる。

CKM機構

CKM機構:弱い相互作用でCP非保存

弱い相互作用のラグランジアン:

$$\mathcal{L}_{\text{int}} = -\frac{g}{\sqrt{2}} (V_{CKM} \bar{U}_L \gamma_\mu D_L W^+_\mu) + h.c$$
$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

CKM行列はユニタリ行列 複素位相の数は世代数をNとすると (N-1)(N-2)/2

クォークが3世代以上 → CKM行列はCPを破る複素位相を持つ

ユニタリティー三角形

• CKM行列はカビボ因子λで展開できる。

λ~0.22

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - \underline{i\eta}) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - \underline{i\eta}) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4)$$

V_{CKM}はユニタリ行列: $V_{CKM}^{\dagger}V_{CKM} = 1$ $V_{ud}V_{ub}^{*} + V_{cd}V_{cb}^{*} + V_{td}V_{tb}^{*} = 0$ → 複素平面上に三角形を描く CP非保存→三角形の面積が0でない 本研究:最も測定が困難な_{\$\phi_3\$}の研究 $\phi_3 \equiv arg\left(\frac{V_{ud}V_{ub}^{*}}{V_{ub}_{ub}}\right)$

$$\phi_3$$
の測定(1): 十歩によるCPの破れ ϕ_3 の測定は Vubの位相測定
 $B \rightarrow DK の崩壊を用いる。BかD0またはD0を経て同じ終状態fKへ崩壊する振幅 $A(B^- \rightarrow [f]_D K^-) = A(B^- \rightarrow D^0 K^- \rightarrow f K^-) + A(B^- \rightarrow \bar{D}^0 K^- \rightarrow f K^-)$
 $= A_B A_D \{r_D + r_B exp(i(\delta - \phi_3))\}$ $A(B^+ \rightarrow [\bar{f}]_D K^+) = A(B^+ \rightarrow \bar{D}^0 K^+ \rightarrow \bar{f} K^+) + A(B^+ \rightarrow D^0 K^+ \rightarrow \bar{f} K^+)$
 $= A_B A_D \{r_D + r_B exp(i(\delta + \phi_3))\}$ $A(B^+ \rightarrow [\bar{f}]_D K^+) = A(B^+ \rightarrow \bar{D}^0 K^+ \rightarrow \bar{f} K^+) + A(B^+ \rightarrow D^0 K^+ \rightarrow \bar{f} K^+)$
 $= A_B A_D \{r_D + r_B exp(i(\delta + \phi_3))\}$ $A(B^+ \rightarrow [\bar{f}]_D K^+) = A(B^+ \rightarrow \bar{D}^0 K^+ \rightarrow \bar{f} K^+) + A(B^+ \rightarrow D^0 K^+ \rightarrow \bar{f} K^+)$
 $= A_B A_D \{r_D + r_B exp(i(\delta + \phi_3))\}$ $A_B(\bar{A}_B) = |A(B^- \rightarrow D^0(\bar{D}^0) K^-)| A_D(\bar{A}_D) = |A(D^0 \rightarrow \bar{f}(f))|$ $r_{B(D)} = \bar{A}_{B(D)} / A_{B(D)}$ ϕ_3 : CP変換で符号反転、\delta:強い相互作用の位相差(CP変換で不変)$

D⁰とD⁰が同じ終状態へ崩壊 →φ₃、δ起因の干渉による直接的なCPの破れ

φ₃の測定(2):ADS法

崩壊分岐比(Γ =A²)から ϕ_3 を測定 終状態fに対してと崩壊分岐比の比 \mathcal{R}_f とCP非対称度 \mathcal{A}_f が求まる。

 $R_{f} \equiv \frac{\Gamma(B^{-} \to [f]_{D}K^{-}) + \Gamma(B^{+} \to [f]_{D}K^{+})}{\Gamma(B^{-} \to [\bar{f}]_{D}K^{-}) + \Gamma(B^{+} \to [f]_{D}K^{+})} = r_{B}^{2} + r_{D}^{2} + 2r_{B}r_{D}\cos\phi_{3}\cos\delta$ $\mathcal{A}_{f} \equiv \frac{\Gamma(B^{-} \to [f]_{D}K^{-}) - \Gamma(B^{+} \to [f]_{D}K^{+})}{\Gamma(B^{-} \to [f]_{D}K^{-}) + \Gamma(B^{+} \to [\bar{f}]_{D}K^{+})} = \frac{2r_{B}r_{D}\sin\phi_{3}\sin\delta}{r_{B}^{2} + r_{D}^{2} + 2r_{B}r_{D}\cos\phi_{3}\cos\delta}$ 未知変数:φ₃,r_B,δ 2つの終状態 f_1, f_2 から $A_{f1}, A_{f2}, R_{f1}, R_{f2}$ を測定した場合、 未知変数 ϕ_3 , r_B , δ のうち、 ϕ_3 , r_B はどの終状態でも共通 2つの終状態を解析→ φ₃が測定可能 8

