ILC実験における ZH → *ll*X過程を用いた ヒッグス質量の測定精度の評価

2009/03/28 東北大学 伊藤和俊 ^{他ILDグループ}

<u>ZH → ℓℓX過程</u>

- 測定器の最適化のためのベンチマーク・プロセスの一つ
 - $e^+e^- \rightarrow ZH (Z \rightarrow e^+e^- / \mu^+\mu^-)$

 Zボソンの崩壊後の2つのレプトンからヒッグス粒子の質量を 測定する(Zの反跳質量=ヒッグス粒子の質量)。

_ ヒッグス粒子の4元運動量:P_H = P_{ビーム} – P_{レプトン1} – P_{レプトン2} P_{ビーム} = (E_{ビーム}, 0)

- ヒッグス粒子の崩壊過程に依らず、精密な質量測定が可能。
- 測定器の運動量分解能が重要なパラメータ

<u>ILDグループのソフトウェア</u>

- 測定器シミュレーション: Mokka (geant4ベース)
- 再構成ツール:Marlin
- SLACのstdhepサンプルを使い、 Grid上でシミュレーションを行う。
- アジアグループとヨーロッパグループは、
 共通のデータを用いて解析を行っている。
- ソフトウェアグループの解析結果は
 2009年3月末のLOI(Letter Of Intent)に載る。
 - ヒッグス反跳質量 (本講演)
 - ヒッグス崩壊分岐比
 - SUSY、チャージーノ・ニュートラリーノ対生成
 - トップ・クォーク対生成
 - タウ対生成

<u>セットアップ</u>

- シミュレーション・セットアップ
 - ヒッグス粒子:120 GeV
 - 重心系エネルギー: 250 GeV
 - 測定器: <u>ILD</u> (磁場:3.5T)
 - シグナル事象
 e⁺e⁻ → ZH → e⁺e⁻H / μ⁺μ⁻H
 - バックグラウンド事象 - 終状態にレプトンが2つの イベント全てがバックグラウンド
 - $e^+e^- \rightarrow e^+e^- / \mu^+\mu^- / \tau^+\tau^-$
 - e⁺e⁻ → e⁺e⁻+2f / μ⁺μ⁻+2f
 (ee → WW, ee → ZZ など)
 - $\gamma\gamma \rightarrow ee / \mu\mu / \tau\tau$

$ee \rightarrow ZH \rightarrow eeH$							
反応	反応断面積[fb]						
eeH(シグナル)	1.11E+01						
ee	1.73E+07						
ττ	1.05E+04						
ee + 2f	4.91E+03						
$\gamma\gamma ightarrow ee/ au au$	3.17E+07						

$ee \rightarrow ZH \rightarrow \mu \mu H$						
反応	反応断面積[fb]					
μμH(シグナル)	1.04E+01					
μμ	1.02E+04					
ττ	1.05E+04					
μμ + 2f	1.78E+03					
$\gamma\gamma ightarrow \mu\mu/ au au$	3.17E+07					

4

<u>解析手順</u>

- 2本のレプトントラックの不変質量を計算する。
 - レプトントラックが3本以上あった場合・・・
 - 全ての組み合わせに対し、不変質量を計算する。
 - 得られた不変質量がZボソンの質量に最も近いペアを選択する。
- カットをかけて、バックグラウンドを除去する。
 - 主なカットを本講演で発表する

- シグナル事象の反跳質量分布はヒッグス粒子の質量 (120GeV)付近にピークがある。
- 最終的にフィットする領域:115~150 GeV

- Pdi-leptonのビーム軸に垂直な成分(横運動量)
 - バックグラウンドは小さい方に分布

シグナルの場合:Zボソンの運動量

2粒子系の運動量:P^{di-lepton}

シグナル事象の選択 ||

- $P^{di-lepton} = P_{\nu \gamma \nu 1} + P_{\nu \gamma \nu 2}$

<u>シグナル選択 III</u>

- レプトン2つの横運動量(Pt^{di-lepton})と光子の横運動量(Pt^{photon})
 との差を求めた。
 - Pt^{di-lepton} Pt^{photon}
- ee → ee / µµ のバックグラウンドは、0付近にピークを持つ。