$B \rightarrow D_1 K$

・ 本研究で解析する崩壊: B→D₁K D₁:CP evenの固有状態(K⁺K⁻、 $\pi^{+}\pi^{-}$) $D_{1} = \frac{1}{\sqrt{2}}(D^{0} + \overline{D}^{0})$

ADS法に用いる崩壊の中では崩壊分岐比が大きく、精密に測定できる

B→Dπ: B→DKと崩壊が似ており、比をとることにより系統誤差を相殺

本研究: B→D₁Kから*A₁*,*R₁*を測定

- Belle実験: 大量のB中間子を生成
- KEKB加速器: 電子8.0GeV、陽電子3.5GeV、 重心エネルギー10.6GeVの非対称衝突型加速器 (B中間子ー対がしきい値で生成)

B→D₁Kの解析

解析の流れ

- データサンプル: 388×10⁶のBBペアに対応
- 再構成する崩壊

 $(B^{-} \rightarrow [K^{-}K^{+}]_{D}K^{-} \equiv B \rightarrow DK^{-}, D \rightarrow K^{-}K^{+})$

CP非対称性の測定 B⁻→D₁K⁻ (B⁻→[K⁻K⁺]_DK+B→[π⁻π⁺]_DK) B⁻→D₁K⁻と崩壊分岐比の比を測定 (CP非対称性ほぼなし) $B^{-}→D_{1}\pi^{-}$ (B⁻→[K⁻K⁺]_D π^{-} + B⁻→[$\pi^{-}\pi^{+}$]_D π^{-}) $B^{-}→[K^{-}\pi^{+}]_{D}K^{-}$ $B^{-}→[K^{-}\pi^{+}]_{D}\pi^{-}$,

●Bの崩壊分岐比

- =シグナル数/BBペア/検出効率/Dの崩壊分岐比
- →検出効率、崩壊を再構成してシグナルのイベント数を求めれば良い。

粒子の識別

0

0.2

0.4

 $LR(K/\pi)$

0.6

0.8

この解析では終状態の粒子はK[±]とπ[±]。 各検出器の情報を合わせて得るK/πに対するライクリフッド比LR(K/π)から識別。

 粒子識別の要求 Dの崩壊粒子 K:LR(K/π)>0.3, π :LR(K/π)<0.7 •Bから直接崩壊した粒子 K:LR(K/π)>0.8, π :LR(K/π)<0.8

イベントの選択と再構成

- D(1.865GeV)の再構成:電荷の異なるK[±]、π[±]から再構成
 - → 1.85GeV<(再構成した不変質量M_D)<1.88GeV</p>
- B(5.279GeV)の再構成:DとK⁻/π⁻から再構成 次の2つの量を利用

M_{bc}: ビームコンストレインド質量

$$M_{\rm bc} = \sqrt{\frac{E_{\rm beam}^2}{E_{\rm beam}^2} - (p_D + p_{K/\pi})^2} \quad (m_B = \sqrt{\frac{E_B^2}{E_B^2} - (p_D + p_{K/\pi})^2})$$

$$\Rightarrow 5.27 {\rm GeV} < {\rm M}_{\rm bc} < 5.29 {\rm GeV}$$

ΔE: エネルギー差

 $\Delta E = E_D + E_{K/\pi} - E_{\text{beam}}$ ((再構成エネルギー)-(Bが持つべきエネルギー))

R-

 e⁺e⁻→qq(q=u,d,c,s)、ΔEに一様分布するバックグラウンド イベントの形状、e⁺e⁻の重心系の角度分布(cosθ_B)で区別

e⁺e⁻→qqバックグラウンド(2)

イベントの形状、e⁺e⁻重心系の角度分布から
 Bとqqに対するライクリフッド比:LRを得る

ダリッツ平面を用いた バックグラウンドの除去

- シグナル: Β→[ππ]_DK
- ダリッツ平面の分布から、統計誤差に対してシグナル数が大きくなるよう なカットを導入(モンテカルロ利用)