電子チャンネル

<u>カット後のイベント数</u>

- シグナル選択効率
 - 電子チャンネル:23.0%
 - ミューオン・チャンネル:26.0%

250 fb⁻¹ でのイベント数

- シグナル+バックグラウンドをフィットした。
- ヒッグス粒子の質量
 - 電子チャンネル: 120.361 ± 0.294 GeV
 - ミューオン・チャンネル: 120.117 ± 0.135 GeV
- 反応断面積
 - 電子チャンネル: 12.26 ± 1.91 fb < ▶ 11.107 fb (インプット値)
 - ミューオン・チャンネル: 10.4 ± 1.22 fb → 10.4026 fb (インプット値)
 電子チャンネル
 ミューオン・チャンネル

バックグラウンドは

3次の多項式でフィット

<u>まとめ</u>

- ZH → *ll*X過程では、ヒッグスの崩壊過程を用いずに 質量の精密測定が可能である。
- ILD測定器におけるヒッグス質量の測定精度の評価を行った。
- ヒッグス質量の測定精度
 - 電子チャンネル: 120.361 ± 0.294 GeV
 - ミューオン・チャンネル: 120.117 ± 0.135 GeV
- 反応断面積
 - 電子チャンネル: 12.26 ± 1.91 fb (15.6%)
 - ミューオン・チャンネル: 10.4 ± 1.22 fb (11.7%)

バックグラウンド<u>事象のフィット関数</u>

• バックグラウンド事象は3次のチェビチェフの多項式でフィット。 $F(m) = N(1 + \sum_{i=1,2,3} p_i \cdot T_i(m))$ $T_1(m) = m, T_2(m) = 2m^2 - 1, T_3(m) = \epsilon m^2 - \epsilon m^2$

電子チャンネル

ミューオン・チャンネル

Reduction rate

電子チャンネル											
	生成数	プリカット	レプトンID	Mh	Mz	pt_dl	acop	pt_dl – pt_ph	cosLab	bcalHits	COS
sig	2.8E+03	2.8E+03	2.8E+03	1.9E+03	1.6E+03	1.4E+03	1.3E+03	1.3E+03	7.9E+02	7.9E+02	6.4E+02
ee	2.5E+06	1.7E+05	1.6E+05	9.3E+04	4.5E+04	3.2E+04	2.9E+04	2.1E+03	4.2E+02	4.0E+02	2.8E+02
ττ	2.6E+06	2.6E+06	3.2E+05	1.3E+04	2.3E+03	1.4E+03	2.1E+02	1.3E+02	0.0E+00	0.0E+00	0.0E+00
4f	1.2E+06	1.2E+06	7.0E+05	9.8E+04	2.3E+04	1.3E+04	1.2E+04	1.1E+04	5.5E+03	5.4E+03	4.4E+03
γγ	7.9E+09	7.3E+09	9.0E+08	1.1E+07	3.6E+04	7.2E+03	5.0E+03	6.4E+02	5.5E+01	5.5E+01	0.0E+00
ミューオンチャンネル											
	生成数	プリカット	レプトンID	Mh	Mz	pt_dl	acop	pt_dl – pt_ph	cosLab	bcalHits	COS
sig	2.6E+03	2.6E+03	2.2E+03	1.7E+03	1.5E+03	1.4E+03	1.3E+03	1.3E+03	8.1E+02	8.1E+02	6.8E+02
μμ	2.6E+06	4.9E+04	3.1E+04	1.9E+04	1.3E+04	7.2E+03	6.2E+03	4.1E+02	2.5E+02	2.3E+02	2.0E+02
ττ	2.6E+06	2.6E+06	6.9E+04	1.0E+04	1.5E+03	9.4E+02	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
4f	4.5E+05	4.5E+05	2.3E+05	2.6E+04	9.7E+03	7.5E+03	7.1E+03	6.7E+03	4.3E+03	4.3E+03	3.7E+03
γγ	7.9E+09	7.3E+09	9.3E+07	1.7E+03	1.7E+02	3.5E+01	8.8E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00