モンテカルロを用いて、イベント選択を行った後の検出効率を求めた

過程 B → D ₁ K: (B → [KK] _D K: (B → [ππ] _D K:	検出効率(%) 27.6 29.2) 23.2)
Β → [Kπ] _D K :	33.9
B → D ₁ π :	35.2
(B → [KK] _D π:	36.0)
(Β → [ππ] _D π :	32.8)
Β → [Κπ] _D π :	42.7

検出効率

B→Dπ のシグナルの導出

ΔE分布をフィットしてシグナルを求める

赤:シグナル、2つのガウシアンの和
 紫: e⁺e⁻→qq(q=u,d,c,s) バックグラウンド、直線
 緑: シグナル以外のB崩壊(B→D^{*}πなど)、モンテカルロ

B→DK のシグナルの導出

ΔE分布をフィットしてシグナルを求める
 赤:シグナル、2つのガウシアンの和
 紫:e⁺e⁻→qq(q=u,d,c,s) バックグラウンド、直線
 茶: B→KKK、B→ππK(希崩壊)、2つのガウシアンの和
 青: B→Dπ、非対称ガウシアンの和
 緑: B→Xπ(B→D^{*}πなど)、モンテカルロ
 灰色:その他のB崩壊(B→D^{*}Kなど)、モンテカルロ

電荷を分けたΔE分布

B⁻→D₁K⁻、B⁺→D₁K⁺と電荷で分離してΔE分布をフィット

B-:176±22

B+:108±16

シグナル(赤)の数がB⁻とB⁺で異なる 直接的なCPの破れ

系統誤差

崩壊分岐比の比R₁とCP非対称度A₁は以下のようにシグナル数と 検出効率から求まり、系統誤差は表のようになる

$$\mathcal{R}_{1} = \frac{N(B^{\pm} \to D_{1}K^{\pm}) \times N(B^{\pm} \to [K\pi]_{D}\pi^{\pm})}{N(B^{\pm} \to D_{1}\pi^{\pm}) \times N(B^{\pm} \to [K\pi]_{D}K^{\pm})}$$
$$/ \frac{\epsilon(B^{\pm} \to D_{1}K^{\pm}) \times \epsilon(B^{\pm} \to [K\pi]_{D}\pi^{\pm})}{\epsilon(B^{\pm} \to D_{1}\pi^{\pm}) \times \epsilon(B^{\pm} \to [K\pi]_{D}K^{\pm})}$$

N:各崩壊のシグナル数

ε:検出効率

N[±]: B[±]→D₁K[±]のシグナル数

 $\mathcal{A}_1 = \frac{N^- - N^+}{N^- + N^+}$

誤差の原因	$\Delta \mathcal{R}_{I}$	$\Delta \mathcal{A}_{1}$	
フィットパラメータの固定	0.015	0.003	固定したパラメータを±1o変化
希崩壊バックグラウンド	0.065	0.008	イベント数を±1σ変化
検出効率	0.033		粒子識別、モンテカルロの統計
検出器の電荷非対称性		0.014	Β → [Kπ] _D πのCP非対称性
合計	0.074	0.016	29

R₁とA₁の測定結果

30

 $\mathcal{R}_{1}, \mathcal{A}_{1}$ ともにBelleの過去の結果と1 σ で一致 \mathcal{A}_{1} についてはBelleでは初めてB \rightarrow D₁Kで、約3 σ のCPの破れを測定

まとめ

- B→D₁KはADS法に用いる崩壊のなかでは 崩壊分岐比が大きく、精密測定が可能。
- Belle実験で収集された388×10⁶BBペアのデータサンプルを用いた解析の結果、CP非対称度*A*₁と崩壊分岐比の比*R*₁は*A*₁=0.24±0.08(stat.)±0.02(syst.) *R*₁=1.27±0.17(stat.)±0.07(syst.) (暫定) と測定され、過去のBelleの結果と1oで一致、 さらに*A*₁についてはBelleでは初めてB→D₁Kで、 約3oのCPの破れを測定

Back Up

PID

 LR eff fake
 D daugher (0.3~3.5GeV)
 K:>0.3 92.6 15.3 pi:<0.7 93.3 16.7
 prompt(1.5~3.5GeV)
 K:>0.8 76.3 4.9 pi:<0.8 95.2 15.4

PID2

 $L_{K} = L_{K}^{CDC} \times L_{K}^{ACC} \times L_{K}^{TOF}$ $L_{pi} = L_{pi}^{CDC} \times L_{pi}^{ACC} \times L_{pi}^{TOF}$ $L_{K} = L_{K} / (L_{K} + L_{pi})$

34

FoM

FoM

Dpi feed

Dalitz

No additional veto for $B \rightarrow [KK]_D K$.

Nonresonant MC sample

